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Abstract

The massive expansion of global construction projects has caused a shortage of river sand (RS) as a construction raw
material, necessitating the development of alternative materials to alleviate this pressure. In this study, ferrochrome
slag (FS) and dune sand (DS) were utilized as composite aggregates to completely replace RS in building materials.
Systematic tests were conducted to evaluate the effect of gradation on the flowability and mechanical properties

of mortars with composite aggregates, clarifying the influence mechanism through microscopic physical phase tests.
The test results show that the grading optimization improves flowability by 12.8-15.9% and enhances the 28-day
compressive strength of mortars by 20.5-23.2%. The optimized gradation with a DS proportion of 0.3 has the highest
performance, with 28-day compressive and flexural strengths of 59.81 MPa and 8.30 MPa, which are 29.4 and 11.9%
higher than those of RS aggregate mortar, respectively. Microstructural analysis reveals that optimized grada-

tion reduces porosity by 7.4-10%, leading to denser structures with fewer cracks and pores. The optimal use of DS
and FS as alternative aggregates significantly reduces costs and potential carbon emissions, as the cost efficiency
(Cp) and ECO, efficiency (C)) values of the optimized mixture decreased by 47.3 and 27.7% respectively, compared

to the control group. The materials developed in this study exhibit excellent engineering application potential,

and the performance-based material optimization method provides a theoretical basis and practical reference

for the design of alternative building materials made with solid waste.

Keywords Dune sand, Ferrochrome slag, Grading optimization, Mechanical properties, Cost efficiency, Environmental
impact

1 Introduction

With the accelerated development of global infrastruc-
ture and urbanization, the demand for sand for industrial
and civil construction has increased significantly, leading
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the price of RS has continued to rise, and it is expected
that in 2050 the price of RS will be twice as high as that
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Fig. 1 Actual and forecast supply, demand and price curve of sand
from 2010 to 2050 (Source: UNEP) (Gallagher & Peduzzi, 2019)

engineering industry (Dinh et al., 2022; Santhosh et al.,
2021). Currently, various alternative aggregates have been
explored, such as manufactured sand, sea sand, recycled
sand, mine tailings, and waste glass. As summarized in
Fig. 2, manufactured sand offers controllable quality and
consistent gradation but suffers from high production
costs and powder content (Attri et al., 2022; Jiang, 2022;
Shi et al.,, 2021). Sea sand is abundant and low in silt
but poses chloride-induced corrosion risks (Xiao et al.,
2017). Recycled sand and mine tailings are eco-friendly
and reduce waste, yet they face challenges of inconsistent
quality and potential heavy metal contamination, respec-
tively. Waste glass, while eco-friendly and possessing high
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Sea sand
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hardness, carries risks of alkali-silica reaction and sharp
edges. These limitations in cost, performance, and envi-
ronmental impact highlight the urgent need to develop
novel alternative aggregates to fully replace RS.

The application of dune sand (DS) for the construc-
tion industry is widely prospective due to its abundant
reserves and ease of extraction (Abu Seif et al., 2016;
Khattab, 2016). Meanwhile, with the rapid development
of the ferrochrome alloy industry, global ferrochrome
production now reaches 6.5-9.5 million tonnes annu-
ally (Kogyigit, 2024; Nagarajan & Vijayan, 2023), with
each metric tonne generating 1.0-1.6 tonnes of FS by-
product, leading to an estimated annual FS production
of 6.5-15.2 million tonnes, which occupies and destroys
the land resources and pollutes the environment as solid
waste. Available leaching tests validate that chromium
immobilization in FS-based concrete complies with both
China GB8978 (< 1.5 mg/L) for water leachability and the
EU permanent waste requirements (< 0.5 mg/kg) for solid
materials through matrix densification (Fares et al., 2021;
Zhu et al., 2023), showing no detectable environmental
risks. As shown in Fig. 3, since chromite and dunes are
widely distributed globally and have significant spatial
correlation effects (Alsharif et al., 2020; Team, 2007), it
has become a development trend to manufacture low-
carbon and environmentally friendly green building
materials by utilizing dune sands and ferrochrome slag as
alternative aggregates.

A summary of available literature on developing DS or
FS as an alternative fine aggregate is provided in Fig. 4.
Due to the low fineness modulus and smooth surface of
DS, the compressive strength of mortars using dune sand
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Fig. 2 Advantages and disadvantages of common alternatives to RS as aggregates
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Fig. 4 Compressive strength of mortar with FS and DS as alternative aggregates (Al-Jabri et al, 2018; Chinyama et al., 2023; Damene et al,, 2018;
Das et al, 2021; Dash & Patro, 2018; El-Hassan et al.,, 2020; Huynh et al., 2022; Jiang et al., 2019; Kopuri & Ramesh, 2019; Li et al., 2020; Liu et al., 20204,

2020b; Panda et al,, 2013; Seif, 2013; Shoukry et al,, 2022)

as aggregate is typically lower compared to RS (Damene
et al,, 2018; El-Hassan et al., 2020; Huynh, Ho, & Van Ho,
2022; J. Jiang et al.,, 2019; Y. Li et al., 2020; H. Liu et al.,
2020a, 2020b; Seif, 2013). When DS substitution exceeds
20%, its high surface area and finer particles consume
excessive cement paste, resulting in insufficient hydration
products for particle encapsulation. This dilution effect

