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Abstract 

This research aims to assess the effectiveness of incorporating thermally treated alumina sludge ash (ASA) as a par-
tial replacement for slag-based geopolymer (SG-Geo) at various ratios (5%, 10%, and 20% by mass) and the inte-
gration of cost-efficient CuFe₂O₄ spinel nanograins (CF-NGs) at different addition levels (0%, 0.5%, 1%, and 1.5% 
by weight). The study focuses on enhancing the physico-mechanical features and durability of the geopolymer 
in aggressive environments, particularly against sulfate (SO₄2−) and chloride (Cl−) attacks. Key performance indica-
tors include compressive capacity, and non-evaporable water content, to improve the ionizing radiation shielding 
properties of these eco-friendly geopolymer pastes to advance sustainability objectives. The fabricated samples were 
tested at 0.662 MeV, 1.17 MeV and 1.33 MeV photon energies as radiation shielding material to achieve sustainability 
goals. Gamma attenuation parameters (MAC, LAC, MFP, HVL and TVL) were determined experimentally and calculated 
theoretically using Phy-X/PSD software. The findings indicate that both theoretical and experimental results are con-
sistent, with the radiation protection efficiency improving as ASA content increased up to 20%. The addition of 1.5% 
CF-NG notably enhanced the compressive strength at 28 days, as well as the gamma attenuation efficiency. Among 
the various SG-ASA hardened nanocomposites, Mix PS3CF1.5 exhibited superior physical and mechanical properties, 
along with the most effective gamma radiation shielding performance.        

Keywords  CuFe₂O₄ spinel nanograin, Alumina sludge ash, Slag-based geopolymer, Gamma radiation shielding, 
Aggressive environments

1  Introduction
Geopolymers, which are made from industrial waste, 
have gained popularity recently as a promising substitute 
for cement in a variety of applications, in an attempt to 

realize the circular economy concept and thus sustain-
ability goals (Chatveera et  al., 2024; Yuan et  al., 2024; 
Zhang et al., 2024; Zhao et al., 2023).

It is widely known that, under certain circumstances, 
any of the pozzolanic substance or material contain-
ing reactive SiO2 and Al2O3 that can easily interact with 
alkali might operate as a precursor for a geopolymer. Cal-
cium aluminum silicate hydrate, or C-A-S-H, is a gel that 
is created when alkali-activated aluminosilicate materi-
als (AAMs) are made using high-calcium precursors like 
ground granulated blast-furnace slag, GGBFS (Hamed 
& Demiröz, 2024). Numerous investigations have dem-
onstrated the adequate mechanical efficiency of the 
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slag-based geopolymer (Al-Sughayer et  al., 2024; Duan 
et al., 2024; Khoshkbijari et al., 2024; Rashad et al., 2023; 
Shehata et al., 2022).

Aluminum-containing drinking water treatment sludge 
(DWTS) as an industrial solid waste poses one of the 
most critical environmental challenges (Duan et  al., 
2022a; Mohamed et  al., 2022a, 2023a). The conversion 
of DWT-based sludge into valuable products like sup-
plemental cementitious material (SCM) for use in con-
struction applications has been the subject of numerous 
studies.

Although there is no set approach for creating geo-
polymers from WTP-sludges, calcined sludges have 
produced superior geopolymeric products by increasing 
the sludge’s reactivity and imparting pozzolanic abilities 
that improve the geopolymeric product (Ferone et  al., 
2019; Mohamed et  al., 2022b; Santosa et  al., 2019; Tan-
tawy, 2015). A highly susceptible transition phase is cre-
ated when alumina sludge is thermally activated between 
475  °C and 1100  °C. During this phase, crystalline alu-
mina transforms into amorphous alumina while silica 
stays in an amorphous form. Within the cement matrix, 
this phase is probably going to generate calcium silicate 
hydrates (CSHs) and calcium aluminosilicate hydrates 
(CASHs) (Duan et al., 2022b; Pham et al., 2021; Shamaki 
et al., 2021).

To safeguard human life and the natural environment 
against the dangers of radiation exposure, researchers are 
searching for various materials that shield against radia-
tion. One of the most important factors that scientists 
must consider when developing and establishing efficient 
shielding materials is their capacity to absorb or even 
attenuate a proportion of ionizing radiation (Mohamed 
et  al., 2022c; Ramadan et  al., 2024; Sayed et  al., 2024; 
Selim et al., 2020).

Acceleration devices, healthcare facilities, nuclear 
power plants, and locations for the disposal of spent 
fuel often utilize radiation-shielding concrete for safe-
guarding personnel and property from gamma radiation 
released by accelerator particle collisions or radioactive 
sources (Abd Elwahab et  al., 2019; Mohsen et  al., 2024; 
Niksarlıoğlu & F. A. kman et al., 2023).

Currently, a lot of researchers are concentrating their 
efforts on creating novel nano-materials considering their 
numerous advantages in various disciplines, particularly 
in the sector of construction and shielding against ion-
izing radiation (Abd El-Gawad et  al., 2023; Hafez et  al., 
2023; Ibrahim et  al., 2023a; Khater & Gharieb, 2024; 
Mohamed et al., 2023b).

Several academic researchers have recently success-
fully created a variety of concrete-based ferrite nanopar-
ticles that can absorb gamma radiation, such as ZnFe2O4, 
MgFe2O4, CoFe2O4, BaFe2O4, NiFe2O4, and CaFe2O4; 

this is due to their great chemical stability and enormous 
specific surface area, nano-ferrites have attracted a lot 
of attention recently owing to their mechanical, optical, 
electrical, and magnetic capabilities. Consequently, these 
substances could find use in numerous applications, such 
as substances for radiation protection (Chinnappa Reddy 
et al., 2022; Gharieb et al., 2023; Maruthapandian et al., 
2016; Ramadan et al., 2020; Reddy et al., 2021; Tobbala, 
2019).

