ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 125 Abstracts search results

Document: 

SP326

Date: 

September 20, 2018

Author(s):

Vyatcheslav Falikman, Roberto Realfonzo, Luigi Coppola, Petr Hàjek, Paolo Riva

Publication:

Symposium Papers

Volume:

326

Abstract:

Modern construction is unthinkable without concrete, the world production and consumption of which is about 10 billion m3 per year. Given the steady growth of the world’s population by 2050, it is expected to double this volume, which will undoubtedly be significantly affected on energy consumption and increase global CO2 emissions. Concrete is perhaps the most universal building material since the beginning and development of civilization. It is sufficient to recall the Great Wall of China, the palaces and temples of Ancient India, the pyramids of Ancient Egypt, the unique buildings of Romans, made with the use of lime-pozzolanic binders. Universality of concrete is defined by simplicity and convenience of its production, rather low cost, structural integrity and homogeneity, durability and a long service life under various aggressive environments. However, the concrete image is sometimes not favorable. It is associated with greater labor intensity of construction works and dismantlement, massive structures, a large impact on the environment in connection with the s consumption of not renewable natural resources. The same perception is greatly facilitated by the fact that, according to Gigaton Throwdown Initiative, “the cement industry is responsible for about 5 to 7% of total CO2 emissions, or 2.1 Gt per year.” Indeed, when producing cement clinker about 0.9 t CO2 / t clinker are produced. Taking into account the annual increase in the production and use of Portland-based cement (more than 4.1 million tons per year) that is the main binder used in the production of concrete, this fact poses a significant threat to humanity as a whole. According to the Intergovernmental Panel on Climate Change (IPCC), actions are necessary to reduce carbon dioxide emissions because in about 30 years CO2 concentrations is expected to reach 450 ppm – a dangerous point above which irreversible climate change will occur on our planet. Since concrete will remain the main building material in the future, it is expected that if new ways and mechanisms to reduce the environmental burden by at least 50% will be not found, it is not possible to maintain the existing level of impact. This problem is so deep and serious that there is hardly a single way to solve it. There is a need for an integrated approach, several complementary activities that provide some synergy. Until recently, the main efforts were aimed at improving technological processes and reducing the consumption of clinker through the production of blended cements, as well as the creation of new types of binders. Active search for alternative binders has led to the development of sulfoaluminate-based cements; alkali-activated materials and geopolymers (slag, fly ash, metakaolin, etc.), efficient and fairly water-resistant magnesia cements; phosphate cements (ammonium phosphate, silicate phosphate, magnesium phosphate etc.), cements with calcium halogen-aluminate and the so called low water demand binders. With the advent of high-performance concretes and new technologies, the possibility of a radical increase of the cement factor in conventional concrete due to the use of high-performance superplasticizers and other chemical admixtures, dramatically reducing the water consumption of the concrete mixture; active mineral additives such as micro silica, metakaolin, fly ash, finely ground granulated slag, etc., as well as a variety of inert fillers that can improve the functionality of concrete mixtures, such as fine limestone. Strictly speaking, “pozzolanic effect” and “filler effect” are easily combined and provide a certain synergy. The potential for reducing cement consumption in concrete production is still undervalued. This is due to certain fears of decreasing the corrosion resistance of concrete and durability of reinforced concrete structures, since the great bulk of the existing standards is prescriptive and sets the minimum cement content in concrete under specific operating conditions. Reinforced concrete structures of buildings and constructions, as a rule, initially, shall have the design strength and sufficiently long service life because their construction often requires a significant investment. The durability of these structures, however, is determined by different ageing processes and the influence of external actions, so their life will be limited. As a result, many structures need to be repaired or even replaced in fairly short time periods, resulting in additional costs and environmental impacts. Therefore, there is a need to improve the design principles of structures taking into account the parameters of durability and thus achieving a sufficiently long service life. Development of the concept of design of structures based on their life cycle, “environmental design”, including a holistic approach that optimizes material and energy resources in the context of operating costs, allow us to completely revise our ideas about structural concrete construction. It should be noted that many recent developments in the field of life cycle analysis (LCA) are aimed at expanding and deepening traditional approaches and creating a more complete description of the processes with the analysis of sustainable development (LCSA) to cover not only the problems associated mainly with the product (product level), but also complex problems related to the construction sector of the economy (at the sector level) or even the general economic level (economy level). The approach to “environmental design” is based on such models and methods of design, which takes into account a set of factors of their impact on the environment, based on the concept of “full life cycle” or models of accounting for total energy consumption and integrated CO2 emission. All of this could become a basis for the solution of the global problem – to contain the growing burden on the environment, providing a 50% reduction in CO2 emissions and energy consumption in the construction industry. Hence a special sharpness P. K. Mehta’s phrase acquires: “...the future of the cement and concrete industry will largely depend on our ability to link their growth for sustainable development...” The above-mentioned acute and urgent problems form the basis of the agenda of the Second edition of International Workshop on “Durability and Sustainability of Concrete Structures – DSCS-2018,” held in Moscow on 6 – 7 June 2018 under the auspices of the American Concrete Institute, the International Federation on structural concrete and the International Union of experts and laboratories in the field of building materials, systems and structures. The selected papers of this major forum, which brought together more than 150 experts from almost 40 countries of the world, are collected in this ACI SP.

