ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Use of Self-consolidating Concrete and High Volume Fly Ash Concrete in Missouri Bridge A7957

Author(s): E.S. Hernandez, and J.J. Myers

Publication: Symposium Paper

Volume: 304

Issue:

Appears on pages(s): 85-100

Keywords: bridge superstructure, extended service life, high volume fly ash concrete, long-term monitoring, self-consolidating concrete

DOI: 10.14359/51688556

Date: 10/27/2015

Abstract:
Self-consolidating concrete (SCC), as defined by ACI 237R-07, is a very flowable, non-segregating concrete that can spread into placed, fill the formwork and encapsulate the reinforcement without any mechanical consolidation. SCC, compared to traditional concrete mixtures, has primary benefits that include a reduction in equipment and labor associated costs as well as higher construction effectiveness. Innovative materials such as high volume fly ash concrete (HVFAC), represent a substantial advantage to producing stronger, more durable cast-in-place (CIP) concrete members. A level of 50% fly ash to cement proportion, as well as both normal strength self-consolidating concrete (NS-SCC) and high strength self-consolidating concrete (HS-SCC), were employed in the implementation project for Missouri Bridge A7957. The objective of this research was to provide an implementation test bed and showcase for the use of these materials. The serviceability and structural performance, both short-term and long-term, of the concrete members within the bridge were monitored in an effort to investigate the in-situ performance of not only SCC but also HVFAC. The initial instrumentation program consisted of obtaining the temperature, strain, and deflection data for the different components within the bridge’s structure, from casting through service conditions. The results obtained from this two-year monitoring program will lead to propose certain specification requirements that can be used for future project implementations.