ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Fatigue of High-Strength Concrete

Author(s): G. Petkovic, R. Lenschow, H. Stemland, and S. Rosseland

Publication: Symposium Paper

Volume: 121

Issue:

Appears on pages(s): 505-526

Keywords: amplitude; compression; fatigue (materials); loads (forces); high-strength concretes; lightweight concretes; strains; structural design; stress-strain relationships; structural design; General

DOI: 10.14359/3740

Date: 11/1/1990

Abstract:
Fatigue properties of high-strength concrete in compression were studied. Two types of normal-density concrete and one type of lightweight aggregate concrete have been tested. The numbers indicate the planned mean strength in MPa of 100 x 100 x 100 mm cubes. The influence of different moisture conditions was studied in an introductory investigation. Three different sizes of cylinder were tested for each of the three curing and testing conditions: in air, sealed, and in water. The tests showed that the fatigue properties of both the air and water conditions were scale-dependent, while the sealed condition was hardly influenced by the sizes of the specimens. The main investigation dealt with the influence of the variation in stress levels on the fatigue life. Test conditions with constant maximum stress levels showed significantly longer lives when the stress range was reduced. If the load levels were defined relative to the static strength, there was no obvious difference between the fatigue properties of the concrete qualities included in these tests. An additional investigation was performed on ND95 cylinders exposed to different combinations of cyclic load levels. It was found that initial cycling at lower load levels was beneficial for the fatigue life at the higher load levels. Based on the results of the experimental work, a design proposal for fatigue of concrete in compression was established.