International Concrete Abstracts Portal

ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-10 of 20 Abstracts search results

Document: 

SP-336_03

Date: 

December 11, 2019

Author(s):

Gang Xu, Luis Gerardo Navarro, Kafung Wong, and Xianming Shi

Publication:

Symposium Papers

Volume:

336

Abstract:

In this work, the freeze/thaw resistance and ambient-temperature salt resistance of fly ash geopolymer pervious concrete specimens were investigated separately, to isolate the physical and chemical phenomena underlying their deterioration during “salt scaling”. The laboratory investigation examined four groups of samples, with portland cement or activated fly ash as the sole binder, with or without graphene oxide (GO) modification, respectively. The incorporation of GO significantly improved the resistance of pervious concrete to freeze/ thaw cycles and ambient-temperature salt attack, regardless of the binder type. The specimens were then examined by using X-ray Diffraction (XRD) method, which revealed that the mineralogy and chemical composition of fly ash pastes differed significantly from those of cement pastes. Nuclear magnetic resonance (NMR) was also employed to study the chemical structure and ordering of different hydrates. This work provides an enhanced understanding into the freeze/thaw and salt scaling resistance of fly ash pervious concrete and the role of GO.


Document: 

SP-334-12

Date: 

September 30, 2019

Author(s):

A. Said and O. Quiroz

Publication:

Symposium Papers

Volume:

334

Abstract:

In the U.S. and around the world, large amounts of waste latex paint are generated annually, which creates a significant challenge in terms of disposal in an economic manner. Paint contains some chemicals that may be harmful to the environment if recycled as it contains volatile organic compounds. However, waste latex paint can be used to produce an economic latex-modified pervious concrete that is similar or superior to regular pervious concrete. Previous studies investigated recycling waste latex paint in concrete applications such as sidewalks. This study investigates the use of waste latex paint in producing pervious concrete and the effect of using different ratios of paint addition on the properties of the studied mixtures. The properties evaluated included physical, mechanical and hydraulic properties. Results show that while waste latex paint recycling in pervious concrete can slightly reduce its mechanical properties at 5% polymer to cement content, it can still be a viable option to prevent paint disposal in landfills.


Document: 

SP290-02

Date: 

September 14, 2012

Author(s):

John Roberts, Randy Butcher, Bruce Jones, Max Kalafat, and Ron Vaughn

Publication:

Symposium Papers

Volume:

290

Abstract:

First noticed by T. C. Powers, et al in 1948, [22] as beneficial for hydration by supplying water internally, specifiers and contractors in 2012 have grasped how the process of internal curing is implemented, how hydration behaves, and how improvements in mechanical properties, durability, and cost may be beneficial. To meet the time-dependent hydration needs of the concrete, having sufficient water internally available, when, as, and where needed, is vital for achieving optimum characteristic qualities. There is lower life cycle cost with internal curing (IC) and frequently lower first cost. In 2012, the number of projects using internal curing is increasing at an escalating rate, because the process is simple and economically implemented. Pavements, bridges, buildings, and pervious parking lots are being started now in this recession, because specifiers and contractors are saving dollars, as they build longer lasting structures while costs and interest rates are low. Developed initially to reduce autogenous shrinkage in low water-cement ratio and high performance concretes, internal curing has been found to reduce drying shrinkage. Other benefits found include reduced permeability, increased compressive and flexural strengths, less warping, stronger interfacial transition zones, greater durability, and lower carbonation.

DOI:

10.14359/51684171


Document: 

SP282

Date: 

December 29, 2011

Author(s):

Editor: Charles A. Weiss, Jr.

Publication:

Symposium Papers

Volume:

282

Abstract:

SP-282 This CD-ROM contains seven papers that were presented at sessions sponsored by ACI Committee 522 at the ACI Fall 2009 Convention in New Orleans, LA. The aim of this SP is to present some of the latest research findings on pervious concrete and to provide state-of-the-art examples on the use of pervious concrete. The six papers in this SP present the latest research results from both experimental and numerical studies on various aspects of pervious concrete.

DOI:

10.14359/51683563


Document: 

SP282-03

Date: 

December 27, 2011

Author(s):

Jonathan Thomle and Liv Haselbach

Publication:

Symposium Papers

Volume:

282

Abstract:

The focus of this study is on the pH changes over time of water in contact with pervious concrete aged under varying ambient air restrictions. Elevated pH levels may be a concern if exfiltrated directly to sensitive waters. This study was conducted to aid designers by determining the rate of pH decline under various conditions. For this study laboratory prepared pervious concrete specimens exposed to three different levels of ambient air were periodically tested for pH using four different testing methods, infiltrating either deionized water or tap water through the specimens, or soaking the specimens in either deionized water or tap water. Obvious trends in pH decline were observed. Greater exposure to ambient air significantly increased the rate of pH decline. The tap water tests represented more typical stormwaters and had much lower pH readings than the deionized water tests. The samples were representative of typical in-place conditions in an arid environment with little buffering and yet the pH declined sufficiently in well under a year.