Although previous studies have investigated industrial 
by-products and nanostructured materials for radia-
tion shielding applications, as far as we are aware, no 
research investigations have been conducted to assess the 
synergistic effects of incorporating slag /alumina sludge 
ash as binary precursors with CuFe2O4 nano grains in 
gamma radiation shielding applications. Therefore, the 
innovation of the current work is the design of a green 
geopolymer based on slag and alumina sludge ash as 
binary precursors, for gamma radiation shielding in the 
presence of cost-saving CuFe₂O₄ spinel nanograins (CF-
NGs). Nanograins of CuFe₂O₄ spinel (CF-NG) were fab-
ricated according to the earlier work performed by the 
authors (Mohamed et  al., 2022a). Using both theoreti-
cal and experimental approaches, the effect of CuFe2O₄ 
spinel (CF-NG) nanograins on the behavior of their γ 
radiation shielding efficiency was assessed. In the cur-
rent research, the mass attenuation coefficient (MAC) 
and linear (LAC) attenuation coefficient, MFP, HVL and 
TVL were calculated experimentally and compared with 
Phy-X/PSD software results to examine the gamma radi-
ation shielding property of geopolymer paste samples. 
As well as, the effective atomic numbers (Zeff), effective 
conductivity (Ceff) and effective electron density (Neff) of 
geopolymer pastes samples were calculating at photon 
energies ranged from 0.1 MeV to 2.5 MeV.

Environmental contaminants such as salts, alkalis, and 
acids can cause the structure matrix to expand, the rein-
forcement to deteriorate, and the composition of hydra-
tion products to change, all of which can compromise 
the structure’s long-term durability (He et al., 2024; John 
et al., 2021).

The substantial influence of sulfate (SO₄2−) and chlo-
ride (Cl−) ions on corrosion processes has been brought 
to light by recent investigations. In simulated concrete 
pore solutions, Liu et al. (2024) showed that sulfate ions 
initiated corrosion at higher thresholds, whereas chlo-
ride ions significantly accelerated the corrosion rates of 
carbon steel. Competitive adsorption onto the steel inter-
face resulted in a reduced corrosion risk when both ions 
were present together (Liu et al., 2024). Furthermore, Li 
et al. (2024) created a model to forecast the load capacity 
of carbon fiber reinforced polymer CFRP-strengthened 
reinforced concrete (RC) members in a Cl− environment 
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and created a diffusion equation for Cl− anions in CFRP-
strengthened RC members (Li et  al., 2024). Meanwhile, 
Luo et al. (2024) developed an important understanding 
of the life prediction and strength design of reinforced 
concrete structures in the offshore or subsea regions of 
subtropical coastal areas by proposing a simplified fatigue 
simulation and an experimental approach to examine the 
fatigue efficiency of CFRP-strengthened RC beams under 
the combined behavior of hot–wet and hot–saline envi-
ronments and cyclic loads (Luo et al., 2024). In line with 
our research’s focus on the combined impacts of sulfate 
and chloride ions on material deterioration, these find-
ings highlight the need of taking both ions into account 
when studying corrosion.

Therefore, the physico-mechanical performance, and 
durability properties in aggressive environments, par-
ticularly against sulfate (SO₄2⁻) and chloride (Cl⁻) attacks 
were evaluated on the geopolymer pastes made with dif-
ferent ratios of SG-ASA-CF at a sodium silicate/sodium 
hydroxide (SS/SH) ratio 1.5, as the first investigation into 
the durability properties of a green geopolymer based on 
slag and alumina sludge ash in the presence of CuFe2O4 
spinel nanograins.

2 � Materials and Methods
2.1 � Materials
The slag (SG) was extracted from the Helwan Iron and 
Steel factory’s leftovers, located in Cairo. Following water 
quenching, this SG took the shape of grains. Blaine sur-
face area and specific gravity of 3400±50 cm2/ g and 2.86, 
respectively, were obtained by grinding the slag.

The 105  °C oven-dried water treatment plant sludge 
(WTPS) was obtained from the Beni-Suef Company 
for Drinking Water. Using an electrically operated oven 
set to 500  °C and an ignition rate of 5  °C per 60  s, the 
dehydrated WTPS was thermally stimulated for 120 min 
before being cooled gradually.  

Table 1 provides information on the chemical content 
of alumina sludge ash (ASA) and slag (S) analyzed by 
X-ray fluorescence spectrometry (XRF) using the Xios, 
stylePW-1400. The information derived from Table  1 
demonstrates the significant proportion of silica and alu-
mina in slag and ASA, demonstrating their aluminosili-
cate composition. X-ray diffraction (XRD) using a Philips 
Xpert-2000 model was also used to assess the degree of 
crystallinity in the beginning materials and the compo-
sition of the phases of alumina sludge ash and slag. The 
XRD patterns of SG and ASA are shown in Fig. 1, show-
ing that the silica phase in slag is highly amorphous 
and that the crystalline phases in ASA comprise albite, 
quartz, and muscovite.

The alkaline activator was synthesized using 
NaOH (SH) pellet (> 97% purity) and commercial 

aqueous sodium silicate (Na2SiO3; SS) [10.2% Na2O, 
28.9% SiO2and 60.9% H2O], which were obtained from El 
Nasr Intermediate Chemicals Company.

The synthesis of CuFe2O4 spinel nanograins (CF-NG) 
followed Ref (Mohamed et  al., 2022a), the particles size 
of CF-NG ≈ 7–45 nm with a surface area of 71.63 m2g−1. 
As shown in Figures  2, 3, 4, and 5, the physical charac-
teristics of the CF-NG nanograins were examined using 
a variety of methods, including HR-TEM, N2-adsorp-
tion/desorption, XRD, and SEM. In Fig.  4, the charac-
teristic peaks of CF-NG are located at 2θ = 30.1◦, 35.5◦, 
37.1◦, 43.1◦, 54.7◦, 56.95◦, and 62.5◦, which are consist-
ent with the standard XRD data set of CuFe2O4 spinel 
nanograins (JCPDS Card No.034–0425).

