Design and Construction Aspects of Steel Fiber-Reinforced Concrete Elevated Slabs


  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: Design and Construction Aspects of Steel Fiber-Reinforced Concrete Elevated Slabs

Author(s): B. Mobasher and X. Destree

Publication: Special Publication

Volume: 274


Appears on pages(s): 95-108

Keywords: elevated slabs; ground slabs; point loading; soil structure; steel fiber-reinforced slabs; steel fibers.

Date: 10/1/2010

Applications of slabs supported on piles are quite common for areas where soil- structure interaction may create differential settlement or long term tolerance issues. An application for the use of steel fiber reinforced slabs that are continuous and supported on piles is discussed in this paper. The experience and design methodology for slabs on piles is further extended to floor slabs of multi-story buildings, where a high dosage of steel fibers (50-100 kg/m³, 84-168 lbs/ft3) is used as the sole method of reinforcement. Suspended ground slabs are generally subjected to high concentrated point loading (150 kN, or 33.7 kips) intensities as well as high uniformly distributed loadings (50 kN/m² or 1000 lb/ft2) and wheel loads. The span to depth ratios of the SFRSS is between 8 and 20 and depends on the loading intensity and the pile/column capacity. Standard procedures for obtaining material properties and finite element models for structural analysis of the slabs are discussed. Methods of construction, curing, and full scale testing of slabs are also presented.