In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
American Concrete Institute 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA
Phone: 1.248.848.3700 Fax: 1.248.848.3701 Staff Directory
Email Support
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Title: Seismic Behavior of Connections in Precast Concrete Walls
Author(s): A. E. Schultz and R. A. Magana
Publication: Special Publication
Volume: 162
Issue:
Appears on pages(s): 273-312
Keywords: connections; construction joints; cyclic loads; earthquake-resistant structures; energy dissipation; joints (junctions); precast concrete; shearwalls; structural design; Structural Research
Date: 8/1/1996
Abstract:An experimental program is summarized which is aimed at enhancing the knowledge base regarding seismic behavior, analysis, and design of precast concrete shearwalls. The "emulation design" and "jointed construction" philosophies are described and an idealization of the behavior of precast shearwalls presented. A compendium of connection details for precast concrete shearwalls, seven for vertical joints and four for horizontal joints, is selected for further study; the selection process is described. The connection details are proportioned for a prototype shearwall that is designed as part of a six-story precast concrete office building. A description of all connection details and test procedure is given. Highlights from the cyclic load tests of the vertical joint specimens are documented, including connection resistance, displacement response, initial stiffness, and energy dissipation capacity.
Click here to become an online Journal subscriber