Flexural and Facture Properties of Glass Fiber Reinforced Polyester Polymer Concrete


  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: Flexural and Facture Properties of Glass Fiber Reinforced Polyester Polymer Concrete

Author(s): C. Vipulanandan and S. Mebarkia

Publication: Special Publication

Volume: 166


Appears on pages(s): 1-16

Keywords: esters; fibers (discrete fibers); flexural strength; fracture properties; polymer concrete; Materials Research

Date: 12/1/1996

Flexural behavior of a polyester polymer concrete was investigated by varying the polymer and fiber contents. The polymer content was varied up to 18 percent of the total weight of polymer concrete (PC). The chopped glass fibers were 13 mm long and the fiber content varied up to six percent (by weight of PC). The fine aggregates were well graded, with particle size varying from 0.1 to 5.0 mm and were mainly quartz. The fine aggregates and glass fibers were also pretreated with a coupling agent ( -MPS) to improve flexural and fracture properties of PC. In general, addition of fibers increased the flexural strength, failure strain (strain at peak stress), and fracture properties, but the flexural modulus of PC remained almost unchanged. Addition of six percent fiber content and silane treatment of aggregates and fibers increased the flexural strength of 18 percent PC to 41.6 MPa (6,040 psi), almost doubling the strength of unreinforced 18 percent PC system. Crack resistance curves based on stress intensity factor (K R-curve) have been developed for the fiber reinforced PC systems. A two- parameter relationship was used to predict the complete flexural stress- strain data. There is good agreement between the predicted and measured stress-strain relationships.