ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 497 Abstracts search results

Document: 

SP-362_01

Date: 

June 5, 2024

Author(s):

Wu and Jishen Qiu

Publication:

Symposium Papers

Volume:

362

Abstract:

Reactive magnesia cement (RMC) is an emerging class of low-alkaline and CO2-sequestering binder, which can mitigate the deterioration of GFRP reinforcements induced by a high alkaline environment, e.g., in Portland cement. This study investigated the slip behavior of GFRP rebar embedded in RMC composite, which varies with carbonation depth significantly. The variation of the interfacial bond was determined by a specially designed push-out test of the GFRP core; the variation of the carbonation degree and microstructure was examined by SEM-EDX, XRD, TGA, and acid digestion tests. Both properties demonstrated a similar trend, decreasing rapidly with increasing depth. A new finite element model that considers the depth-dependency of the matrix compositions and the rebar-to-matrix interfacial bond is established. It can predict the constitutive bond-slip behavior of a long GFRP rebar embedded in an RMC composite with non-uniform carbonation.

DOI:

10.14359/51740871


Document: 

SP-360_13

Date: 

March 1, 2024

Author(s):

Girish Narayan Prajapati, Shehab Mehany, Wenxue Chen, and Brahim Benmokrane

Publication:

Symposium Papers

Volume:

360

Abstract:

This paper presents an experimental study that investigated the physical and mechanical properties of the helical wrap glass fiber-reinforced polymer (GFRP) bars. The physical tests are conducted to check the feasibility and quality of the production process through the cross-sectional area and evaluation of the fiber content, moisture absorption, and glass transition temperature of the specimens. While the mechanical tests in this study included testing of the GFRP specimens to determine their tensile properties, transverse shear, and bond strength. Four bar sizes (#3, #4, #5, and #6), representing the range of GFRP reinforcing bars used in practice as longitudinal reinforcement in concrete members subjected to bending, are selected in this investigation. The GFRP bars had a helical wrap surface. The tensile failure of the GFRP bars started with rupture of glass fibers followed by interlaminar delamination and bar crushing. The bond strength of the GFRP bars satisfied the limits in ASTM D7957/D7957M. The test results reveal that the helical wrap GFRP bars had physical and mechanical properties within the standard limits.

DOI:

10.14359/51740625


Document: 

SP-360_32

Date: 

March 1, 2024

Author(s):

Chaoran Liu, Ligang Qi, Ying Zhou, Guowen Xu, Yan Yang, Zhiheng Li, and Yiqiu Lu

Publication:

Symposium Papers

Volume:

360

Abstract:

Fiber-reinforced polymer-reinforced concrete (FRP-RC) structures have won researchers’ attention for decades as a considerable substitute due to their superb mechanical and non-mechanical properties. Despite the promising potential of concrete structures with glass FRP and basalt FRP that were shown by previous research, there are few specifications for the seismic design of FRP-RC structures to date due to limited research data on their seismic behavior. This paper focuses on the seismic performance of concrete columns with carbon fiber-reinforced polymer (CFRP) reinforcement by finite element modeling. The effect of longitudinal reinforcement type and ratio, stirrup spacing, concrete strength and axial load ratio are included in the parametric analysis in VecTor2. Properly designed CFRP-RC columns with good confinement generally reach high load-carrying capacity and deformation level, while high axial load could induce relatively severe damage. To verify these conclusions, seven full-scale columns are under construction and will be tested under combined lateral reversed cyclic loading and constant axial loading.

DOI:

10.14359/51740644


Document: 

SP-360_04

Date: 

March 1, 2024

Author(s):

Ali Alatify and Yail J. Kim

Publication:

Symposium Papers

Volume:

360

Abstract:

The serviceability and ultimate limit states of a concrete member are reliant upon the bond of reinforcement. The performance of glass fiber reinforced polymer (GFRP) reinforced concrete structures is influenced by multiple parameters and one of these parameters is the bond length of GFRP rebars. The scope of the present research is to experimentally study the effects of fully and partially bonded rebars on the load-bearing capacity and cracking of GFRP-reinforced concrete beams. The beams with partially bonded reinforcement show reduced capacities compared with those with fully bonded reinforcement, and the former reveals localized cracks. The partially bonded beams fail as a result of concrete splitting, while their fully bonded counterparts fail by concrete crushing.

DOI:

10.14359/51740616


Document: 

SP-360_01

Date: 

March 1, 2024

Author(s):

Junrui Zhang, Enrique del Rey Castillo, Ravi Kanitkar, Aniket D Borwankar, and Ramprasath R

Publication:

Symposium Papers

Volume:

360

Abstract:

A systematic literature review was conducted on pure tension strengthening of concrete structures using fiber-reinforced polymer (FRP), specifically for larger FRP tie applications. This work yielded a dataset of 1,627 direct tension tests, and highlighted the limitation of existing studies on studying thick and long FRP ties, which are typical in real construction scenarios. To overcome this shortcoming, 51 single lap shear tests were conducted on thicker and longer FRP ties, with the dimensions being 0.5 to 6 mm [0.02 to 0.24 in.] thickness, and 300 to 1,524 mm [12 to 60 in.] long. The critical parameters under consideration were concrete compressive strength, FRP thickness, and bond length. The findings demonstrate that thicker and therefore stiffer FRP ties have higher debond force capacity, while longer ties exhibit greater post-elastic deformation capacity but do not affect the debond force capacity. Concrete had a limited effect on either debond force or deformation capacity. A strength model is proposed for FRP systems under axial pure tension, which aligns well with both the published and tested results. This paper focuses on the development of design guidelines and codes to predict the debond strain for EB-FRP systems incorporating thicker and longer FRP ties, aiming to enhance the applicability of FRP to real-world construction scenarios.

DOI:

10.14359/51740613


12345...>>

Results Per Page