In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
American Concrete Institute 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA
Phone: 1.248.848.3700 Fax: 1.248.848.3701 Staff Directory
Chat with Us Online Now
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Title: Toughness indices of steel fiber reinforced concrete under mode II loading
Author(s): G. Appa Rao, A. Sreenivasa Rao
Publication: RILEM
Volume: 42
Issue: 9
Appears on pages(s): 1173-1184
Keywords: Fiber reinforced concrete, Fracture toughness, Mode II failure, Fracture energy, Volume fraction, Toughness index
Date: 10/14/2009
Abstract:The toughness indices of fiber reinforced concrete under Mode II loading effects are rarely reported due to lack of information on standard testing procedures. However, the direct shear test with improvement over JSCE-SF6 method is generally accepted to study Mode II fracture parameters. In this paper, experimental investigations to determine the fracture properties and toughness indices of steel fiber reinforced concrete (FRC) under Mode II loading are reported. Straight steel fibers of length 25 mm with an aspect ratio of 44.6 were randomly distributed in concrete with varying fiber volume fractions of 0, 0.5, 1.0 and 1.5%. A symmetrical Mode II loading set up was designed to achieve an ideal shear failure. It has been observed that the failure was due essentially to shear (Mode II) fracture without secondary flexural cracking. Plain concrete failed at a low equivalent shear strain of 0.5%, while the addition of steel fibers improved the shear strains up to as much as 8.0%. The shear strength and the shear toughness of concrete with the addition of steel fibers have been improved very significantly. As the volume fraction of fibers increases, the shear strength increases up to an optimum volume fraction, beyond which there has been no improvement on the shear strength. However, the toughness indices determined in Mode II loading (shear) have been observed to be about 15 times as high as that under Mode I loading (flexure).
International union of laboratories and experts in construction materials, systems and structures, International Partner Access.
View Resource »