In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
American Concrete Institute 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA
Phone: 1.248.848.3700 Fax: 1.248.848.3701 Staff Directory
Chat with Us Online Now
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Title: Elastic Joint Connections for Precast Concrete Frames Subjected to Large Seismic Loads
Author(s): B. Rogers and D. Shelangoskie
Publication: Special Publication
Volume: 94
Issue:
Appears on pages(s): 855-882
Keywords: columns (supports); connections; deformation; dynamic loads; earthquake-resistant structures; elastic properties; embedment; girders; framing systems; joints (functions); lateral pressure; precast concrete; structural design; tests; Construction
Date: 7/1/1987
Abstract:Central to the design of the Intermountain Power Project (IPP) mechanical cooling towers was the ability to configure connections between precast concrete members so that large horizontal seismic forces could be transferred between beams and girders and between girders and columns. Complicating the task of connection design were substantial thermal loads and severe environmental conditions. To solve these and related design questions, a testing program was undertaken using «-scale models of certain key joints in the structure. This paper presents a description of the testing program, a brief description of the structural system in which the joints were located, and the results and conclusions of the tests. Principal among the conclusions is the recognition that embedded metal pins used to transfer forces between discrete members must not only be carefully detailed, but they also must accommodate substantial elastic deformation at the joint if failure below acceptable force levels is to be avoided. In the IPP, this was accomplished by the introduction of a confined viscoelastic medium surrounding the pin. This simple addition to the joint configuration increased the force transferred through the connection by a factor of 2.5 to 3 while limiting deformation to acceptable values.
Click here to become an online Journal subscriber