triggers interfacial cracks and consequently drastic reduc-
tions in both workability and mechanical performance
(El-Hassan et al., 2020). Although the very fine particles
in desert sand may exert limited enhancement on the
hydration process through heterogeneous nucleation and
pozzolanic effects, they are insufficient to counteract the
adverse impacts caused by physical deterioration. This
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suggests that it is difficult for DS to realize a complete
replacement of RS in mortar production. In contrast to
DS, ES has a hard texture, porous appearance and rough
surface. In terms of physical properties, the mechani-
cal interlocking between FS particles and cement paste
is enhanced compared to that of RS (Islam et al., 2021;
Zeli¢, 2005). In terms of chemical properties, the forma-
tion of more calcium silicate hydrate (C-S-H) gels was
promoted (Kumar et al.,, 2020; Ren et al., 2023). There-
fore, the replacement of RS with FS as aggregate results
in better mechanical properties of the mortar (Al-Jabri
et al., 2018; Chinyama et al., 2023; Das et al.,, 2021; Dash
& Patro, 2018; Kopuri & Ramesh, 2019; Panda, Mishra,
Panda, Nayak, & Nayak, 2013; Shoukry et al, 2022).
The compressive strength can be increased by 70.3% by
replacing RS with some FS (Shoukry et al., 2022). How-
ever, due to the large particle size, irregular shape and
poor grading of FS, the flowability of mortar tends to be
lower at high substitution rates (Das et al., 2023; Dash &
Patro, 2018), and the improvement of mechanical prop-
erties is not obvious or even decreased (Das et al., 2021;
Dash & Patro, 2018; Panda et al., 2013). At present, only
30% of FS is developed and utilized as aggregate for road
concrete (Sanghamitra & Reddy, 2017). Based on this,
combining ultra-fine DS with porous FS may optimize
gradation and improve workability. DS can fill the pores
of FS, increasing packing density and enhancing mortar
strength and durability.

Studies confirm that neither DS nor FS alone can fully
substitute RS (Das et al., 2023; El-Hassan et al., 2020;
Kopuri & Ramesh, 2019; Seif, 2013). Recent research,
however, provides viable solutions through composite
aggregate design. For instance, Manigandan and Pon-
malar (2024) experimentally demonstrated that a 40% ES
blend with crushed sand reduces the Ca/Si ratio to 1.0,
promoting the elongation of silicate chains and the for-
mation of denser calcium silicate hydrate (C-S-H) gels,
which significantly enhances the compressive strength
and compactness. This finding reveals the synergistic
mechanisms of particle grading optimization and chemi-
cal activation in composite aggregates. Despite the
progress made in the above studies, several critical chal-
lenges persist. First, existing research generally relies
on empirical mixing ratios, lacking a scientific grading
optimization method based on the theory of particle
densification, which limits the performance improve-
ment of composite aggregates. Second, the physical fill-
ing effects and chemical interaction mechanisms when
DS and ES are combined remain unclear, which hinders
the full expression of their synergistic effects. Finally, cur-
rent research mainly focuses on partial substitution, with
insufficient studies on fully replacing natural sand and a
lack of multi-objective evaluation systems.
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In this study, an innovative approach is proposed to
achieve complete replacement of RS in mortar produc-
tion by developing a composite aggregate system com-
prising DS and FS. The novelty of this research includes
optimizing the particle size distribution of the compos-
ite aggregate using the maximum packing theory, which
results in enhanced microstructural densification and
improved interfacial integrity compared to conventional
gradation methods; investigating the action mechanism
and influencing factors of mortar performance through
relevant experiments, and establishing a design method
for composite aggregates to fully replace RS; and estab-
lishing a multi-index evaluation framework that encom-
passes compressive strength, flowability, and interfacial
bonding strength, integrated with cost—benefit ratio and
embodied CO, (ECO,) emission efficiency indices, to
achieve a quantitative synergy of performance, economic,
and environmental benefits. This strategy offers a sus-
tainable solution to reduce RS dependence and provides
guidance for using industrial solid waste in green build-
ing materials.

2 Materials and Experimental Program

2.1 Materials

The mortar cement used was sulphoaluminate cement
(42.5 SAC) produced by Wuxi Golden Eagle Build-
ing Materials Company, Jiangsu Province, China, with a
specific surface area of 449m”/kg and a specific gravity
of 2.95 g/cm®. RS was taken from Fuchun River, Zheji-
ang Province, China. DS was taken from Kubugqi Desert,
Inner Mongolia, China. FS was supplied by Minto Group,
Baotou City, Inner Mongolia.

The physical properties of the three materials were
determined according to the measurement meth-
ods of ASTM C29, ASTM C33, ASTM C128 and GBT
14684-2011 (“ASTM (C29: Standard Test Method for
Bulk Density (“Unit Weight”) and Voids in Aggregate,
2017; “ASTM C33: Standard Specification for Concrete
Aggregates,” 2019; “ASTM C128: Standard Test Method
for Relative Density (Specific Gravity) and Absorption
of Fine Aggregate,” 2015; “GB/T 14684-2011: Sand for
Construction(in Chinese),” 2011), as shown in Table 1.
The fineness modulus and water absorption of DS were
40 and 16% of those of RS, respectively. The fineness
modulus and water absorption of FS were 152 and 72% of
those of RS, respectively.

X-ray diffraction (XRD) analysis was performed using
a Bruker D8 Advance diffractometer (Germany) with
Cu Ka radiation (\=1.5406 A) operated at 40 kV and
40 mA. Sample preparation strictly followed the ASTM
E1915 standard: raw materials were crushed and sieved
through a 325-mesh (45 um) sieve, and approximately
1.0 g of the sieved powder was loaded into the sample
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Table 1 Physical properties of DS, RS, and FS

Materials Apparent Specific  Fineness Water Silt
density density modulus Absorption contents
(kg/m®)  (kg/m?) (%) (%)