2.2 � Methods
2.2.1 � Synthesis of Geopolymers
Sixteen geopolymer combinations were included in the 
testing program. Table  2 displays the blend proportions 
of the geopolymer pastes used in this investigation. To 
achieve perfect homogeneity, the components of each 
blend were crushed for one hour in a mechanical ball mill 
and then being combined in the ceramic ball mill.

As indicated in Table 2, the pastes were made using an 
SS/SH ratio of 1.5 (3:2) as activator, and a water/binder 
(w/b) ratio of 0.30 was used for all blends. SG and various 
series of SG-ASA were individually treated to different 
ratios of CF-NG (0.5, 1, and 1.5% by weight). The mix-
ing procedure was carried out in compliance with ASTM 
guidelines (He et al., 2024). Freshly made pastes were put 
into 25-mm cubic molds and left at room temperature for 
the entire night, with the relative humidity kept at about 
98 ± 2%. This was done to assess the mechanical charac-
teristics. After removing the molds, the cubic samples 
were submerged in 25  °C normal water till the testing 
durations (3, 7, 14, and 28 days) were achieved.

Table 1  Chemical compositions of raw materials (% wt)

Oxides SG ASA

Al2O3 15.90 20.14

SiO2 33.21 63.45

Fe2O3 1.20 5.18

CaO 38.76 4.70

MgO 6.94 1.31

Cl − 0.18 0.18

SO3 1.98 0.63

K2O 0.69 0.64

Na2O 0.51 0.49

L.O.I 0.63 3.28



Page 4 of 21Mohamed et al. Int J Concr Struct Mater           (2025) 19:87 

2.2.2 � Examination of Specimens
After 3, 7, 14, and 28 days, the samples were used for 
compressive capacity trials using a Ton-industry machine 
(West Germany) equipped with a 60-ton load cell. Addi-
tionally, all of the geopolymeric samples conducted a 
variety of evaluations of hydration parameters, such as 
the free portlandite contents (CaO, %), and non-evap-
orable water content (NW, %). A typical empirical rela-
tionship for free portlandite contents (CaO, %) can be 
expressed as.

where W = weight of the sample being analyzed (in 
grams), V = volume of hydrochloric acid (HCl) used in 

CaO, % = W(V × N × 56.08) × 100,

Fig. 1  XRD pattern of the A SG, and B ASA

Fig. 2  HR-TEM of CF-NGs nanograins
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Fig. 3  N2-adsorption/desorption isotherm of CF-NGs nanograins

Fig. 4  XRD pattern of CF-NGs nanograins
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the titration (in milliliters), N = normality of the hydro-
chloric acid (i.e., its concentration in equivalents per 
liter), 56.08 = the molecular weight (molar mass) of cal-
cium oxide (CaO) in g/mol. The CaO, %, values were 
determined by applying the procedures described in the 
earlier paper (Abo-El-Enein et al., 2018).

Also, a typical empirical relationship for non-evapo-
rable water content (NW, %) can be expressed as :

where Wi=  mass of dried samples and Wf=  mass of 
ignited specimens.

The evaluated specimens are immersed in a strong 
solution of 5% Na2SO4 and 5% MgCl2 for up to 90 days 
after curing for 7 days under faucet water (as zero time) 
at 20   °C in order to test their resistance to harsh attack 
solutions according to ASTM C1012 (Heikal et  al., 
2020a).

2.2.3 � Radiation Measuring Techniques
Gamma attenuation parameter for all OPC-ASA com-
posites were measured experimentally using a collimated 
beam of 137Cs and 60Co gamma-ray sources. The gamma 
dose rate was detected by 3′ × 3′ amplifier NaI (Tl) detec-
tor, which was connected to a multi-channel analyzer. 
Spectra obtained were analyzed using Genie software. 
The geometrical arrangement of gamma ray’s measure-
ment system is constant during all irradiation experi-
ments, as shown in Fig.  6. The spectra were recorded 
and analyzed by Genie software. For each measurement, 
to ensure that the statistical error was less than 1%, the 
detection time was set at 300 s, and background counts 
were kept at identical durations.

2.2.4 � Gamma Attenuation Parameter
The LAC, MAC, HVL, TVL and MFP parameter will be 
determined for the investigated composites at different 
energies by the radiation transmission. When a beam of 
gamma rays with intensity I0 propagate through a mate-
rial of thickness x, the intensity will be attenuated accord-
ing to, (Jia et al., 2016):

where μ is the linear attenuation coefficient (LAC). 
When gamma attenuation depends on the material den-
sity ρ, then it is necessary to determine the total mass 
attenuation coefficient MAC (μ/ρ) (Bozkurt, 2021) by:

NW . % =
[(

Wi−Wf
)

/Wf
]

× 100,

(1)I(x) = I0e
−µx,

Fig. 5  SEM image of CuFe₂O₄ spinel nanograins

Table 2  Contents of the multiple blends and their notations

Mix Mix proportions, mass%

SG ASA (CF-NG) SS/SH

P 100 – – 1.5

PCF0.5 100 – 0.5 1.5

PCF1 100 – 1.0 1.5

PCF1.5 100 – 1.5 1.5

PS1 95 5 – 1.5

PS1CF0.5 95 5 0.5 1.5

PS1CF1 95 5 1.0 1.5

PS1CF1.5 95 5 1.5 1.5

PS2 90 10 – 1.5

PS2CF0.5 90 10 0.5 1.5

PS2CF1 90 10 1.0 1.5

PS2CF1.5 90 10 1.5 1.5

PS3 80 20 – 1.5

PS3CF0.5 80 20 0.5 1.5

PS3CF1.5 80 20 1.0 1.5

PS3CF1.5 80 20 1.5 1.5

Fig. 6  The gamma-ray measurement system’s geometrical 
configuration
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The half- and tenth-value layer (HVL, TVL) and the 
mean free path MFB are determined from:

For a mixer     µ
ρ
=

∑

i wi

(

µ
ρ

)

i
 (Sallam et  al., 2020), 

where ρi and (µ/ρ)i are the partial density (the density as 
it appears in the mixture) and the mass attenuation coef-
ficient of the ith constituent, respectively, and wi is the 
weight fraction.

