ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Fiber Reinforced Polymer Reinforcement for Concrete Structures

Author(s): E. Shehata, R. Morphy, and S. Rizkalla

Publication: Symposium Paper

Volume: 188

Issue:

Appears on pages(s): 157-168

Keywords: bend capacity; cracks; reinforcement; shear; stirrups

DOI: 10.14359/5619

Date: 8/1/1999

Abstract:
This paper summarizes an experimental program conducted at the University of Manitoba, Canada, to examine the structural performance of fiber reinforced polymer (FRP) stirrups as shear reinforcement for concrete structures. A total of ten large-scale reinforced concrete beams were tested to investigate the modes of failure and the contribution of the FRP stirrups in the beam mechanism. The ten beams included four beams reinforced with carbon FRP stirrups, four beams reinforced with glass FRP, one beam reinforced with steel stirrups and one control beam without shear reinforcement. The variables were the material type of the stirrups, the material type of the flexural reinforcement, and the stirrup spacing. Due to the unidirectional characteristics of FRP, significant reduction in the strength of the stirrup relative to the tensile strength parallel to the fibers is introduced by bending FRP bars into stirrup configuration and by the kinking action due to inclination of the diagonal shear crack with respect to the direction of the stirrups. A total of 40 specially designed panel specimens were tested to investigate the bend effect on the stirrup capacity, along with two control specimens reinforced with steel stirrups. The variables considered in the bend specimens are the material type of the stirrups, the bar diameter, the bend radius, the configuration of the stirrup anchorage, and the tail length beyond the bend portion. A total of 12 specially designed panel specimens were also tested to investigate the effect of the angle of cracks on the stirrup capacity. The two variables considered in this case are material type of the stirrups and the crack angle. Description of the experimental program, test results and design recommendations are presented.