RS 1433 2504 2625 3.64 1.56

DS 1632 2627 1.053 0.60 0.50

FS 1436 2910 3.982 261 091

The parameters with apparent density were determined by ASTM C29, specific
gravity and water absorption capacity of aggregates were determined by ASTM
C128, silt content was determined by ASTM C33, and fineness modulus was
determined by GBT 14684-2011

holder. All samples were oven-dried at 105 °C for 24 h
prior to testing to eliminate moisture effects. Scans were
conducted from 10° to 90° (20) with a step size of 0.02°
and a scanning rate of 0.02°/s. Phase identification was
achieved using Jade 9.0 software integrated with the
ICDD-PDF4 + database. X-ray fluorescence (XRF) analy-
sis followed identical sample preparation procedures and
was carried out using a Bruker S8 TIGER spectrometer
for elemental determination. The phase compositions
and chemical compositions of the above materials were
determined using X-ray diffraction analysis (XRD) and
X-ray fluorescence analysis (XRF) as shown in Fig. 5 and
Table 2. The XRD results indicate that DS and RS exhibit
typical characteristics of quartz crystal structure, with
high-intensity, concentrated diffraction peaks, suggest-
ing good crystallinity and a relatively uniform structure.
In contrast, the phase composition of FS includes not
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only silica but also some amorphous materials and mul-
tiple other phases, such as magnesium chromite and for-
sterite. The diffraction peaks of S are relatively broader
and less intense, with a more dispersed peak distribution,
reflecting lower crystallinity and a more complex struc-
ture. This structural difference is closely related to the
rapid cooling process during its air-cooled formation. In
terms of chemical composition, both DS and RS are sili-
ceous with about 90% SiO, content. The content of SiO,
in FS is only 34.8%, and the content of CaO and MgO in
ES is relatively high, with a certain amount of Cr,O. Fig-
ures 6 and 7 show the macroscopic stacking state images
and scanning electron microscope (SEM) images of the
three aggregates, respectively. It can be seen that the par-
ticles of DS and RS have similar hemispherical shapes
and smooth textures. In contrast, the morphology of the
ES particles has special characteristics with sharp edges
and rough texture.

The compactness and flowability of mortar are greatly
influenced by particle size and aggregate morphology
(Behera et al., 2019; Giineyisi et al., 2015). In order to fur-
ther analyse the morphology and characteristics of aggre-
gates, 100 particle samples were randomly selected from
each aggregate and clear magnified images were obtained
with a digital camera. The boundaries of each particle
image were separated and summarized by graphic pro-
cessing software Image], as shown in Fig. 8. According to
ISO 9276-6, in order to analyse the elongation, closeness
to roundness and concavity of the aggregate particles, the

Q (a) Q (b) Q Q-Quartz (©)
Q: Quartz _ Q Qua!‘tz - M-Magnesiochromite
= C: Calcite ] C: Calcite . = F-Forsterite
= s P: Phyllosilicates b4 F1-Favalite
2 Z 5 F: Feldspar E C-Chromoferide
H 2 Q+C o
o o
p oQ P %CQ Q-Q
A 80601 € Q ceRPo
0 20 40 60 8 100 0 20 40 60 80 100 0 20 40 60 80 100
20 (degree) 20 (degree) 20 (degree)
Fig. 5 XRD patterns of the materials used: a RS, b DS, and ¢ FS
Table 2 Chemical composition of the materials used (wt.%)
Contents Sio, Al, 04 Fe,0, CaOo MgO Na,O0 K,O Tio, ZrO, Cr,0,4 SO, LOI
RS 90.5 240 14 0.5 04 03 05 0.1 - - 0.1 39
DS 884 2.7 0.9 14 0.5 03 03 02 0.2 - - 5.1
FS 348 246 4.1 5.1 18.1 05 04 0.7 - 57 1.1 50

LOI means Loss on ignition
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Fig. 6 General aspects of the materials used: a RS, b DS and ¢ FS
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Fig. 7 SEM images of the materials used (a general aspect of the grains): a RS, b DS, and ¢ FS
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Fig. 8 Magnified images of the aggregate particles: a RS, b DS, and ¢ FS
aspect ratio (4,), circularity (C) and convexity (C,) were a7 A
chosen as the particle shape parameters, which can be Ci= ?:ﬂnd ()
obtained by the following equations:
XFmin Pc
Ar = XFmax (1) Co= F (3)

where A is the area of the particle projection, P is the
perimeter of the particle projection, P, is the perimeter
of the convex hull around the particle, and xp,,,,, and xpi
are the maximum and minimum Feret diameters of the
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Fig. 9 Shape parameters of an FS particle for morphology characterization

Table 3 Shape parameters of the aggregates

Aggregate Aspect ratio (A,) Circularity (C) Convexity (C,)
category

RS 0.85 0.88 0.98

DS 0.86 0.90 0.98

FS 0.72 0.77 0.94

particle. In the case of FS, the particle shape parameters
used for morphological characterization are shown in
Fig. 9.

Due to long-term weathering and erosion or water
scouring, DS and RS show smooth and variable shapes.
ES, in contrast, usually has an angular shape due to
processes such as melting, selection and crushing. The
results of the shape parameters obtained by processing
the aggregate particle images using computer analysis are
presented in Table 3. Analysis of the data shows that of
the three aggregates, DS has the highest roundness and
RS has a moderate roundness. FS has the lowest round-
ness, indicating a more irregular shape or rougher sur-
face. The rougher surface of FS provides a larger contact
area with the attached cement paste, thereby improving
adhesion (Elibol & Sengul, 2016). However, the irregular
shape of FS can impede optimal particle packing due to
increased void content and interparticle friction, lead-
ing to an adverse effect on fresh behaviour in slump,
compaction factor, and Vee-Bee tests of the prepared
mortar (Das et al.,, 2023; Dash & Patro, 2018; Manigan-
dan & Ponmalar, 2022). Therefore, the simultaneous use
of DS aggregates with high roundness and smoothness
and FS aggregates with low roundness and smoothness
is an important technical requirement to improve aggre-
gate packing compactness and mortar workability and
mechanical properties.
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2.2 Composite Aggregate Design Based on Grading
Optimization