For predicting how photons and molecules will inter-
act, the Zeff parameter is crucial. For a variety of energy 
levels, Zeff’s shielding parameters have therefore been 
computed. The Zeff values for total photon interactions 
are determined using the formula below: Sallam et  al., 
2020): 

where NA is Avogadro s number, Ai and Zi is the atomic 
weight and atomic number, respectively, of the elemen-
tal composition and fi is the fractional values of the 
elements.

The Neff is used to determine the electronic field’s 
effective-density number which it represents the number 
of electrons per unit mass of the interacting matter and 
given by:

The Phy-X/PSD program is used to investigate the 
photon attenuation characteristics at photon energies of 
0.1–10 MeV. Numerous properties, such as LAC, MAC, 
HVL, MFP, Zeff, Neff and effective conductivity (Ceff), were 
calculated and compared with the experimental results. 
This calculation will be useful for comprehending how 
SG-ASA and the concentration of the replacement affect 
gamma shielding characteristics.

3 � Results and Discussion
3.1 � Non‑evaporable Water Content (NW, %)
The results for the non-evaporable water content (Nw, %) 
of hardened geopolymer pastes that were hydrated for 
up to 28 days are illustrated in Fig.  7A–E. The findings 
demonstrate that for every analyzed sample, Nw values 
increased, rising steadily and gradually until the 28-day 
hydration age. This is because all hardened geopolymer 
pastes undergo a constant hydration process that releases 

(2)MAC =
µ

ρ
=

ln
(

I0
I

)

ρx
.

(3)HVT =
0.693

µ
TVL =

2.303

µ
MFP=

1

µ
.

(4)

Zeff = [MAC / (NA�iWiAi)]/[
1

NA
� Fi Ai Zi(MAC)i],

(5)Neff = NA Zeff /�i fi Ai

(

electrons / g
)

.

Ca(OH)2 that creates more hydration yields (Ibrahim 
et al., 2023b).

ASA up to 20% by mass in mixes PS1, PS2 and PS3, 
respectively, created a small increase in Nw values in SG-
ASA pastes compared to the uncured mix (P) over the 
entirety curing dates. Because of ASA’s high pozzolanic 
activity, this can be explained (Algamal et  al., 2019). At 
later ages (28 days), the pozzolanic reaction and/or alka-
line activation geopolymer binder are triggered by the 
release of Al3+, Si4+, and Ca2+ cations caused by the dis-
integration of SG when the content of ASA is increased 
(Heikal et al., 2020a).

Figure  7B–E shows how the inclusion of CF-NGs 
affected the NW, % values of several reinforced compos-
ites over the hydration stages. According to the find-
ings shown in Figure  7B–E, the (NW) contents showed 
an increasing trend up to 1.5 mass % CF-NGs. This is 
because CF-NGs-nanograins are present and act as 
nucleation nuclei for the hydration process, speeding up 
the hydration of cement granules (Ibrahim et al., 2023a).

3.2 � Gel/Space Ratio (X)
As seen in Fig. 8A–E, the (X) ratio grew with hydration 
times for all series of SG, SG-ASA, and SG-ASA-CF-
NGs hardened geopolymer pastes. This results from the 
buildup of extra C-F-S-Hs, C-S-Hs and C-F-Hs within 
the pores structure causing a closed matrix system (Hei-
kal et al., 2020b).

Because of the higher pozzolanic power of ASA at later 
ages, Fig. 8A displays an upward trend with ASA content 
up to 20%. (Heikal et al., 2020a).

In comparison to the other composite pastes, the (X) 
values for the various mixtures comprising CF-NGs 
showed a larger rise. This is explained by the fact that CF-
NGs have a larger pozzolanic power, which speeds up the 
rate of hydration and produces more hydration products 
(Mohamed et  al., 2022a, 2022b). Moreover, higher (X) 
ratio values were obtained when 1.5 mass% of CF-NGs 
was added to mix PS3CF1.5 in comparison to the refer-
ence sample.

3.3 � Compressive Strength
Figure 9A–E displays the compressive strength (Cs) find-
ings for the geopolymer pastes that were cured under 
various time intervals. As seen in Fig.  9A–E, all speci-
mens exhibited significant enhancement in compressive 
capacity as the treating period was prolonged. This could 
be the outcome of a continual advancement in the pro-
cedure of hydration over time, leading to the creation 
of hydration yields among cement particles, filling open 
pores, and subsequently increasing the gel-to-space ratio, 
enhancing mechanical features (Ibrahim et  al., 2023b). 
Moreover, the compressive capacity increased with the 
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Fig. 7  Non-evaporable water content (NW %) of SG- ASA-CF geopolymer pastes at different curing times
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Fig. 8  Gel/space ratio (X) for reinforced geopolymer pastes at varying curing times
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increase of ASA content up to 20%, which is ascribed to 
the formation of hydration yields as CASHs, CSHs along 
with more NASHs gel that could be deposited in the 
pores of the system owing to the presence of ASA which 

gave an additional source of aluminosilicate hydrates 
(Chen et  al., 2024; Ferone et  al., 2019; Santosa et  al., 
2019). The optimal replacement ratio of slag-based geo-
polymer (SG-Geo) by ASA is 20%, as confirmed by the Cs 

Fig. 9  Compressive strength of hardened SG-ASA-CF geopolymer pastes at different curing times
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results; the researcher has already reported this finding 
(Duan et al., 2022a).

Additionally, in comparison to the uncured sample 
(mix P), the Cs values were increased for all reinforced 
composite pastes including 0.5%, 1%, and 1.5% CF-NGs. 
This is explained by the increased pozzolanic power of 
CF-NGs, which enhanced the degree of hydration pro-
cess and generated surplus hydration yields like CAH 
and CSH in addition to creating novel phases including 
CFSHs, CuSHs, and CFHs. Additionally, CF-NGs’ filling 
effect in the cement matrix blocks pores among cement 
grains, increasing the CC magnitudes (Gharieb et  al., 
2023; Mohamed et al., 2022b).

