International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 17 Abstracts search results

Document: 

SP133-04

Date: 

September 1, 1992

Author(s):

R.S. Fling

Publication:

Symposium Papers

Volume:

133

Abstract:

This paper reviews the development of deflection calculation procedures and comments on the risk of computational errors. It then discusses practical considerations affecting deflection and their limitations. It assesses the effect of nine parameters on the variability of deflection by reference to two example beams. Finally, the paper recommends further laboratory and analytical research and makes suggestions on how design engineers may improve the accuracy of their deflection computations.

DOI:

10.14359/10031


Document: 

SP133-11

Date: 

September 1, 1992

Author(s):

Alex Aswad

Publication:

Symposium Papers

Volume:

133

Abstract:

A procedure for rational prediction of deformation in pretensioned members is described. Full-scale load tests on stemmed members spanning 30 to 62 ft (9.2 to 18.9 m) were conducted by the author. They showed good correlation with the proposed predictions. Actual deflections were generally less or close to the computed values. It is suggested that the method may be used for loads not exceeding a certain ratio of the ultimate loads.

DOI:

10.14359/2888


Document: 

SP133-06

Date: 

September 1, 1992

Author(s):

Andrew Scanlon and Libanio Pinheiro

Publication:

Symposium Papers

Volume:

133

Abstract:

The treatment of design for deflection control in current practice is empirical, and relies largely on allowable computed deflections that were established on the basis of experience gained at a time when deflection control was not a critical issue in most cases. In this paper the current deterministic approach to deflection control is compared with design for safety, which is based on probability considerations.

DOI:

10.14359/3154


Document: 

SP133-07

Date: 

September 1, 1992

Author(s):

Stephen J. Sopko

Publication:

Symposium Papers

Volume:

133

Abstract:

Reinforced concrete floor systems must be analyzed for deflections to minimize serviceability problems such as excessive deflections. Member depths should be based on serviceability requirements as well as stress, especially when long-term deflection must be considered. The ACI equations for member depth may not always be adequate to prevent excessive long-term deflections of reinforced concrete floor members where heavy sustained loads are present. Two case studies are presented focusing on floor systems which have exhibited excessive deflections. From this investigation and analysis, proper design, detailing, and construction practices will be discussed to minimize serviceability problems. Care must be taken in analyzing and designing floor systems which support heavy sustained loadings or masonry.

DOI:

10.14359/3159


Document: 

SP133-12

Date: 

September 1, 1992

Author(s):

Dan M. Frangopol

Publication:

Symposium Papers

Volume:

133

Abstract:

A formulation is presented for extending structural system design concepts from safety and serviceability to damage tolerability. The assumptions necessary to implement damage tolerability concepts in structural system design are explained using both deterministic and probabilistic approaches. A particular emphasis is placed upon redundancy measures and their use in system damage-tolerant optimum design. Examples of solutions for optimum system design for safety, serviceability, and damage tolerability are presented.

DOI:

10.14359/3163


1234

Results Per Page 




Edit Module Settings to define Page Content Reviewer