DOI:

10.14359/51711167


Document: 

SP326-124

Date: 

August 10, 2018

Author(s):

Paola Condoleo and Roberto Felicetti

Publication:

Symposium Papers

Volume:

326

Abstract:

This paper illustrates a study on the roof structures of the most ancient buildings at the main campus of the Politecnico di Milano. From a detailed survey, about 20% of the roof substructure was found to consist of reinforced concrete trusses built in the first decades of the 20th century. These trusses have the main function of bearing the roof, but they also support the underlying vaults. The analyzed buildings are characterized by trusses that differ in shape and size, depending on the company that was in charge of construction.

A first objective was to assess the material condition and possible distress by combining destructive (cores) and non-destructive techniques (ultrasonic tests, rebound hammer, carbonation and dynamic rebar hardness). The test results were instrumental for carrying out to check the truss members, in order to quantify their safety level according to the current regulations. The analysis made it possible to detect two critical cases, for which a strengthening intervention was proposed.

Besides the peculiarities of the case study, this diagnostic campaign could serve to establish reference procedures for a maintenance plan aimed at the preservation of one of the first examples of reinforced concrete trussworks in public buildings.

DOI:

10.14359/51711107


Document: 

SP326-60

Date: 

August 10, 2018

Author(s):

Simon S. Kaprielov, Andrey V. Sheynfeld, Igor A. Chilin, and Igor M. Bezgodov

Publication:

Symposium Papers

Volume:

326

Abstract:

It is known that characteristics of fiber-reinforced concrete generally depend on the volume and properties of the matrix, the type and dosage of fiber. Studies have been conducted on the influence of these factors on strength and deformation characteristics, including the modulus of elasticity, creep and frost resistance of ultra-high strength self-compacting fiber reinforced concrete (UHSFRC).

Portland cement CEM I 52.5, sand with fineness modulus of 2.5, organic-mineral modifier MB-50 and straight steel fiber were used as components for self-compacting concrete. The fiber dosage was varied in the range from 0 to 2.0% of the volume of concrete mixtures.

The tests have shown that the creep of steel fiber reinforced concrete at different levels of loading (0.3 and 0.6 of Rb) is significantly less than that of the matrix. The ratio of transverse creep deformation is significantly lower than under the short-time loading, as for the matrix and the same as for steel fiber reinforced concrete. Despite almost linear diagram of concrete deformation under compression, the value of creep deformation shows quite higher figures. It is noted that the effectiveness of steel fiber increases with the increase of stress level.

Freeze-thaw resistance was evaluated in the cyclic process of freezing at -50°C [-58°F] and thawing in 5% NaCl solution. The test results show very high frost resistance of concrete, what corresponds to the grade F2800, what is 2.7 times above the concrete requirements for transport structures in Russia.

DOI:

10.14359/51711043


Document: 

SP326-68

Date: 

August 10, 2018

Author(s):

Milan Kalny

Publication:

Symposium Papers

Volume:

326

Abstract:

The author has been involved in design of many bridges in the Czech Republic as well as in research and development of ultra-high performance fibre-reinforced concrete (UHPC) and its applications for precast members. His engineering practice confirmed that innovations and value engineering can significantly contribute to durable and sustainable structures. However, in rather traditional and conservative civil engineering profession it is not always easy to bring innovations to life. Many obstacles have to be surmounted including outdated design standards, rigid rules of clients and strict procedures for public procurement where any modifications are not welcomed. While the financial risk of innovative business is mainly on the designer and contractor, the clients have to approve technology which is not verified over a long period and which is connected with possible delays. The experience from innovative projects is shown on 3 implemented bridges as follows:

  • Arch bridge over the Oparno valley
  • Cable-stayed footbridge in Celakovice
  • Lightweight pedestrian precast bridges

Main advantages of these applications are high durability, low maintenance and reasonable life cycle cost. All applications were successfully implemented as alternative proposals in tenders within given financial limits. Finally, the innovative implementations can contribute to sustainable structures and their acceptance by both authorities and public.

DOI:

10.14359/51711051


Document: 

SP326-70

Date: 

August 10, 2018

Author(s):

Adriana Angelotti, Sonia Leva, Giulio Zani, and Marco di Prisco

Publication:

Symposium Papers

Volume:

326

Abstract:

Sustainability of cement-based construction components is becoming a key point of the structural design process, since the implementation of green strategies favors an overall reduction of economic and environmental impacts. In the framework of a regionally funded research project, an innovative multi-layered roof element for the retrofitting of existing industrial buildings was developed at Politecnico di Milano. The development followed a holistic approach focusing on two main levels: 1) the optimization of the transverse section, aimed at minimizing the employment of cementitious composites such as High Performances Fiber Reinforced Concrete (HPFRC) and Textile Reinforced Concrete (TRC) and 2) the improvement of the energy performances, through the selection of adequate insulating materials (polystyrene and glass foam were considered) and the design of Building-Integrated PhotoVoltaics (BIPV). In this paper, preliminary considerations pertaining to the sectional and structural behavior of a 2.5 × 5 m [8.2 × 16.4 ft.] secondary panel are followed by the numerical/experimental evaluation of the thermal transmittance U and the BIPV performances. In this regard, a small demo roofing system housing three full scale panels was monitored throughout two Summer weeks, leading to the assessment of photovoltaics Performance Ratios (PR) and effectiveness of the architectural integration.

DOI:

10.14359/51711053


12345...>>

Results Per Page