The outcomes confirmed that the 80% SG–20% ASA–
1.5% CF-NGs composite (Mix PS3CF1.5) showed the 
greatest Cs magnitudes when compared to all other 
assessed nanocomposites at nearly all trial ages, making 
it the best option for general building applications.

Consequently, the results of the compressive strength 
(Cs) and the data gathered through the non-evaporable 
water contents (NW, %) are in agreement.

3.3.1 � Empirical Modeling of Compressive Strength 
Development

Empirical equations were established to represent the 
compressive strength (Cs, MPa) of the geopolymer 
composites as a function of curing age (t, days). Using 
second-order polynomial regression, the experimental 
data for various doses of CF-NGs were examined. These 
models illustrate the temporal progression of compres-
sive strength and emphasize the significance of CF-NGs 
(Table 3).

These characteristics jointly delineate the progression 
of compressive strength and provide the quantification 
of the contribution of CF-NGs to the geopolymer matrix 
over time.

Figure 10 demonstrates the beneficial effect of CF-NGs 
on the pace of strength growth and validates the regres-
sion trends employed in the empirical modeling sec-
tion. These empirical correlations validate the beneficial 
effect of CF-NGs on the rate of strength development. 
The fitted models’ parabolic shape confirms the observed 
experimental behavior and is consistent with hydration 
kinetics. Additionally, the outcomes support the valid-
ity of the modeling approach by being in line with earlier 
findings in the literature. (Ahmed et  al., 2022; Hardjito 
et al., 2004).

3.4 � Phase Identification
3.4.1 � XRD Exploration
In Fig.  11, the XRD spectra of the P, PS3, PCF1.5, and 
PS3CF1.5 blends at 28 days of curing age are displayed. 
All of the samples showed a board hump particularly at 
30◦–40◦ 2θ, which could be related to the amorphous 
CASHs and NASH gels as documented in the previous 
investigations (Duan et  al., 2022a; El-Sawy et  al., 2024), 
and a tiny small peak associated with Al-tobermorite-gel 
(C-A-S–H, located at 2 Θ = 28.9◦, PDF# 00–020–0452) 
was also demonstrated (Mohamed et al., 2023b). For all 
tested samples, the tiny humps at roughly 29.35◦ 2θ were 

Table 3  Empirical formulas for compressive strength (Cs) at 
various CF-NGs contents

CS(t) is the compressive strength (MPa) at curing age t (days), the constants 
a, b, and c represent the regression coefficients obtained from curve fitting: a 
represents the nonlinear (quadratic) rate of strength development. b reflects 
the linear influence of curing time c is the intercept, which corresponds to the 
estimated initial strength at t = 0

Blend designation Empirical formula 
(CS(t) = a·t2 + b·t + c)

P (0% CF-NGs) −0.0318·t2 + 1.723·t + 10.598

PCF0.5 (0.5% CF-NGs) −0.0364·t2 + 1.983·t + 10.910

PCF1 (1% CF-NGs) −0.0378·t2 + 2.099·t + 11.780

PCF1.5 (1.5% CF-NGs) −0.0382·t2 + 2.196·t + 13.364

PS3CF1.5 (20% ASA + 1.5% CF-NGs) −0.0428·t2 + 2.456·t + 14.676

Fig. 10  Experimental compressive strength values and fitted 
polynomial curves for different CF-NGs contents at various curing 
ages

Fig. 11  After 28 days of hydration, the XRD spectrum of the P, PS3, 
PCF1.5 and PS3CF1.5 blends
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attributed to calcium silicate hydrates (CSHs), which 
could possibly overlap with CaCO3 and C3S phases. Dif-
ferent diffraction peaks for calcium hydroxide (CH), 
known as Portlandite, are visible in the XRD patterns of 
geopolymer pastes (PDF: 00–004-0733). At 2θ = 18.07°, 
34.06°, 47.13°, and 50.78°, these peaks can be found. For 
unreacted silicates, specifically C3S and β-C2S, specific 
diffraction peaks can be found at 2θ = 32.14° and 32.47°. 
The differentiation between C-A-S–H, C-S–H (I), and 
C-S–H (II) was based on the position and shape of the 
broad humps and low-intensity reflections observed in 
the 2θ range of 27°–34°, as referenced in previous stud-
ies (Duan et  al., 2022a; Mohamed et  al., 2022a, 2023b; 
Rashad et  al., 2023). This study follows the criteria 
described in Taylor (1997); I. G. & Richardson, 2008; 
Yu et  al., 2015; Nonat, 2004), where C-S–H (I) typically 
shows a broad peak around 2θ ≈ 29°, while C-S–H (II) 
exhibits a peak shift toward 2θ ≈ 32°, indicating a higher 
degree of structural organization. Additional quanti-
ties of CASH, CSH (I), and CSH (II) were formed when 
1.5% CF-NGs were added to these composites (Mixes 
PCF1.5 and PS3CF1.5). Additionally, the dispersion 
of CF nanograins  and their pozzolanic reaction with 
CH released from polymerization reaction results in 
the formation of additional phases, specifically CuSH 
(Mohamed et al., 2022a).

3.4.2 � FT‑IR Spectroscopy
In Fig.  12, the FT-IR patterns of hydration products 
of the P, PS3, PCF1.5, and PS3CF1.5 blends at 28  days 
of curing age are displayed. The stretching and bend-
ing vibrations of the O–H groups of H2O within C-S–H 
gels are associated with the absorption bands located 
at 3700—3200  cm−1 (Bouchikhi & Y. M-Pajany et  al., 

2021). Calcite, which may have developed as a result 
of the pastes’ carbonation, is responsible for the band 
at ~ 1400  cm−1(Burciaga-Díaz et  al., 2020). The Si–O 
stretching vibration of C–S–H Type I—a high-density, 
well-ordered hydration product is the cause of the band’s 
intensity in the region of 950–1100 cm⁻1 (Abdollahnejad 
et  al., 2019). Additionally, peaks observed at ~ 713  cm⁻1 
and ~ 855- 875  cm⁻1 are attributed to Al–O bending 
modes, suggesting the coexistence of C–A–S–H phases. 
The intensity of the band at 457–524 cm−1  is due to the 
bending vibrations of O–Si–O and Si–O–Si bonds (Tran 
et al., 2024). These results demonstrate that the PS3CF1.5 
has undergone more complete hydration and developed 
a more advanced microstructure compared to the P, PS3, 
and PCF1.5 blends.

