Performance of Polyolefin Fiber ReinforcedConcrete Under Cyclic Loading


  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: Performance of Polyolefin Fiber ReinforcedConcrete Under Cyclic Loading

Author(s): V. Ramakrishnan and C. Sivakumar

Publication: Special Publication

Volume: 186


Appears on pages(s): 161-182

Keywords: endurance limit; fatigue life; fiber reinforced concretes; flexural fatigue; polyolefin fibers

Date: 5/1/1999

In structures, such as bridges, bridge-deck overlays, pavements, offshore structures, parts of high-rise buildings and crane-girders in industrial buildings, which are subjected to cyclic loading and dynamic loading, the flexural fatigue strength and endurance limit of concrete are important design parameters. Most modern buildings codes concentrate on providing sufficient ductility in a structure to prevent its collapse during a major seismic event. Structures may be deformed beyond the elastic limit in order to absorb all of the energy imparted to them. In such cases ductility, the ability of the structure to undergo increasing deformations beyond yield stresses while still sustaining gravity and other loads, is therefore necessary in order to prevent catastrophic collapse. Non-metallic fiber reinforced concrete represents a potential solution. The behavior of non-metallic fiber reinforced concrete under cyclic loading needs to be studied. This paper presents the results of an experimental and analytical investigation to determine the flexural fatigue strength and endurance limit of non-metallic (polyolefin) fiber reinforced concrete. Six different polyolefin RFC mixes with varying compressive strengths were investigated. The FRC beams were subjected to flexural fatigue that polyolefin fiber reinforced concrete reaches an endurance limit at about two million cycles. The fatigue life model (S-N curve) was more accurate when presented on a log-log scale that on a log-normal scale. Statistical and probabilistic concepts are introduced to predict the flexural fatigue model and the fatigue life expectancy of the composite.