DOI:

10.14359/51683640


Document: 

SP282-05

Date: 

December 27, 2011

Author(s):

Omkar Deo, Milani S. Sumanasooriya, and Narayanan Neithalath

Publication:

Symposium Papers

Volume:

282

Abstract:

Properties of a random porous material such as pervious concrete are strongly dependent on its pore structure features. This study describes the development of different models to understand the material structure – property relationships in pervious concretes. Several pervious concrete mixtures with different pore structure features are proportioned. The pore structure features such as pore area fractions, pore sizes, mean free spacing of the pores, specific surface area, and the three-dimensional pore distribution density are extracted using image analysis methods. The performance features modeled as a function of the pore structure features are: (1) the unconfined compressive strength, (2) permeability, and (3) permeability reduction due to particle trapping in the pores (clogging). A statistical model is used to relate the compressive strength to the relevant pore structure features, which is then used as a base model in a Monte-Carlo simulation for feature sensitivity evaluation. Permeability prediction is accomplished using the well-known Katz-Thompson equation that employs the pore structure features. An idealized 3-D geometry obtained from 2-D planar images of pervious concrete sections is used along with a probablistic particle capture model to predict the particle retention associated with clogging material addition and simulated runoff. These models are anticipated to be useful in designing pervious concrete systems of desired pore structure for requisite performance.

DOI:

10.14359/51683642


Document: 

SP282-01

Date: 

December 27, 2011

Author(s):

Heather Brown, John Tyner, Ryan Otter, Spring Gilson, Jessie Weatherly and Brent Pilon

Publication:

Symposium Papers

Volume:

282

Abstract:

Note: This document has been retracted by request of the authors and is no longer available.

DOI:

10.14359/51683638


Document: 

SP282-06

Date: 

December 27, 2011

Author(s):

Matt Offenberg

Publication:

Symposium Papers

Volume:

282

Abstract:

One of the key concerns with pervious concrete is the material’s surface durability, specifically resistance to raveling. As the market for pervious concrete grew, this was one of the hurdles to broader adoption of the technology. This paper documents the process of developing a test method to determine the potential raveling resistance of a pervious concrete mixture. The process included a study with lab cast cylinders to compare the raveling resistance potential of pervious concrete mixtures using different aggregates, varying cement contents, and basic chemical admixtures. A refined procedure of the test method was developed after an unsuccessful ASTM round robin evaluation. The results from this new method will provide the industry with beginning correlations between basic mix ingredients and the surface durability of a finished pervious concrete pavement.

DOI:

10.14359/51683643


Document: 

SP282-04

Date: 

December 27, 2011

Author(s):

John T. Kevern, Kejin Wang, and Vernon R. Schaefer

Publication:

Symposium Papers

Volume:

282

Abstract:

This paper presents the results of studies conducted to develop a self-consolidating Portland Cement Pervious Concrete (PCPC) for overlay applications to reduce roadway noise, reduce splash and spray, and to improve friction as a surface wearing course. A variety of mixture variables were characterized for workability to develop a mixture for mechanized placement. During the fall of 2008, a 100 mm (4 in.) thick pervious concrete overlay on traditional concrete was constructed at a test facility. Construction is described as well as results of field tests to characterize the condition of the pavement seven months following construction. Performance testing of the overlay section included bond strength, permeability, skid resistance, and noise generation. The results of these studies show that effective PCPC overlays can be designed for wearing course applications.

DOI:

10.14359/51683641


Document: 

SP282-07

Date: 

December 27, 2011

Author(s):

Zhifu Yang

Publication:

Symposium Papers

Volume:

282

Abstract:

Frost damage can be a significant problem for pervious concrete structures in the cold climate. Various damage mechanisms have been developed to explain the frost damage in conventional concretes. However, limited studies have been attempted to correlate these mechanisms with pervious concretes. This paper reviews the physical aspects of frost damage and the main factors (e.g. the degree of saturation, the permeability of paste, the length of flow path, and the rate of freezing) that contribute to the deterioration of concrete upon freezing with the goal of using these mechanisms to explain the experimental observations obtained from the pervious concrete. This paper also compares the differences in freeze and thaw deterioration between pervious and conventional concretes. A variety of test results from different pervious concrete mixtures and construction practices are analyzed, which would aide in identifying the optimal mixture design and construction procedures to achieve durable pervious concrete structures.

DOI:

10.14359/51683644


12

Results Per Page 




Please enter this 5 digit unlock code on the web page.