3.5 � Morphology
Scanning electron microscopy (SEM) was performed 
to examine the microstructural characteristics of the 
geopolymer matrix and to evaluate the effects of incor-
porating alumina sludge ash (ASA) and CuFe₂O₄ spi-
nel nanograins (CF-NGs) on morphology, porosity, and 
densification. In Fig. 13(A–D), SEM images of the tested 
samples P, PS3, PCF1.5, and PS3CF1.5 at 28 days of cur-
ing age showed that the main hydration products were 
CASHs and CSHs. As demonstrated in Fig.  13(A), the 
control geopolymer matrix (P) exhibited a heterogeneous 
microstructure with visible micro-cracks and a relatively 
porous matrix. In comparison to the control sample (P), 
the SEM pictures of PCF1.5 nanocomposites in Fig. 13B 
showed promoted homogeneity and an improved com-
pact microstructure with significantly fewer pores and 
unreacted particles, as a result of the CF-NGs acting as 
binder, fillers, and nucleation sites for the resulting yields, 
enhancing the compressive capacity (Gharieb et  al., 
2023). Figure 13C reveals the formation of a dense micro-
structure, which improved the microstructural compact-
ness owing to the pozzolanic action of ASA (Mohamed 
et  al., 2022b). Among all the blends, the generation of 
extra hydration yields and/or the formation of new prod-
ucts like CuSH is the key factor for the dense structure 
and hard matrix of PS3CF1.5 nanocomposites as shown 
in Fig. 13D. Moreover, the enhanced interfacial bonding 
and packing between the nanograins and the geopolymer 
gel led to microstructural densification, which is consist-
ent with the noted improvements in gamma radiation 
shielding and mechanical strength. These results offer 
compelling microstructural evidence in favor of the sug-
gested processes and the macro-scale performance gains. 
Thus, the complementary evidence from XRD and SEM, 
collectively confirms that the incorporation of CF-NGs 
and ASA not only improves the structural integrity of the 
geopolymer matrix, but also promotes the formation of 

Fig. 12  After 28 days of hydration, the FT-IR patterns of hydration 
products of the P, PS3, PCF1.5, and PS3CF1.5 blends
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stable and compact gel phases, which enhance both dura-
bility and radiation shielding effectiveness.

3.6 � Assessments of Durability Against Aggressive 
Environments

3.6.1 � Aggressive Sulfate and Chloride Attack

4 � Compressive Strength (Cs)
The compressive strengths of test specimens sub-
merged in 5% Na2SO4 solution or 5% NaCl solution for 
up to 90 days are displayed in Figs.  14, 15(A–E). The 
results reported that the compressive strength of all 
tested specimens developed with the progress of soak-
ing time up to 90 days as the result of the growth of 
hydration yields with increasing curing time (Mohamed 
et  al., 2023a). The results in Figs.  14, 15(A–E) reveal 
that plain (mix P) compressive strength decreased in 
comparison to mixes PS1, PS2, and PS3 up to 90 days of 
soaking in a 5% Na2SO4 solution. Although the strength 
loss was less than that caused by sulfate, similar out-
comes were seen for geopolymer pastes soaked in 5% 

NaCl solution (Fig.  14); this may be attributed to the 
entry of SO4

−2 ions into the matrix system, which leads 
to the creation of ettringite (Aft) and gypsum (CaSO4), 
which is typically the cause of the specimens’ decreased 
strength depending on the amount of tricalcium alu-
minate and CH in the structure, while the enhancing 
in the strength of the specimens soaked in chloride 
solution was as a result of the acceleration of the early 
hydration process occurring in chloride solution (He 
et al., 2024). This performance is directly related to the 
pore features due to the presence of up to 20% ASA 
replacement ratio, which results in the creation of more 
C-S-H hydrates that are deposited in the accessible 
pores and reduces porosity, increasing compactness 
and effectively prevents the penetration of salt solu-
tions into the matrix system (Owaid et al., 2019). More-
over, adding adequate amounts of ASA can reduce ASR 
gel content owing to the reality that ASA consumes the 
Portlandite developed upon hydration, diminishing 
the potential of creating ASR gels. Thus, with the ASA 
content increased by up to 20% of substitution, the Cs 

Fig. 13  After 28 days of hydration, the SEM images of the P, PS3, PCF1.5 and PS3CF1.5 blends
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magnitudes of SG-ASA hardened geopolymer compos-
ites are enhanced (Duan et al., 2022c).

By adding CuFe2O₄ spinel nanograins (CF-NGs) at var-
ying weight percentages (0.5%, 1%, and 1.5% by weight), 

the reaction of ASA with portlandite is promoted to 
create massive yields of CSHs and N(C)ASHs geopoly-
meric gel in the matrixes, which accumulate in the larger 
pore-spaces, reducing porosity and thus hindering the 

Fig. 14  Cs of activated SG-ASA-CF binders and a reference specimen immersed in 5% Na2SO4 solution up to 90 days
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attendance of Cl−1 and/ or SO4
−2 ions in the available 

open pores, thus reducing the decay action of the struc-
ture matrix and enhancing the CS (He et al., 2024; Heikal 
et  al., 2020a). While the magnitudes of Cs of PS1, PS2, 

and PS3 mixes are increased, respectively, in the same 
order in the presence of CF nanograins in the matrices, 
as shown in Figs.  14 and 15A, Mix P exhibited lower 

Fig. 15  Cs of activated SG-ASA-CF binders and a reference sample immersed in 5% NaCl solution up to 90 days
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rates of Cs than other mixes at all ages submerged in 5% 
Na2SO4 solution or even 5% NaCl solution.

