Effect of Column Size and Reinforcement Ratio on Shear Strength of Glass Fiber-Reinforced Polymer Reinforced Concrete Two-Way Slabs

ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Effect of Column Size and Reinforcement Ratio on Shear Strength of Glass Fiber-Reinforced Polymer Reinforced Concrete Two-Way Slabs

Author(s): Mohamed Hassan, Amir Fam, Brahim Benmokrane, and Emmanuel Ferrier

Publication: Structural Journal

Volume: 114

Issue: 04

Appears on pages(s): 937-950

Keywords: column size; design equation; fiber-reinforced polymer; glass fiber-reinforced polymer; punching; shear; slab; two-way

Date: 7/1/2017

Abstract:
In this paper, a new design model is proposed for estimating punching shear capacity of fiber-reinforced polymer (FRP)-reinforced two-way slabs without shear reinforcement. This model is based on the statistical analysis of 69 laboratory experiments from slabs subjected to shear only or a combination of shear and unbalanced moment. The database used was populated with results from 20 FRP reinforced concrete (RC) two-way slabs previously tested by the authors as well as from 49 FRP (RC) two-way slabs in the literature tested by others. The proposed equation was compared to other equations in design guides, revealing higher accuracy and narrower scatter. The average experimental-to-theoretical shearstrength ratio was 1.01 ± 0.12 under shear only, and 1.03 ± 0.16 under shear and unbalanced moment, with coefficients of variation of 12% and 16%, and coefficients of determination (R2) of 0.99 and 0.96, respectively. The proposed equation could be an alternative to the current punching shear equations in ACI 440.1R-15 and CSA S806-12 design codes.