Considering the adverse effects of very fine particles on
the performance of concrete or mortar (Achour et al,
2019), particles with a diameter of less than 0.075 mm
were removed in advance. Screening analysis was used to
obtain a particle size distribution curve for the aggregates
according to ASTM C33 (“ASTM C33: Standard Specifi-
cation for Concrete Aggregates,” 2019), which is shown in
Fig. 10. There is a significant difference in the particle size
distribution between the two aggregates. The particle size
of DS is predominantly distributed between 0.075 mm
and 0.30 mm, while the particle size of FS is predomi-
nantly distributed between 0.60 mm and 2.36 mm. The
composite aggregate system lacks medium-sized par-
ticles, leading to discontinuous grading. This increases
void content and reduces FS interlocking, causing FS
particle settlement and DS or paste flotation, ultimately
resulting in mortar segregation and impairing strength
and durability. (H. Li et al., 2021; Luo et al., 2022).
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A portion of the DS smaller than 0.30 mm particle
size range was screened to prevent the fine particles
from adversely affecting the workability and bonding
strength of the mortar (Zhang et al., 2022). In addition,
particles in the medium particle size range are added
to improve the roundness of roughly shaped, irregular
and angular FS aggregates. FS in the particle size range
between 0.30 mm and 1.18 mm was added by mechani-
cal milling method as shown in Fig. 11. A comparative
analysis of aspect ratio, roundness and convexity of 100
randomly sampled FS particles before and after ball
milling was carried out and is shown in Fig. 12. The ball
milled FS particles can be approximated as spheres.

.

Appropriately
comminuted

Page 8 of 25

Subsequently, the particle gradation was optimized
based on the theory of compact packing proposed by
Dinger and Funk (Dinger & Funk, 1997). The Dinger-
Funk equation can be expressed as:

n n

P D — min

) D max — D :lm‘n @
where P(D) is the proportion of particles smaller than
the particle size D, D, ,, and D,;, are the maximum and
minimum particle sizes, respectively, and # is the distri-
bution parameter. For fine aggregate systems, # is usually
set between 0.2 and 0.4 (Cui, Liu, Yao, & Lin, 2010; Peng
et al., 2020).
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Fig. 12 Magnified images and shape parameters of the aggregate particles. a before ball milling b after ball milling
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In order to study the optimal combination ratio of FS
and DS, n was set to be 0.2, 0.3 and 0.4, respectively, and
1x6 vectors were used to represent the percentage of
particles in different particle sizes of each aggregate in the
ranges of 0.075—0.15 mm, 0.15-0.30 mm, 0.30—0.60 mm,
0.60-1.18 mm, 1.18-2.36 mm and 2.36—4.75 mm. Vi,
Vis and Vi, p represent the vectors extracted from the
measured gradation curves of DS and FS aggregates and
the theoretical curves calculated based on the Dinger-
Funk equation, respectively. Xi, Yi and Ai are the ele-
ments in the above vectors, i=1, 2,... 6.

Vs = [X1X2X3X4X5Xe] T (5)
Vis = [Y1Y2Y3YaYsYe]T (6)
Vp_r = [A142A3A4A546]T (7)

By optimizing the percentage of aggregate particle size
to make the aggregate blend close to the tightest fit curve,
when sieving out the DS of particle size 0.075-0.30 mm,
and adding the FS of particle size 0.30-1.18 mm range,
the following equations can be obtained:

Vs = [XX5x5X5x0x) (8)
Vis = [Y{viyviv)" )

The following relationship exists between the vectors
VDS and VDS:
X X X X!
3 _ 4 _ 5 __ 6 (10)
Xs Xa X5 Xe

Similarly, the following relationship exists between the
vectors Vigand Vg

N %L _Y%_X
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Let a be the proportion of DS in the mass of the com-
_ MassofDS
a= Totalmassofaggregate

the extreme values of the residual sum of squares (RSS) of
the Dinger-Funk theoretical curves in terms of the curves
after optimization of gradation as follows:

bined aggregate, , and characterize

6
RSS:Z[O{XX{+(1—OL)XY‘/_AI']2

i
i=1

(12)

The minimize function in the Python SciPy library was
called to optimize this set of values using the optimiza-
tion algorithm. The results show that when the distri-
bution modulus # is 0.4, 0.3, and 0.2, the RSS extremes
correspond to a of 0.314, 0.392, and 0.489, respectively,
and thus o is taken to be 0.3, 0.4, and 0.5 in the aggregate
combination design.

Based on the three combination ratios, a total of seven
different mortar ratios were set for direct combination
aggregates (D-0.3, D-0.4 and D-0.5), gradation-optimized
combination aggregates (0-0.3, O-0.4 and O-0.5) with RS
control group RO, as shown in Table 4.

Figure 13 shows the gradation curves of the two aggre-
gates after a direct combination of mixing and grade
optimization combination, and it can be seen that the
curves of gradation D-0.3, D-0.4, and D-0.5 for the direct
combination of aggregates are outside of the particle
grading boundaries specified in ASTM C33 ("ASTM C33:
Standard Specification for Concrete Aggregates,” 2019);
whereas the gradation curves of grade optimization,
0-0.3, O-0.4, and O-0.5 are within the boundaries.

2.3 Experimental Procedures

The corresponding mass of raw materials was weighed
according to the mixing ratios in Table 4. First, a small
mortar mixer was used to dry mix for 2 min until the
mixture was homogeneous. Then, water was slowly
added to the mixture for 20 s. Finally, wet mixing was

Y, Yo Y5 Y (1) carried out for 120 s to obtain the test mortar. The flow of
the fresh mortar mixture was tested and specimens were
made to test the compressive strength, flexural strength,

Table 4 Mixing proportion of mortar (kg/m>)

Mix ID Cement Water DS FS RS

Reference mixes RO 490 245 - - 1470

Direct mixes D-03 a=03 735 735 -
D-04 a=04 558 882 -
D-0.5 a=0.5 441 1029 -

Optimized mixes 0-03 a=03 735 735 -
0-04 a=04 558 882 -
0-05 a=05 441 1029 -
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split tensile strength and modulus of elasticity. All speci-
mens were demolded after 24 h of pouring and then
cured in water at 25+ 2 °C until the test age was reached.
The tests were repeated three times at each age for each
set of ratios and the average values were taken. Samples
were also prepared for microstructure testing.