It is generally observed that for all investigated mixes, 
the enforcement effect of CFs-NGs rises with increasing 
addition doses (from 0.5 to 1.5%), as seen by an increase 
in the Cs magnitudes. This improvement is credited to 

the CFs NPs’ filling action, which encouraged the geo-
polymer matrix’s porosity to decrease and impede the 
presence of Cl−1 and/ or SO4

−2 ions in the available open 
pores, hence lessening the geopolymer matrix’s dete-
rioration influence (Mohamed et  al., 2022b). As clari-
fied in Figs.  14 and 15(B–E), (Mix PS3CF1.5) exhibited 
the greatest Cs values when compared to all other tested 
nanocomposites under the same curing circumstances, 
making it the best option for durability against aggressive 
environments used for building applications.

4.1 � Radiation Shielding Performance
Figure  16(a, b) describes the attenuation efficiency for 
137Cs and 60Co gamma radiation detection, respectively, 
for the 12 SG-ASA composites with different concentra-
tion of additives as given in Table  (2). In these figures, 
every point of data reflects the mean of seven different 
measurements. The variations in the recorded gamma 
doses are the primary cause of the about 5% measure-
ment uncertainty. The attenuation data demonstrate that 
as composite thickness increases, the gamma-ray equiva-
lent dose decreases exponentially. For each composite 
type, the LAC for gamma rays was determined experi-
mentally from the attenuation curves in Fig. 16(a, b) and 
presented in Tables 4 and 5, using Eq. (1). The concentra-
tion of ASA was found to have an impact on the attenua-
tion of gamma rays, particularly for PS3CF1.5 with 1.5% 
of CF-NG. This composite’s relatively thin thickness was 
needed to attenuate gamma rays more than other com-
posites showed.

As illustrated in Fig.  17, the LAC values of the sam-
ples were derived from experimental measurements at 

Fig. 16  The variation of gamma linear attenuation as a function 
of the thickness for different concentration of composites (SG-ASA-CF 
NGs). a At ASA replacement ratio of 10%. b At ASA replacement ratio 
of 20%

Table 4  Mass attenuation coefficient (MAC) for the 12 SG-ASA composites that determined experimentally and compared with Phy-X 
program results

Sample Mass attenuation coefficient, cm 2/g

Experimental Theoretical

0.662 MeV 1.17 MeV 1.33 MeV 0.662 MeV 1.17 MeV 1.33 MeV

P 0.07709 0.05867 0.05498 0.07713 0.05912 0.0556

PCF0.5 0.07712 0.05869 0.05497 0.07714 0.05915 0.05562

PCF1 0.07716 0.05872 0.05496 0.07718 0.05918 0.05565

PCF1.5 0.07718 0.05874 0.05494 0.07720 0.0593 0.05567

PS2 0.07724 0.05876 0.05497 0.07725 0.05934 0.05569

PS2CF0.5 0.07728 0.05878 0.05495 0.07729 0.05937 0.05571

PS2CF1 0.07730 0.05882 0.05494 0.07733 0.05939 0.05572

PS2CF1.5 0.07732 0.05886 0.05493 0.07737 0.05942 0.05575

PS3 0.07738 0.05889 0.05495 0.07742 0.05947 0.05579

PS3CF0.5 0.07745 0.05892 0.05494 0.07746 0.05949 0.05583

PS3CF1.5 0.07750 0.05895 0.05493 0.07753 0.05953 0.05586

PS3CF1.5 0.07753 0.05898 0.05491 0.07758 0.05958 0.05588
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energies of 0.662 MeV, 1.17 MeV, and 1.33 MeV as well as 
from the Phy-X/PSD software program. As can be seen 
from Fig.  17, the LAC of the samples is dependent on 
both the incident gamma ray energy and the ASA con-
centration as well as depend on sample density as shown 
in Table  (2). The experimental and theoretical values of 
LAC are closed together and it shows a good degree of 
consistency, as shown in Fig. 17, with variations ranging 
from 0 to 8%.

Tables 4 and 5 provide a comparative analysis of some 
of important shielding properties, such as MAC, HVL, 
TVL, and MFP, for the SG-ASA samples under examina-
tion and represented in Fig. 18, 19.

Figure  19(a, b) illustrates the MAC values at energy 
range 0.05–2 MeV that were calculated by the Phy-X/PSD 
software program. Among the examined SG-ASA com-
posites, PS3CF1.5 composite with 1.5% of CF-NG has the 
highest MAC value of 0.07758 cm2/ g at 0.05  MeV but, 
When the energy levels rise, the MAC value decreases 

to 0.05588 cm2/g, this can be clarified by the three types 
of gamma interactions with matter: Compton effect, 
pair production, and photoelectric effect according to 
the energy loss or scatters of the incident photon. All 
SG-ASA composites exhibit photoelectric absorption at 
around 100 keV as the main effect; MAC looks fairly high 
and decreases beyond this energy.

Overall, the simulated gamma mass attenuation coef-
ficient values for the SG-ASA composite shields at the 
selected energies agreed well with the theoretical results 
that Phy-X software produced. When ASA concentration 
rises in low energies as opposed to higher energies, it has 
been observed that the reported mass attenuation coef-
ficient rises as well. This is also caused by the compara-
tively high density of PS3CF1.5 composite.

