ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Influence of Nanosilica on Physical Salt Attack Resistance of Portland Cement Mortar

Author(s): Nader Ghafoori, Iani Batilov, and Meysam Najimi

Publication: Materials Journal

Volume: 117

Issue: 4

Appears on pages(s): 67-80

Keywords: microsilica; nanosilica; physical salt attack; sodium sulfate; sulfate attack

DOI: 10.14359/51725779

Date: 7/1/2020

Abstract:
The objective of this study was to evaluate the effectiveness of colloidal nanosilica (nS) as a nanomaterial and pozzolanic admixture to mitigate the deteriorative effects of sodium sulfate-based physical salt attack (PSA) on portland cement mortars. Mortar mixtures of an ASTM C150 Type II (<8% C3A) or a Type V (<5% C3A) portland cement were prepared with 0, 3, and 6% cement replacements with either nS or microsilica (mS). Test samples were subjected to 3 years of exposure under a constant or cyclic PSA-conducive environment. The PSA results were supported with additional water absorption, rapid sulfate ion permeability (RSPT), and porosimetry testing. The Type V cement mortars containing nS exhibited the most observable scaling and flaking under both conditions of PSA exposure. The addition and increase in cement replacement with nS had a clear detrimental effect to PSA resistance for both cement types and both types of PSA exposure. Results indicated nS reduces permeability and diffusion in mixtures of either cement type which, for PSA, the denser and more refined pore network proved conducive to higher damaging tensile stresses and distress. The larger the measured volume of permeable pore space through absorption, the less susceptible the mortars were to PSA, which is counterproductive to conventional good practice of designing high-durability concrete via reducing permeability and sorption, and increasing a mixture’s watertightness.