The flowability of the mixes was measured according
to the ASTM C1437 (“ASTM C1437-15: Standard Test
Method for Flow of Hydraulic Cement Mortar, 2015)
standard test method using an FT-EO1 flow meter manu-
factured by Hebei Cangzhou Instrument and Equipment
Company Limited, China. The desired mortar material
was first filled into a mould, which was placed on a hop-
ping table and left to stand for 1 min, then the excess mix
was gently smoothed out using a spatula, the mould was
removed, and then vibrated 25 times on an automatic
hopping table. The diameter of the material was meas-
ured along six evenly distributed directions, and the aver-
age value was taken as the flowability result.

The compressive strength was measured according to
the standard test method of JGJ70-2009 (“JGJ70-2009:
Standard for test method of performance on building
mortar.,” 2009), using a YEP-1000 semi-automatic com-
pression testing machine produced by China Shanghai
Hualong Testing Instrument Co. Cubic specimens with
dimensions of 70.7 x70.7 x 70.7 mm? were prepared and
measured after 1, 3, 7, and 28 d of curing at a constant
loading rate of 0.5 MPa/s.

Flexural strength tests were carried out using a 25
t Instron universal testing machine according to the
ASTM (C348 standard test method (“ASTM C348: Stand-
ard test method for flexural strength of hydraulic-cement
mortars,” 2019). Prismatic test blocks of size 40 x40 X 160
mm? were prepared and the tests were carried out after 1,
3, 7 and 28 d of curing. The tests were carried out using

the three-point loading method with a constant loading
rate of 0.5 MPa/s.

Split tensile strength tests were conducted accord-
ing to the ASTM C496 standard method ("“ASTM C496:
Standard Test Method for Splitting Tensile Strength of
Cylindrical Concrete Specimens,” 2017) using the same
loading apparatus as for compressive strength tests.
Cylindrical mortar specimens with a diameter of 150 mm
and a height of 300 mm were prepared and the tests were
carried out after 3, 7, 14 and 28 d of curing at a constant
loading rate of 0.5 MPa/s, and the split tensile strength
was calculated by destructive loading.

The modulus of elasticity was measured using pris-
matic specimens with dimensions of 70.7x70.7 X200
mm? at 28 days according to the JGJ 70-2009 standard
test method (“JGJ70-2009: Standard for test method of
performance on building mortar.,” 2009). During the test-
ing process, a preloading test was first performed, where
40% of the measured compressive strength of the previ-
ously prepared specimens of the same size was used as
the initial load, applied at a rate of 0.5 MPa/s. The load
was then slowly unloaded, repeated twice, and then for-
mally loaded up to the maximum load, which was one-
third of the compressive strength of prismatic specimens
of the same size. Stress and strain were measured during
this process using a strain gauge and the modulus of elas-
ticity was calculated.

The microstructure was analysed using a JSM-5900
scanning electron microscope manufactured by JEOL,
Japan, to test the microstructure. The samples obtained
from the compressive strength test at the age of 28 days
were selected and dried in an oven below 40 °C. Subse-
quently, SEM tests were carried out and the porosity was
determined by identifying the images obtained from the
SEM using Image] software.



Wang et al. Int J Concr Struct Mater (2025) 19:86

A comprehensive cost analysis and ECO, emission
index calculation were conducted for all test sequences
to evaluate their economic efficiency and environmen-
tal (or green) impact. The ECO, emission analysis is
broadly divided into three stages: the material stage,
the transportation stage, and the production stage. In
this study, the ECO, emissions from the transportation
and production stages were negligible in comparison to
the material production stage, and thus were not con-
sidered. The relevant material costs and ECO, emission
data, as shown in Table 5, were obtained from suppliers
and other literature (M. Liu et al., 2023; Mishra et al.,
2022; Shang, Wu, Lu, Yao, & Wang, 2022; Zhang et al.,
2022), with the production cost of FS assumed to be
zero (Moyo et al., 2022).

To quantitatively characterize the cost and environ-
mental benefits of the prepared mortar, the cost effi-
ciency per cubic meter of mortar Cp (USD/m3 MPa)
and the ECO, efficiency CI (kg/MPa-m®) were calcu-
lated using the following expressions (C. Ma et al,
2020), based on its 28-day compressive strength.

Table 5 Details of the used materials

Materials Cost (USD/ton) ECO, (kg CO,/ton)

Cement (42.5 SAC)  145.76 (From the sup-

plier)
Water 046 Zhang et al,, (2022)
DS 6.18 Zhang et al,, (2022)
FS 0.59 Mithun et al., (2016)
RS 27.05 Zhang et al,, (2022)

6084 Shang et al., (2022)

1.0 Zhang et al,, (2022)
0.148 Liu et al,, (2023)
0Yaragal et al, (2020)
13.9 Zhang et al,, (2022)

250
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C, = ZZost (13)
cr - TE0: "

where f is the 28-day compressive strength (MPa) of the
mortar, > Cost and Y ECO, are the total cost (USD/m?)
and total potential carbon emission (kg/m?) of the mate-
rials used in 1 cubic meter of mortar, respectively.

To investigate the influence of composite aggregate
proportions on mortar performance and the intrinsic
relationships among various performance indicators,
Pearson correlation coefficients were employed for
statistical analysis. This method quantifies the correla-
tions between variables such as flowability, compressive
strength, flexural strength, split tensile strength, and
porosity. The Pearson correlation coefficient assumes
that the variables follow a Gaussian distribution, with
values ranging from —1 to 1, —1 indicates a complete
negative linear correlation, 0 indicates no linear rela-
tionship, and+1 indicates a complete positive lin-
ear correlation. The calculation formula is shown in
Eq. (15):

. Sy i — %) (i — )
VI 22 (i —7)°

where r is the Pearson correlation coefficient, x; and X are
the observed values and mean of variable x, respectively,
and y; and y are the observed values and mean of variable
y, respectively.

