ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 13 Abstracts search results

Document: 

SP88-05

Date: 

November 1, 1985

Author(s):

Mohamed I. Soliman and M. S. Mirza

Publication:

Symposium Papers

Volume:

88

Abstract:

Resulte of an experimental-analytical investigation on a reinforced concrete box girder bridge are presenredo The experimental phase consisted of tests on a - scale, 3 P? direct model of an intermediate span of a b* inuous box girder bridge. Experimental data from the tests under symmetrical and unsymmetrical loads were analysed using some of the available analy- sis methods. These results are combined with other available information to formulate some recommendations for design of box girder structures.

DOI:

10.14359/6261


Document: 

SP88-09

Date: 

November 1, 1985

Author(s):

F. E. Fagundo and J. M. Richardson

Publication:

Symposium Papers

Volume:

88

Abstract:

Precast panel deck bridges have been in use for many years. Although some cracking is inherent in this structural system, recent concern has been expressed because of the greater degree of cracking exhibited on the surface of some decks compared to conventional cast-in-place bridge decks. Full scale structural testing was initiated to estimate the strength and evaluate the performance of the deck panel system. In this program two deck panel bridges, each with different panel support details, and a conventional cast-in-place deck bridge were tested. Results showed that the deck panel system did not act as a continuous slab over the girders as is usually assumed for design. The conventional cast-in-place deck bridge did develop continuity. The effect is to increase the maximum positive moments in the slab but not to a degree as to render the bridges unsafe.

DOI:

10.14359/6265


Document: 

SP88

Date: 

November 1, 1985

Author(s):

Editor: Tony C. Liu

Publication:

Symposium Papers

Volume:

88

Abstract:

SP-88 This volume covers a wide range of subjects of strength evaluation of existing concrete bridge structures: including condition survey, analytical investigation methods such as finite element analysis and modified compression field theory, in situ load testing, laboratory modeling and testing, deflection measurement methods, remote sensing techniques, and strategy for rating older concrete bridges. Case histories are also included.

DOI:

10.14359/14045


Document: 

SP88-12

Date: 

November 1, 1985

Author(s):

James T. Kunz and Jerry W. Eales

Publication:

Symposium Papers

Volume:

88

Abstract:

Thermal infrared and ground penetrating radar remote sensing technologies have been applied to the non-destructive evaluation of existing concrete bridge decks. Delaminations in a concrete bridge deck can be identified rapidly and effectively with the use of a thermal infrared scanner. This technique pro-vides an efficient and economical alternative to traditional sounding techniques utilized to identify delamination. The thermal infrared technique can be used to identify delaminations on exposed concrete bridge decks and decks overlaid with asphalt. Ground penetrating radar can be utilized to rapidly identify and evaluate various bridge deck conditions. The equipment can be used to measure deck thickness, identify thin, weakened areas and determine the position of reinforcing steel within the deck.

DOI:

10.14359/6268


Document: 

SP88-07

Date: 

November 1, 1985

Author(s):

David B. Beal

Publication:

Symposium Papers

Volume:

88

Abstract:

A series of static live load tests were performed on two concrete T-beam bridges to evaluate stress induced in tension reinforcement and transverse load distribution factors. The purpose of these tests was to evaluate the usefulness of service load testing in evaluating the load carrying capacity of concrete bridges. The two structures were similar in dimension and reinforcing but had concrete of markedly different quality as determined from deck cores and sonic pulse velocity measurements through the deck and beam stems. The load test results showed no difference in bridge behavior attributable to concrete condition. To obtain data on failure capacity, testing was performed on two single and one double T segment taken from the deteriorated struc-ture. Rebar stress, centerline displacement, and end rotation were measured during the loading program which culminated in com-pression failure after rebar yield. The measured failure moments exceeded the nominal flexural strength as given by ordinary ulti-mate strength design methods. The consequences of these findings on the load rating process are discussed and a strategy for rating older reinforced concrete T-beam bridges is proposed.

DOI:

10.14359/6263


123

Results Per Page