ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 1335 Abstracts search results

Document: 

SP-360_08

Date: 

March 1, 2024

Author(s):

Nadia Nassif , M. Talha Junaid, Salah Altoubat, Mohamed Maalej, and Samer Barakat

Publication:

Symposium Papers

Volume:

360

Abstract:

Fiber-reinforced polymer (FRP) bars can serve as an appropriate substitute for steel rebar due to their lightweight, high strength, and good corrosion resistance. Nevertheless, the long-term success of FRP bars as promising reinforcement in concrete depends on understanding the bond between FRP bars and concrete. ACI 440.1R-15 recommends utilizing CSA S806-12 Annex S ‘‘Test Method for Determining the Bond-Dependent Coefficient of FRP Rods” for estimating the design value of the bond-dependent coefficient (kb). However, this testing method requires a four-point loaded 3.0-meter-long beam with continuous assessment of developed crack width. Due to the complexity of the test, studies were scarce in assessing the factors affecting the kb. Therefore, this study aimed to relate the experimental kb obtained from large-scale testing to a relatively simpler bond strength value, τu , obtained from smaller-scale FRP pull-out test. The relation was established utilizing data collection for both tests from experimental studies. Three machine learning techniques (Ensembled Trees Artificial Neural Network and Gaussian Process Machines) were then applied to mimic and understand the complex bond-behaviour at varying FRP and concrete properties. The results have shown promising relation (R2>0.8) between kb and τu for different surface textures and fibre types.

DOI:

10.14359/51740620


Document: 

SP-360_20

Date: 

March 1, 2024

Author(s):

Emmanuel Ferrier, Laurent Michel, Andrea Armonico

Publication:

Symposium Papers

Volume:

360

Abstract:

This paper presents the crack monitoring of reinforced concrete beams strengthened with fiber reinforced polymer (FRP) sheets. Emphasis is placed on the development of a smart FRP bonded material that can measure the crack opening of a reinforced concrete beam strengthened by FRP. The reliability measured by a conventional digital image correlation (DIC) and by the proposed smart FRP is employed to assess the contribution of the FRP to control the crack. The monitoring process is based on a large set of experimental database consisting of 19 test beams. The effect of FRP to control the crack opening is studied depending on the steel ratio, FRP ratio and the level of damaged of RC beams when FRP is applied. The results were compared with the theoretical values of crack width and spacing predicted using the Eurocode 2 (EC2) formula, calibrated for non-strengthened RC elements. The corresponding results were compared in order to clarify the effect of external bonded FRP on the cracking behaviour of RC beams.

DOI:

10.14359/51740632


Document: 

SP-360_16

Date: 

March 1, 2024

Author(s):

Ahmed Khalil, Rami A. Hawileh, and Mousa Attom

Publication:

Symposium Papers

Volume:

360

Abstract:

This study explores technological advancements enabling the utilization of GFRP bars in concrete structures, particularly in coastal areas. However, GFRP bars often encounter reduced bend strength at specific bend locations, which may pose a challenge in their practical application. Various properties such as the strength of bent GFRP bars are crucial for quality assurance, yet existing testing methods stated in ASTM D7914M-21 and ACI 440.3R-15 have limitations when applied to different GFRP bent shapes. Furthermore, those methods require special precautions to ensure symmetry and avoid eccentricities in specimens. To address these challenges, CSA S807:19 introduced a simpler standardized testing procedure that involves embedding a single L-shaped GFRP stirrup in a concrete block. However, the specified large block size in CSA S807:19 Annex E may pose difficulties for both laboratory and on-site quality control tests. Therefore, CSA S807:19 Annex E (Clause 7.1.2b) permits the use of a customized block size, as long as it meets the bend strength of the FRP bars without causing concrete splitting. To date, very few prior research has explored the use of custom block sizes. Therefore, this study aims to thoroughly investigate the strength of bent FRP bars with custom block sizes and without block confinement. Such an investigation serves to highlight the user-friendliness and efficiency of the CSA S807:19 Annex E method. The study recommends two block sizes: 200x400x300 mm (7.87x15.75x11.81 in) for bars <16 mm (0.63 in) diameter and 200x200x300 mm (7.87x7.87x11.81 in) for bars <12 mm (0.39 in). Additionally, the study cautions against using confinement reinforcement, especially with smaller blocks, as it could interfere with the embedded bent FRP bar. Furthermore, the study suggests incorporating additional tail length to mitigate the debonding effects resulting from fixing the strain gauges to the bent portion of the embedded FRP bar. By exploring these modifications, the study seeks to enhance the effectiveness of the testing procedure and expand its practical application for both laboratory and on-site quality assurance. The findings hold implications for the reliable testing of GFRP bars' strength, advancing their use as reinforcement in concrete structures.

DOI:

10.14359/51740628


Document: 

SP-360_12

Date: 

March 1, 2024

Author(s):

Amirhossein Mohammadi, Joaquim A.O. Barros, José Sena-Cruz, and Salvador J.E. Dias

Publication:

Symposium Papers

Volume:

360

Abstract:

The near surface-mounted (NSM) technique utilizing fibre-reinforced polymer (FRP) reinforcements has gained significant popularity in enhancing the shear resistance of reinforced concrete (RC) beams. Various models have been proposed to predict the shear contribution of NSM FRP reinforcement in RC beams. In this study, the performance of five well-established models, namely those proposed by De Lorenzis and Nanni, Rizzo and De Lorenzis, Dias and Barros, Bianco et al., and Mofidi et al., is assessed. A comprehensive database comprising 137 beams from published works is compiled for this assessment. The findings reveal that the model proposed by Bianco et al. exhibits superior predictive performance but tends to produce extremely conservative predictions. On the other hand, the model proposed by Dias and Barros performs well for beams shear strengthened with FRP laminates, although it is not specifically calibrated for specimens shear strengthened with FRP rods. Notably, the latter model results within an appropriate safety domain, avoiding extreme conservatism. Further research is warranted to develop a comprehensive model with enhanced predictive accuracy.

DOI:

10.14359/51740624


Document: 

SP-360_04

Date: 

March 1, 2024

Author(s):

Ali Alatify and Yail J. Kim

Publication:

Symposium Papers

Volume:

360

Abstract:

The serviceability and ultimate limit states of a concrete member are reliant upon the bond of reinforcement. The performance of glass fiber reinforced polymer (GFRP) reinforced concrete structures is influenced by multiple parameters and one of these parameters is the bond length of GFRP rebars. The scope of the present research is to experimentally study the effects of fully and partially bonded rebars on the load-bearing capacity and cracking of GFRP-reinforced concrete beams. The beams with partially bonded reinforcement show reduced capacities compared with those with fully bonded reinforcement, and the former reveals localized cracks. The partially bonded beams fail as a result of concrete splitting, while their fully bonded counterparts fail by concrete crushing.

DOI:

10.14359/51740616


12345...>>

Results Per Page