How to Make Concrete That Will Be Immune to the Effects of Freezing and Thawing

ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: How to Make Concrete That Will Be Immune to the Effects of Freezing and Thawing

Author(s): Bryant Mather

Publication: Special Publication

Volume: 122

Issue:

Appears on pages(s): 1-18

Keywords: age; aggregates; air-entrained concretes; air entrainment; capillarity; compressive strength; concretes; freeze-thaw durability; porosity; saturation; soundness; voids; water; Materials Research

Date: 6/1/1990

Abstract:
Concrete will be immune to the effects of freezing and thawing if: 1) it is not in an environment where freezing and thawing take place, i.e., where freezable water may be present in the concrete; 2) there are no pores in the concrete large enough to hold freezable water when freezing takes place (i.e., no capillary cavities); 3) during freezing of freezable water, the pores containing freezable water are never more than 91 percent filled, i.e., not critically saturated; 4) during freezing of freezable water, the pores containing freezable water are more than 91 percent full and the paste has an air-void system with an air bubble located not more than 0.2 mm (0.008 in.) from anywhere (L ó 0.2 mm), sound aggregate, and moderate maturity. Sound aggregate is aggregate that does not contain significant amounts of accessible capillary pore space that is likely to be critically saturated when freezing occurs. The way to establish that such is the case is to subject properly air-entrained, properly mature concrete, made with the aggregate in question, to an appropriate laboratory freeze-thaw test, such as ASTM C 666, Procedure A. Moderate maturity means that the original mixing water-filled space has been reduced by cement hydration so that the remaining capillary porosity that can hold freezable water is a small enough fractional volume of the paste so that the expansion of the water on freezing can be accommodated by the air-void system.