ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 55 Abstracts search results

Document: 

21-100

Date: 

May 1, 2023

Author(s):

Keun-Hyeok Yang, Ju-Hyun Mun, Seung-Jun Kwon, and Jong-Won Kim

Publication:

Materials Journal

Volume:

120

Issue:

3

Abstract:

The atmospheric purification capacity of concrete has not beenadequately investigated. This study examines the feasibility ofusing sustainable foam-concrete granules as a porous materialfor reducing air pollutants in concrete. To enable the removal of nitrogen oxide (NOx) and sulfur oxide (SOx) using titanium dioxide (TiO2) nanoparticles, foam concrete was crushed into granules with porosity exceeding 30%. Ordinary portland cement (OPC), fly ash (FA), and slag cement were used as source cementitious materials. OPC was replaced with 0 to 40% FA and 0 or 40% slag cement by weight. Test results indicate that 30% FA and unit cementitious materials content exceeding 500 kg/m3 (31.2 lb/ft3) are optimal for replacing cement and foam-concrete granules, respectively. Considering the particle-size distribution and specific surface area, 6 to 13 mm (0.24 to 0.51 in.) and 6 to 9 mm (0.24 to 0.35 in.), were selected as optimal granule sizes. The coating procedures yielded improved SOx and NOx removal, with the removal rates reaching 83.8 and 45% using granules of 6 to 9 mm (0.24 to 0.35 in.), respectively. Consequently, the foam-concrete granules coated with TiO2 nanoparticles are promising in developing porous concrete with the reduction capability of air pollutants.

DOI:

10.14359/51738507


Document: 

21-497

Date: 

November 1, 2022

Author(s):

Rita E. Lederle and Amanda Birnbaum

Publication:

Materials Journal

Volume:

119

Issue:

6

Abstract:

This study tested the effect of using taconite as an aggregate replacement in concrete. Taconite is a by-product from iron ore mining that has the potential to be used in concrete production as a coarse and/or fine aggregate. Replacing the aggregate in a concrete pavement with taconite could decrease the demand for increasingly scarce high-quality aggregates. The mechanical properties of concrete made with only fine, only coarse, or both fine and coarse taconite aggregates were tested. Properties tested include compressive, flexural, and tensile strength; elastic modulus; and coefficient of thermal expansion. All concretes made with taconite coarse and fine aggregate, either alone or in combination, produced concrete with acceptable mechanical properties for use in paving. The use of taconite coarse aggregate increased all mechanical properties tested, while the use of taconite fine aggregate had mixed effects on mechanical properties, but values of all properties tested remained within normal ranges. Fresh concrete properties were also tested, and taconite was found to decrease workability. This work shows that both coarse and fine taconite aggregates have the potential to be used as viable aggregates for concrete.

DOI:

10.14359/51736003


Document: 

20-398

Date: 

January 1, 2022

Author(s):

G. P. Cordoba, A. Rossetti, S. V. Zito, V. F. Rahhal, D. Falcone, and E. F. Irassar

Publication:

Materials Journal

Volume:

119

Issue:

1

Abstract:

The use of calcined clays in cement (kaolinitic and common calcined clays) introduces challenges due to the high alumina content, large specific surface area, and high-alkali content. This paper examines the performance against sulfate attacks, alkali-silica reactions, and chloride penetration in mixtures with calcined illitic shale (CIS). Replacement of high and moderate alkali content cement with 25% CIS significantly reduces the expansion in the alkali-silica reaction (ASR) test, as the pozzolanic reaction contributes to the combination of alkalis. Replacing 20% white portland cement with CIS allows the formulation of sulfate-resistant cement by limiting the formation of gypsum and ettringite. The incorporation of 25% CIS in concrete does not significantly increase chloride ingress. Therefore, blended cements with replacement levels of 20 to 25% of portland cement by CIS reduce or maintain the performance against ASR, sulfate attack, and chloride penetration.

DOI:

10.14359/51734192


Document: 

20-459

Date: 

November 1, 2021

Author(s):

Gregor Fischer and Ieva Paegle

Publication:

Materials Journal

Volume:

118

Issue:

6

Abstract:

Digital fabrication and automated manufacturing technologies have been explored for civil engineering applications in the recent past and have rapidly gained momentum. Research and industrial development activities have been primarily focused on three-dimensional (3D) printing of concrete using the basic principle of extrusion along a predefined, automatically guided path. While the automated placement and shaping of concrete has advanced and has been refined significantly, the installation of reinforcement in the concrete is still largely done using traditional methods by manual placement of conventional steel reinforcing bar in a cavity between 3D-printed walls of formwork, which is subsequently filled by conventional cast-in-place concrete or grout. The concept for the construction of a structure in an entirely automated, digitally controlled process using alternative methods of structural reinforcement is currently still to be developed. Structural reinforcement is a key requirement in any efficient and economical concrete structure, and it is a challenge to invent a process for placing this reinforcement using an automated process in line with the printing process of concrete.

DOI:

10.14359/51733127


Document: 

20-210

Date: 

July 1, 2021

Author(s):

Tayseer Z. Batran, Mohamed K. Ismail, and Assem A. A. Hassan

Publication:

Materials Journal

Volume:

118

Issue:

4

Abstract:

This study investigated the structural behavior of lightweight self-consolidating concrete (LWSCC) beams strengthened with engineered cementitious composite (ECC). Four LWSCC beams were strengthened at either the compression or tension zone using two types of ECC developed with polyvinyl alcohol (PVA) fibers or steel fibers (SFs). Three beams were also cast in full depth with LWSCC, ECC with PVA, and ECC with SFs, for comparison. The performance of all tested beams was evaluated based on loaddeflection response, cracking behavior, failure mode, first crack load, ultimate load, ductility, and energy absorption capacity. The flexural ultimate capacity of the tested beams was also estimated theoretically and compared to the experimental results. The results indicated that adding the ECC layer at the compression zone of the beam helped the LWSCC beams to sustain a higher ultimate loading, accompanied with obvious increases in the ductility and energy absorption capacity. Higher increases in the flexural capacity were exhibited by the beams strengthened with the ECC layer at the tension zone. Placing the ECC layer at the tension zone also contributed to controlling the formation of cracks, ensuring better durability for structural members. Using ECC with SFs yielded higher flexural capacity in beams compared to using ECC with PVA fibers. The study also indicated that the flexural capacity of single-layer and/or hybrid composite beams was conservatively estimated by the ACI ultimate strength design method and the Henager and Doherty model. More improvements in the Henager and Doherty model’s estimates were observed when the tensile stress of fibrous concrete was obtained experimentally.

DOI:

10.14359/51732635


12345...>>

Results Per Page