Email Address is required Invalid Email Address Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
American Concrete Institute 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA
Phone: 1.248.848.3700 Fax: 1.248.848.3701 Staff Directory
Chat with Us Online Now
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Title: Stability of Slender Wall Boundaries Subjected to Earthquake Loading
Author(s): Pablo F. Parra and Jack P. Moehle
Publication: Structural Journal
Volume: 114
Issue: 6
Appears on pages(s): 1627-1636
Keywords: buckling; earthquake; reinforced concrete; slenderness; wall boundary element
Date: 11/1/2017
Abstract:Global instability of slender reinforced concrete walls occurs when the concrete section buckles out-of-plane over a portion of the wall length and height. Theoretical and numerical analyses were conducted on axially loaded prismatic members to evaluate the onset of global instability under tension/compression load cycles. A buckling theory suitable for hand calculations is introduced and evaluated using data available in the literature from tests conducted on columns. Computer simulations using force-based nonlinear elements with fibers are used to numerically simulate the tests and to study the influence of non-uniform strain profiles along the height of the member. The study shows that the onset of buckling can be identified using either the proposed buckling theory or finite element models. Furthermore, buckling is affected by gradients of axial load or strain along the length of the member. Design recommendations are made to inhibit global wall buckling during earthquakes.
Click here to become an online Journal subscriber