RECLAIMED ASPHALT PAVEMENT AS AGGREGATE IN PORTLAND CEMENT CONCRETE

ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: RECLAIMED ASPHALT PAVEMENT AS AGGREGATE IN PORTLAND CEMENT CONCRETE

Author(s): Michael Berry, Bethany Kappes, and David Schroeder

Publication: Special Publication

Volume: 314

Issue:

Appears on pages(s): 1-14

Keywords: Concrete Pavement, Reclaimed Asphalt Pavement, Recycled Materials in Concrete, Sustainable Concrete

Date: 3/1/2017

Abstract:
This paper documents research focused on evaluating the feasibility of using minimally processed reclaimed asphalt pavement (RAP) as aggregate replacement in concrete pavements. A statistical experimental design procedure (response surface methodology – RSM) was used to investigate proportioning RAP concrete mixtures to achieve desired performance criteria. Based on the results of the RSM investigation, two concrete mixtures were selected for further evaluation: a high RAP mix with fine and coarse aggregate replacement rates (by volume) of 50 and 100 percent respectively, and a “high” strength mix with one half of the RAP used in the high RAP mix. These two concrete mixtures were subjected to a suite of mechanical and durability tests, and were used in a field demonstration project to evaluate their potential use in pavements. Mechanical properties tested were compressive and tensile strength, elastic modulus, shrinkage, and creep. Durability tests included alkali-silica reactivity, absorption, abrasion, chloride permeability, freeze-thaw resistance, and scaling. Overall, both mixes performed adequately in these mechanical and durability tests, although the inclusion of RAP negatively impacted most of the tested properties relative to those of control mixes made with 100 percent conventional aggregates.