Application of Ultrasonic Pulse Velocity in Predicting the Permeability of Concrete in Service


  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: Application of Ultrasonic Pulse Velocity in Predicting the Permeability of Concrete in Service

Author(s): Meghdad Hoseini and Vivek Bindiganavile

Publication: Special Publication

Volume: 280


Appears on pages(s): 1-24


Date: 12/27/2011

During its service life, a reinforced concrete structure seldom sees the maximum loads it is designed to withstand. Nonetheless, failure of reinforced concrete does occur, and it is mainly due to deterioration in the quality of concrete with time. Of particular concern is the transport of deleterious fluids, which is an immediate cause of corrosion of the embedded steel and resultant loss in performance. While cement-based composites are inherently porous, the permeability of concrete is further aggravated by progressive cracking under service loads. Thus, in this study, water permeability and ultrasonic wave velocity measurements were carried out on hollow cylinders made of cement-based concrete and mortars simultaneously subjected to compressive stress. The level of stress was varied from 0–90% of the compressive strength. The role of fibre reinforcement was investigated through polypropylene microfibres incorporated at 0.25% volume fraction. It was found that the coefficient of permeability and the wave velocity are sensitive to a threshold stress value. Fibres delayed the onset of this threshold for both these parameters. Based on the experimental results, an empirical correlation is made between the water permeability and ultrasonic wave velocity.