ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 216 Abstracts search results

Document: 

SP-349_30

Date: 

April 22, 2021

Author(s):

Faisal.A.H Saleh, Nouria Kaid, Kada Ayed, Rabah Soltani, And Djamel-Eddine Kerdal

Publication:

Symposium Papers

Volume:

349

Abstract:

Scrap tyres are one of the most serious wastes that are landfilled with small percentages. Recycled scrap tyres are being used in different domains of industry because they are notdegradable. The experimental work focused on mechanical properties and durability indicators of self-compacting sand concretes blended with recycled rubber. Such modified concretes comprised 5, 10, 15 and 20% of rubber fine powder (RFP) and coarse particles (RCP) as partial substitutions of natural sand and aggregates. To shed light on physical and mechanical properties rubber particles effects, ordinary vibrated and self-compacting as well as self-compacting sand concretes (SCSCs) were characterised. Special attention was given to compression and bending performances of SCSCs. Identification of two durability indicators — water porosity and density — was assessed, according to AFGC specifications. Experimental findings enhanced previous literature reported statements and demonstrated that use of rubber particles as substitutes improved performances of elaborated SCSCs and produced eco-friendly materials that are appropriate for large surface applications such as pavements and terraces as well as civil engineering constructions.


Document: 

SP-345_05

Date: 

February 1, 2021

Author(s):

Bui Si Muoi and Minoru Kunieda

Publication:

Symposium Papers

Volume:

345

Abstract:

Textile Reinforced Concrete (TRC) has emerged in recent years as a new construction material, which is seriously considered as substitutes for traditional composite materials. However, the practical utility and design of innovative materials like TRC is hindered by the lack of standardized specifications, including required lap splice length of textile fabrics. This study aims to investigate the structural behavior of TRC members subjected to uniaxial tensile force, therefore providing knowledge for further research on determining overlap length.


Document: 

SP-346_07

Date: 

January 1, 2021

Author(s):

Brahim Benmokrane, Hamdy M. Mohamed, Khaled Mohamed, and Salaheldin Mousa

Publication:

Symposium Papers

Volume:

346

Abstract:

The design principle of fiber-reinforced polymer (FRP) reinforcing composite bars for concrete structures has been well established through extensive research and field practices. Provisions governing certification testing and evaluation as well as quality control/assessment and FRP design provisions, are now in place to regulate materials specifications and design aspects and guide FRP manufacturers and end-users. The Canadian Standards Association (CSA) group addressing the state-of-the-art FRP material specifications and design requirement recently issued two updated provisions. The new edition of CSA S807 includes several additions and modifications in terms of quality and qualification requirements, material properties, testing procedures, and material mechanical and durability limitations. Additionally, the updated Section 16 of CSA S6 for the design of fiber-reinforced structures and highway bridges aimed at providing more rational design algorithms and allowing practitioners to take full advantage of the efficiency and economic appeal of FRP bars. This paper presents a summary of these recent modifications in Canadian codes and standards, introducing the underlying rationale. Additionally, the paper highlights the recent field applications of FRP bars in different types of concrete civil-engineering infrastructure.


Document: 

SP-346_07

Date: 

January 1, 2021

Author(s):

Joseph Losaria, Steven Nolan, Andra Diggs II, and David Hartman

Publication:

Symposium Papers

Volume:

346

Abstract:

This case study highlights the use of Fiber Reinforced Polymer (FRP) materials on the US 41 Highway Bridge over North Creek in Sarasota County near the Florida Gulf Coast. Design and construction involved the use of Glass-FRP (GFRP) reinforcement on the cast-in-place (CIP) concrete flat slab superstructure, Carbon-FRP (CFRP) prestressing strands on the concrete piles, and GFRP reinforced precast panels for the substructure combining a bridge bearing abutment and retaining wall system. The application of FRP prestressing and reinforcing is promoted by the Florida Department of Transportation (FDOT) under their Transportation Innovation Challenge initiative. Soldier-pile retaining walls are a commonly used system in southeastern US coastal states, but the incorporation of innovative materials such as CFRP-prestressing for piles and GFRP-reinforcing for concrete panels is not yet widespread. Comparison of lateral stability results of this wall system during construction and in the final condition is discussed. In addition, to describing the preferred FRP-PC/RC solution adopted for this project, a comparison is provided to a recently completed adjacent bridge that utilized a conventional carbon-steel PC soldier-pile and RC precast panel wall system. A further comparison is presented for the design and cost of the wall system based on the project design criteria (ACI 440.1R, ACI 440.4R, and 2009 AASHTO LRFD Bridge Design Guide Specifications for GFRPReinforced Concrete, 1st Edition) with the refinements and savings possible under the newer editions. Finally, the life-cycle cost, durability and environmental benefits from the use of the innovative CFRP and GFRP reinforcing systems in this type of traditional wall system, are identified for typical urban coastal areas with extremely aggressive conditions, congested access, and challenging environmental constraints.


