In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
American Concrete Institute 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA
Phone: 1.248.848.3700 Fax: 1.248.848.3701 Staff Directory
Email Support
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Title: Strengthening of a Bridge Using Post-Tensioned Near‑Surface-Mounted Carbon Fiber-Reinforced Polymer in Multi-Hazard Environment
Author(s): Yail J. Kim, Jae-Yoon Kang, Jong-Sup Park, and Woo-Tai Jung
Publication: Structural Journal
Volume: 115
Issue: 2
Appears on pages(s): 451-462
Keywords: bridge; carbon fiber-reinforced polymer (CFRP); deterioration; multi-hazard; near-surface-mounted (NSM); post-tensioning; strengthening
Date: 3/1/2018
Abstract:This paper presents an analytical investigation into the performance of a reinforced concrete bridge girder strengthened with post-tensioned near-surface-mounted (NSM) carbon fiberreinforced polymer (CFRP) strips in a corrosion-overload multihazard environment. Stochastic models are formulated to examine the service- and strength-level responses, functional requirements such as deformability and vulnerability, and time-dependent reliability of the strengthened girder. In conjunction with environmental data recorded for 30 years, four service zones specified in the American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications are employed to generate practical research outcomes. Chloride-induced diffusion becomes more active in summer compared with other seasons. As such, stresses in the girders’ steel reinforcement increase with the progression of corrosion; however, the increase does not cause a fatigue concern. A marginal increase in CFRP stress is noticed, spanning a 100-year service period. The deformability of the strengthened girder is acceptable within a reduction range of up to 20%. The multi-hazard distress augments the vulnerability of the girder and, accordingly, affects the long-term reliability, which should be taken into consideration when implementing the NSM CFRP technology.
Click here to become an online Journal subscriber