(15)
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Fig. 14 Flowability of the mortar at different mix ratios
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3 Flowability and Mechanical Properties

3.1 Flowability

Flow tests were conducted on all fresh mixes and the
results are shown in Fig. 14. The reference mix RO exhib-
ited the highest flowability, reaching 171 mm, which was
2.4-29.5% higher compared to the composite aggregate
mixes. This difference was attributed to the increased
specific surface area due to the fine grain size of the dune
sand, as well as the lower sphericity and circularity of
the combined aggregates, which increased the frictional
resistance (Das et al., 2023; Dash & Patro, 2018; Zhang
et al,, 2022).

In the test group using composite aggregates, the
change in flowability was related to the mass share factor
a of DS in the composite aggregate, which was 148 mm,
139 mm, and 132 mm for sequences D-0.3, D-0.4, and
D-0.5, respectively. D-0.3 exhibited the highest level
of flowability among the new composite aggregate
sequences, and as a increased from 0.3 to 0.5, the flowa-
bility decreased by 10.8%. When the DS substitution rate
is too high, the excess DS consumes a large amount of
paste, which makes the paste encapsulated on the aggre-
gate surface thinner and the lubricating effect of the paste
on the aggregate is weakened, leading to a reduction in
the flowability of the mix (El-Hassan et al., 2020; Liu
et al., 2020a, 2020b; Zhang et al., 2022).

After grading optimization, the flow of test sequences
0-0.3, 0-0.4 and O-0.5 were 167 mm, 158 mm and
153 mm, respectively, with O-0.3 exhibiting the highest
flow among all composite aggregate sequences. When
a increased from 0.3 to 0.5, the flowability decreased by
8.4%. After grading optimization, the flowability of the
composite aggregate mixes improved by 12.8-15.9%.
The improved aggregate grading caused an increase in
the flowability of the mixes, possibly due to the fact that
gradation optimization reduces the pore space between
the particles in the mixes, which reduces the resistance
of the particles to flow and makes the mixes easier to flow
(Khan et al., 2016; Zhang et al., 2019a, 2019b).
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The morphological parameters of aggregates posi-
tively or negatively affect the flowability of the mixes. A
multi-parameter linear regression analysis was used to
quantitatively characterize the effects of different aggre-
gate morphological parameters on the flowability of fresh
materials. Four parameters including aspect ratio, circu-
larity, convexity and fineness modulus were selected as
morphological parameters in the statistical analysis. The
multi-parameter model for the flowability of fresh mixes
and the morphological parameters of aggregates is as
follows:

F =396.9 x Ay 4 245.7 x C; 4+ 39.6

x Cp + 60.0 x Fyy — 577.4 (16)

where F is the flowability of the fresh mix, and A,, C,, C,,
and F,, are the aspect ratio, circularity, convexity, and
fineness modulus of the aggregate, respectively.

The input parameters of aggregate morphology and the
predicted results of each experimental sequence are sum-
marized in Table 6, where the data in brackets within the
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Table 6 Summary table of aggregate morphology parameters and fresh mixes flowability regression results

Mix ID Aspect ratio (A,) Circularity (C) Convexity (C,) Fineness modulus (F,) Predicted
values (mm)

R-1.0 0.85 0.88 0.98 2625 172(+1)
D-0.3 0.76 0.81 0.95 3.103 147 (=1)
0-03 078 0.82 0.95 3311 169 (+2)
D-04 0.78 0.82 0.96 2.810 139(0)

0-04 0.79 0.83 0.96 3.035 160 (+2)
D-05 0.79 0.84 0.96 2518 130(-2)
0-05 0.80 0.84 0.96 2738 150 (-3)
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predicted values indicate their error from the test results.
In Table 6, the error range between the predicted values
and the experimental values is from -3 mm to +2 mm,
with an error rate of less than 2.7%. The contribution of
morphological parameters to the flowability from large
to small is as follows: aspect ratio (53.5%), circularity
(33.1%), fineness modulus (8.1%), and convexity (5.3%).

3.2 Compressive Strength

The compressive strength of each mortar test sequence
was tested at 1, 3, 7 and 28 days as shown in Fig. 15. The
strength of control RO at 1, 3, 7, and 28 days was 20.54,
35.65, 39.17, and 46.2 MPa, respectively. When no grad-
ing optimization was taken, the test sequence D-0.3 still
showed better compressive strength than the control at
all ages, 16.6, 1.0, 4.6, and 5.9% higher than RO at 1, 3, 7,
and 28 days, respectively, which suggests that the novel
composite aggregate can replace RS in appropriate pro-
portions and be used as a better building material. The
reasons for this are as follows: DS fills most of the gap
between the aggregate and the paste (Jiang et al.,, 2019;
Zhang et al., 2019a, 2019b), and it facilitates the action of
the catalytic multiphase nucleation process to form addi-
tional calcium silicate hydrate embedded in the cement
paste (Zhang et al., 2022). Under this dual physical and
chemical filling effect, the mortar structure is signifi-
cantly denser.

Tests show that the composite ratio o significantly
affects the compressive strength, a from 0.3 to 0.5 can
lead to a reduction of compressive strength by 32.2% at
28 days, and even show worse mechanical properties
than the control group RO. The compressive strength
value of D-0.5 is lower than that of the RO group by 19.3—
26.5% at all ages, and the decrease in strength may be due
to the increase in the number of fine-sized DS leading to
a gradual increase in specific surface area. The gradual
increase in the specific surface area due to the increase in
the number of fine DS particles makes it difficult for the
mortar to completely cover the aggregates and achieve
full hydration (Kaufmann, 2020; Li et al., 2020; Liu et al.,
2020a, 2020Db); secondly, the decrease in the percentage
of FS aggregates results in a lower hydration reaction
induced by the amorphous glass phase oxide that they
contain; and lastly, the increase in the number of DS par-
ticles with smooth surfaces is accompanied by a decrease
in the percentage of rough FS particles (Das et al., 2023;
Xia et al., 2023), which decreases the adhesive strength
between the aggregates and the cement paste.