Document: 

SP343

Date: 

November 3, 2020

Author(s):

fib and ACI

Publication:

Symposium Papers

Volume:

343

Abstract:

The first international FRC workshop supported by RILEM and ACI was held in Bergamo (Italy) in 2004. At that time, a lack of specific building codes and standards was identified as the main inhibitor to the application of this technology in engineering practice. The workshop aim was placed on the identification of applications, guidelines, and research needs in order for this advanced technology to be transferred to professional practice. The second international FRC workshop, held in Montreal (Canada) in 2014, was the first ACI-fib joint technical event. Many of the objectives identified in 2004 had been achieved by various groups of researchers who shared a common interest in extending the application of FRC materials into the realm of structural engineering and design. The aim of the workshop was to provide the State-of-the-Art on the recent progress that had been made in term of specifications and actual applications for buildings, underground structures, and bridge projects worldwide. The rapid development of codes, the introduction of new materials and the growing interest of the construction industry suggested presenting this forum at closer intervals. In this context, the third international FRC workshop was held in Desenzano (Italy), four years after Montreal. In this first ACI-fib-RILEM joint technical event, the maturity gained through the recent technological developments and large-scale applications were used to show the acceptability of the concrete design using various fibre compositions. The growing interests of civil infrastructure owners in ultra-high-performance fibre-reinforced concrete (UHPFRC) and synthetic fibres in structural applications bring new challenges in terms of concrete technology and design recommendations. In such a short period of time, we have witnessed the proliferation of the use of fibres as structural reinforcement in various applications such as industrial floors, elevated slabs, precast tunnel lining sections, foundations, as well as bridge decks. We are now moving towards addressing many durability-based design requirements by the use of fibres, as well as the general serviceability-based design. However, the possibility of having a residual tensile strength after cracking of the concrete matrix requires a new conceptual approach for a proper design of FRC structural elements. With such a perspective in mind, the aim of FRC2018 workshop was to provide the State-of-the-Art on the recent progress in terms of specifications development, actual applications, and to expose users and researchers to the challenges in the design and construction of a wide variety of structural applications. Considering that at the time of the first workshop, in 2004, no structural codes were available on FRC, we have to recognize the enormous work done by researchers all over the world, who have presented at many FRC events, and convinced code bodies to include FRC among the reliable alternatives for structural applications. This will allow engineers to increasingly utilize FRC with confidence for designing safe and durable structures. Many presentations also clearly showed that FRC is a promising material for efficient rehabilitation of existing infrastructure in a broad spectrum of repair applications. These cases range from sustained gravity loads to harsh environmental conditions and seismic applications, which are some of the broadest ranges of applications in Civil Engineering. The workshop was attended by researchers, designers, owner and government representatives as well as participants from the construction and fibre industries. The presence of people with different expertise provided a unique opportunity to share knowledge and promote collaborative efforts. These interactions are essential for the common goal of making better and sustainable constructions in the near future. The workshop was attended by about 150 participants coming from 30 countries. Researchers from all the continents participated in the workshop, including 24 Ph.D. students, who brought their enthusiasm in FRC structural applications. For this reason, the workshop Co-chairs sincerely thank all the enterprises that sponsored this event. They also extend their appreciation for the support provided by the industry over the last 30 years which allowed research centers to study FRC materials and their properties, and develop applications to making its use more routine and accepted throughout the world. Their important contribution has been essential for moving the knowledge base forward. Finally, we appreciate the enormous support received from all three sponsoring organizations of ACI, fib and Rilem and look forward to paving the path for future collaborations in various areas of common interest so that the developmental work and implementation of new specifications and design procedures can be expedited internationally. June 2018 Bruno Massicotte, Fausto Minelli, Barzin Mobasher, Giovanni Plizzari


12345...>>

Results Per Page 




Please enter this 5 digit unlock code on the web page.