Shear Behavior of HPC Bulb-Tee Girders


  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: Shear Behavior of HPC Bulb-Tee Girders

Author(s): K.K. Raymond, R.N. Bruce, and J.J. Roller

Publication: Special Publication

Volume: 228


Appears on pages(s): 705-722

Keywords: bridge girders; high-performance concrete; high-strength concrete; prestressed concrete; shear strength; welded wire reinforcement

Date: 6/1/2005

Three 96-ft (29.3-m) long, 72-in. (1.83-m) deep, pretensioned bulb-tee girders were tested to evaluate behavior under static shear loadings. The three girders had a design concrete compressive strength of 10,000 psi (69.0 MPa) and incorporated 0.6-in. (15.2mm) diameter, Grade 270, low relaxation prestressing strands. One of the girders was designed based on the AASHTO Standard Specifications for Highway Bridges and the other two were designed based on the AASHTO LRFD Bridge Design Specifications. The shear designs incorporated the use of either welded wire fabric or conventional bars for reinforcement. Prior to testing, a 10-ft (3.05m) wide reinforced concrete deck slab was added to each girder and a fatigue test was performed. After the fatigue test, each girder was cut in half and both ends were tested to evaluate static shear strength performance. Measured strengths consistently exceeded the design strengths calculated by both AASHTO design approaches using both design and measured material properties.