Figure 15 shows that grading optimization improves
the compressive strength of composite aggregates, with
20.5-23.2% strength improvement at 28 days of age at
different composite ratios. O-0.3 exhibits the maximum
compressive strength at all ages, and although its early
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strength improvement is not significant, the compres-
sive strength is significantly increased at 28 days of age,
which is 29.4% higher than RO. The increase in compres-
sive strength due to grading optimization is attributed to
the reduction of the internal porosity of the mortar (De
Larrard & Sedran, 1994; Sevim & Demir, 2019). However,
the compressive strengths of O-0.4 and O-0.5 were lower
than RO by about 7.5% and 17.1%, respectively, suggesting
that the optimized gradation aggregates are still not suit-
able for higher combination ratios a.

3.3 Flexural Strength
Flexural strength was tested at 1, 3, 7 and 28 days for all
test sequences and the results are shown in Fig. 16. The
flexural strength of control RO at different ages ranged
from 4.43 to 7.42 MPa. The direct-mixed composite
aggregate mortar test sequence exhibited worse flex-
ural strength than the control at all ages and decreased
with increasing a. The flexural strengths of D-0.3, D-0.4,
and D-0.5 were 6.25, 5.95, and 5.75 MPa, respectively,
at 28 days, which were 15.8, 19.8, and 22.5% lower than
that of RO, indicating that the new composite aggregates
without grading optimization could not replace RS in the
index of flexural strength. When o was raised from 0.3
to 0.5, the flexural strength of the samples decreased by
8.0%. The effect of aggregate composite ratio o on flex-
ural strength is lower than that on compressive strength,
which may be due to the fact that FS with rough surface
accounts for a larger portion of the aggregate, resulting
in a better bond between aggregate and paste, and hence
relatively higher deformability of the composite aggregate
mortar.

Figure 16 shows that the 28-day flexural strength of
the test sequence with optimized gradation at different
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composite ratios shows an improvement of 14.4—32.8%
over the pre-optimization. The reason for the increase
in flexural strength is similar to that of compressive
strength, ie., grading optimization enhances the fill-
ing of structural pores. The 28-day flexural strengths of
0-0.3 and O-0.4 were 8.30 MPa and 7.80 MPa, respec-
tively, which were 11.9 and 5.1% higher than the flex-
ural strengths of RO mortar, however, the 28-day flexural
strength value of O-0.5 was 6.58 MPa, and its flexural
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Fig. 17 Split tensile strength of the mortar for both the direct
and optimized mixes
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strength did not exceed the control RO at all ages and was
11.3% lower than the control at 28 days.

3.4 Split Tensile Strength

Split tensile strength was tested for all mortar sequences
on days 3, 7, 14 and 28 and the results are shown in
Fig. 17. The split tensile strength of control RO at days 3,
7, 14, and 28 was 3.63, 4.06, 4.31, and 4.49 MPa, respec-
tively. The split tensile strengths of D-0.3, D-0.4, and
D-0.5 were 6.0, 10.5, and 12.7% lower than that of the
control at 28 days. When o was raised from 0.3 to 0.5, the
split tensile strength of the specimens at 28 days of age
decreased from 4.22 MPa to 3.92 MPa (—7.1%).

The split tensile strengths of optimized graded com-
posite aggregate mortar sequences O-0.3, O-0.4 and
0-0.5 at 3, 7, 14 and 28 days ranged from 3.45-4.17,
3.87-4.61, 4.11-4.85, to 4.59-5.27 MPa. The develop-
ment of split tensile strength of the gradation optimized
combination aggregate mixtures at 3, 7, 14 and 28 days
showed 4.2-12.9%, 4.7-11.7%, 4.3-11.1% and 2.3-14.9%
improvement in strength compared to the control RO,
respectively. When the aggregate gradation is properly
distributed, a more uniform and continuous particle skel-
eton can be formed, which is conducive to the uniform
distribution of stress realization and the reduction of
stress concentration, thus improving the splitting tensile
properties of the material (Bai, Wang, Ma, Sanjayan, &
Bai, 2021; Kong et al., 2023).
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3.5 Elastic Modulus

The modulus of elasticity is an important parameter for
measuring the stiffness of a material, which reflects its
ability to resist deformation when subjected to external
forces. The modulus of elasticity was tested at day 28 for
all mortar test sequences and the results are shown in
Fig. 18. The 28-day modulus of elasticity of the control
RO was 26.17 GPa. For the direct-mixed composite aggre-
gate, the 28-day modulus of elasticity value of D-0.3 was
27.11 GPa, which is 3.0% higher than that of RO. How-
ever, the modulus of elasticity of the mortar decreased
significantly with increasing o, showing a developmental
pattern similar to that of the compressive strength, with
the 28-day modulus of elasticity of 24.55 GPa and 19.25
GPa for the D-0.4 and D-0.5 test sequences, respectively,
which decreased by 9.4 and 29.0%, respectively, com-
pared to D-0.3, and were inferior to the control mortar by
6.2 and 26.4%, respectively.

Figure 18 shows that the 28-day modulus of elasticity of
the gradation-optimized test mortar sequences showed
15.6—-19.2% improvement over the pre-optimization at
different composite ratios. When the gradation of DS
and FS aggregates was improved, the cement hydration
in the mortar was sufficient and the dense aggregate par-
ticles provided better force deformation properties and
enhanced the elastic modulus of the mortar (Duan et al.,
2021). The 28-day modulus of elasticity of O-0.3 and
0-0.4 was 32.10 GPa and 28.39 GPa, respectively, which
were 22.7% and 8.5% higher than that of the control RO
mortar, and O-0.5 was 22.94 GPa, which was 12.3% lower
than the control.

