Performance-Based Post-Earthquake Repair Metrics for RC Bridges

ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Performance-Based Post-Earthquake Repair Metrics for RC Bridges

Author(s): K. R. Mackie, J.-M. Wong, and B. Stojadinovic

Publication: Special Publication

Volume: 271

Issue:

Appears on pages(s): 103-124

Keywords: fragility; loss modeling; production rate; repair cost; repair time; unit cost

Date: 5/24/2010

Abstract:
Post-earthquake repair costs and repair times are important for evaluating the performance of new bridge designs and existing bridges in regions where bridges are subject to seismic hazards. Hazard and structural demand models describe the probabilistic structural response during earthquakes. Damage and decision models link the structural response to decisions on bridge repair actions and repair costs. A step-by-step probabilistic repair cost and repair time methodology is proposed in this paper to probabilistically evaluate repair metrics for different bridge components and the bridge as a system, corresponding to varying degrees of damage. Repair actions, quantities, times, and costs are input into spreadsheet templates, and a numerical tool evaluates the expected value and variance of both repair costs and repair times for a range of earthquake intensities. This methodology uses the concept of performance groups—groups defined to account for bridge components that are repaired together. Spreadsheets are used to track all the necessary data: bridge information, structural response, component damage states, repair methods and repair quantities, and unit costs or production rates. Data can be customized for repair methods and bridge types particular to different regions. A multi-span, reinforced concrete highway overpass bridge in California is used to illustrate the methodology.