In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
American Concrete Institute 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA
Phone: 1.248.848.3700 Fax: 1.248.848.3701 Staff Directory
Email Support
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Title: Use of Glass and Fly Ash in Manufacture of Controlled low Strength Materials
Author(s): T. R. Naik, R. N. Kraus, and S. S. Singh
Publication: Special Publication
Volume: 200
Issue:
Appears on pages(s): 349-366
Keywords: CLSM; flowable slurry; fly ash; glass
Date: 6/1/2001
Abstract:This work was conducted to develop two types of controlled low strength materials (CLSM) or flowable slurry utilizing post-consumer glass (broken glass or glass cullet) aggregate and fly ash. Type A CLSM consisted of glass, fly ash, cement, and water; and Type B CLSM consisted of glass, sand, cement, and water. All mixtures were proportioned to achieve the 28-day compressive strength of 0.7 MPa (100 psi). The Type A CLSM mixtures consisted of a control mixture (100% fly ash without glass) and five other mixtures with glass, as a replacement of fly ash in the range of 20 to 80 percent. The Type B CLSM mixtures were composed of a control mixture (without glass) and two other mixtures at 30 to 75 percent replacement of sand with glass. The flowable slurry developed in this project satisfied the ACI Committee 229 definition of CLSM. Decreasing the amount of fly ash and increasing the glass content led to increased bleeding and segregation at high replacement levels of 60% and 80%. Permeability of Type A CLSM remained essentially unchanged except at high glass contents it was lower. For Type B CLSM, the permeability was about the same.
Click here to become an online Journal subscriber