The variance in effective atomic numbers (Zeff) and 
effective electron density (Neff) for the 12 SG-ASA com-
posites under study at various energies is shown in 
Figs. 20 and 21, and the variation of effective conductiv-
ity (Ceff) is shown in Fig. 22. The pattern in Figs. 20 and 

Table 5  The values of HVL, TVL and MFP for the 12 SG-ASA composites at different energies

Composite 0.662 MeV 1.17 MeV 1.33 MeV

HVL TVL MFP HVL TVL MFP HVL TVL MFP

P 3.877 12.879 5.593 5.0754 16.860 7.3225 5.373 17.849 7.752

PCF0.5 3.854 12.804 5.560 5.0484 16.770 7.283 5.344 17.755 7.711

PCF1 3.817 12.676 5.505 5.0232 16.687 7.247 5.326 17.690 7.683

PCF1.5 3.777 12.547 5.449 5.003 16.620 7.218 5.297 17.596 7.642

PS2 3.677 12.215 5.304 4.812 15.982 6.941 5.212 17.315 7.519

PS2CF0.5 3.636 12.078 5.245 4.781 15.881 6.897 5.145 17.093 7.423

PS2CF1 3.611 11.995 5.209 4.745 15.762 6.846 5.079 16.875 7.329

PS2CF1.5 3.578 11.886 5.162 4.661 15.479 6.722 5.003 16.618 7.217

PS3 3.543 11.770 5.112 4.6154 15.332 6.659 4.969 16.509 7.170

PS3CF0.5 3.468 11.519 5.003 4.567 15.175 6.590 4.874 16.194 7.033

PS3CF1.5 3.382 11.235 4.879 4.444 14.766 6.413 4.756 15.800 6.862

PS3CF1.5 3.337 11.087 4.815 4.361 14.587 6.335 4.690 15.582 6.767

Fig. 17  The linear attenuation coefficients LAC generated 
from experimental results, and Phy-X/PDS calculations at different 
energies

Fig. 18  The halve value layer HVL of the studied composites 
by Phy-X/PDS at different photon energies
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21 is similar, showing that as energy increases, both Zeff 
and Neff drop. In this area, the apparent drop is caused by 
an increase in the number of excited electrons more pho-
tons being ejected as the energy rises. Then, because of 
the Compton scattering, they stay relatively constant in 
the medium-energy zone before slightly increasing in the 
area of high-energy because of the pair creation. Effective 

conductivity (Ceff) is closely related to Neff since it is pri-
marily determined by the quantity of photon energy that 
collide with electrons and transform them into free elec-
trons. At the same energy range, Ceff behaves in the same 
way as Neff and Zeff, as illustrated in Fig. 23. As given in 
Fig. 23, Neff and Ceff have a direct correlation. Therefore, 
the composite of SG-ASA that contains 20% (ASA and 
1.5% CuFe2O4 spinel nanograins (CF-NGs) has the high-
est Zeff, Neff, and Ceff, according to the most recent data.

The mean free path (MFP) of the examined SG-ASA 
mixture at the 0.04–15  MeV photon energy range is 
shown in Fig.  24. It is clear that the MFP values are 
directly proportional to photon energies. The reason for 
this upward trend is that the high-energy radiation can 
readily pass through the incident material. Photoelec-
tric effects are less dominant than Compton interactions 
at higher energy. The Compton interactions only occur 
between incident photons and the outermost electrons 
of the SG-ASA atoms, and they are barely influenced by 
energy (E) and atomic numbers because photon attenua-
tion decreases as a result of this alteration. According to 
the findings in Table 5 and Fig. 24, PS3CF1.5 has the low-
est MFP across all energies.

5 � Conclusion
The viability of green geopolymer designed using various 
ASA/SG ratios was examined to assess the mechanical 
performance, gamma radiation shielding, and durability 
characteristics against aggressive environments.

This study demonstrates the good shielding behavior 
and good agreement of the examined SG-ASA compos-
ites in detecting the effective electron density (Neff), 

Fig. 19  a, b Mass attenuation coefficient (MAC) for composites 
at different energies

Fig. 20  a The variation of effective atomic number Zeff with gamma energies for composites with 0% ASA and composites with replacement 10% 
ASA. b The variation of effective atomic number Zeff with gamma energies for composites with 0% ASA and composites with replacement 20% ASA
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effective conductivity (Ceff), HVL, the effective atomic 
number (Zeff), mass attenuation coefficient (MAC), 
LAC, TVL, and MFP. Therefore, the studied composites 
are useful in a variety of shielding applications, especially 
in radiation facilities, and have good shielding qualities.

Based on the findings, the following inference may be 
developed:

1.	 Incorporating thermally treated alumina sludge ash 
(ASA) as a partial replacement  for slag-based geo-
polymer at levels of up to 20% (by mass), Mix PS3, 

Fig. 21  a The effective electrons density Neff as a function with gamma energies for SG-ASA composites with (0% and 10% replacement of sludge). 
B: The effective electrons density Neff as a function with gamma energies for SG-ASA composites with (0% and 20% replacement of sludge)

Fig. 22  a The variation of effective conductivity Ceff with different gamma energy for base composites (0% ASA) compared with composite 
relapsed 10% ASA. b The variation of effective conductivity Ceff with different gamma energy for base composites (0% ASA) compared 
with composite relapsed 20% ASA

Fig. 23  Effective conductivity (Ceff ) and effective electron density 
(Neff ) in relation to PS3CF1.5 composite
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resulted in an upward trend in the NW contents and 
gel/space ratio (X) compared to the uncured Mix (P) 
over all processing ages.

2.	 The compressive strength magnitudes were boosted 
for each of the reinforced composite pastes featuring 
0.5%, 1% and 1.5% CF-NGs compared to the uncured 
specimen (mix P); this related to the occurrence of 
hydration yields as CASHs, CSHs along with more 
NASHs gel that could be deposited in the pores of 
the system

3.	 The inclusion of 1.5% CF-NGs resulted in an 
upward trend in the compressive capacity magni-
tudes compared to their standards (mixes P-PS3) 
due to the good dispersion caused by CF-NGs spinel 
nanograins.

4.	 The incorporation of CF-NGs altered the capacity to 
resist sulfate aggressive environment. By preventing 
diffusion via the open holes and lowering the achiev-
able SO4

2−, the geopolymer gel precipitation in the 
matrix lessened degradation.

5.	 Comparing cases exposed to Cl−solutions to those 
exposed to SO4

2−solutions, the former displayed 
greater compressive strength values.

6.	 The shielding efficiency of diverse SG-ASA compos-
ites was examined both experimentally and theo-
retically using the Phy-X/PSD software and Genie 
software program, which showed a good agreement 
and good shielding behavior of the studied SG-ASA 
composites particularly for the mix of (PS3CF1.5) 
with 1.5% of CF-NG, indicating its superior ability 
for radiation shielding.
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