4 Microstructural Analysis

Literature has shown that pores in cement pastes can be
categorized into three main groups based on their size,
i.e., macropores (>50 nm), mesopores (2—-50 nm), and
micropores (<2 nm) (Le et al., 2015). For different pore
sizes, several test methods can be used (Song et al., 2019,
2020). The image recognition method based on Image]
software has been shown to have high accuracy in char-
acterizing parameters such as radius, area, circularity
and porosity of medium, and large pores above 5 nm.
For example, Neithalath et al. carried out a comparison
of planar porosity measured using this method with volu-
metric porosity measured by the conventional drainage
method on permeable concrete samples, and the two
results were well fitted with an average error rate of 9.7%
(Neithalath et al., 2010). Shafaei evaluated both 2D and
3D porosity using this method on mortar samples mixed
with titanium dioxide cement with an average error rate
of 13.0% and a consistent pattern (Shafaei et al., 2020).
Therefore, we used Image] software for SEM images and
calculated the porosity by the ratio of the number of pore
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pixels obtained by software recognition to the total num-
ber of pixels in the image. The SEM images and porosities
of different materials are shown in Fig. 19a—g, the obser-
vation area was set to be the cement paste body, since the
damage mode of mortar under pressure was all cementite
cracking damage, rather than damage in the interfacial
transition zone.

Figure 19a indicates that the RO sample has a uniform
and dense microstructure, with almost no large pores
and visible cracks, and the largest pores are around
5 pum. Figure 19b shows that the sample using D-0.3
still has a relatively dense microstructure, without
observable microcracks, and only a few medium-sized
pores around 20 um. Figure 19c shows that the sur-
face cracks appeared and the size of cracks and pores
in the D-0.4 sample increased, more medium-sized
pores of about 20 pm and several dispersed cracks of
about 80—100 um in length can be observed. Figure 19d
shows that sample D-0.5 has a very large number of
pores and loose parts, and a penetrating crack of about
300 pm in length is observed. The porous and cracked
microstructure significantly affects the macro mechani-
cal properties of the mortar, which is proven by the
mechanical test results. One of the main reasons for
the poor microstructures of D-0.4 and D-0.5 is that the
high percentage of DS becomes the main aggregate of
the mortar and fails to optimize the interstitial effect of
the grading, which substantially increases the specific
surface area of the aggregate and reduces the thickness
and densification of the mortar. Figure 20 summarizes
the porosity of the mortar obtained after thresholding
the images in greyscale and identifying them, where
the porosity of RO is 5.38%, and the porosity of D-0.3,
D-0.4, and D-0.5 are 5.68, 6.86, and 7.97%, respectively,
which are 5.6, 27.5, and 48.1% higher than that of the
control group, respectively. The densification degree
of the sample micro-morphology is consistent with the
results of the porosity.

Figure 19e—g show the SEM images of the samples
0-0.3, O-0.4 and O-0.5 after grade optimization. Fig-
ure 19e shows that the O-0.3 sample has a very dense
surface almost without visible larger pores and cracks,
and the pores around 20 pm are significantly reduced
compared to the pre-optimization sample. Figure 19f
shows that a pair of penetrating cracks of about 200 um
and a certain number of non-penetrating cracks with
lengths of less than 80 pm appear on the surface of the
0-0.4 sample, however the medium-sized pores of 20 um
are reduced compared to the pre-optimization case. Fig-
ure 19g shows that the surface of O-0.5 still has more
large-sized pores, and the long penetrating cracks disap-
pear compared to the pre-optimization, but many scat-
tered fine cracks are also observed. Overall, the pores
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Fig. 19 SEM images of 28 d mortar samples and images processed with grayscale threshold: a RO b D-0.3 ¢ D-04 d D-0.5 e O-0.3 f 0-0.4 g O-0.5

and cracks of the gradation-optimized samples were
improved compared to the pre-optimization samples,
and the microstructure of the cement mortar is denser.
The results of porosity estimated by Image] software
showed that the porosity of O-0.3, O-0.4, and O-0.5 sam-
ples were 5.23%, 6.35%, and 7.17%, respectively, which
decreased by 7.4—-10% compared with that before opti-
mization. The results of SEM-based microphysical obser-
vations and greyscale threshold-based analysis provide
consistent evidence for change in mechanical strength.

The pore size distribution (PSD) curves were obtained
by applying thresholding to Fig. 19 using Image], as
shown in Fig. 21. Due to the fact that only pores equal
to, or larger than 1 pixel in the image can be identified,
the minimum diameter of the identified pores is 0.38 pm.
The pores with a diameter range of 0.38—0.85 um in all
series of samples were representative, accounting for
60.0-81.3% of all pores. The proportion of composite
aggregate had a significant effect on the distribution of
pore diameters. The RO, O-0.3, and O-0.4 samples have
a higher proportion of small pore sizes within the range
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of 0.38-0.7 pm, reaching over 30.4%, while the propor-
tion of other samples within this pore size range does not
exceed 21.5%. As the composite ratio a increased, the
number of small pores with diameters less than 1.0 pm
decreased and the percentage of large pores with diam-
eters greater than 1.0 um increased significantly in the
samples. Compared with the samples before grading
optimization, the relative frequency of pores larger than
1.0 pm in diameter in O-0.3, O-0.4 and O-0.5 samples
decreased by 4.1-12.1%, indicating that grading optimi-
zation can reduce the large diameter capillary pores.
Figure 22 demonstrates the bonding interfaces
between aggregate and cement paste of RO, D-0.3,
D-0.4 and D-0.5 samples. Figure 22a shows that in the

7.97

D05
MixID

o003 O-04 O-0.5

RO sample, the bonding between RS and paste is bet-
ter, and the widest crack at the interface is about 3 pm.
As shown in Fig. 22b, for the D-0.3 sample, the bonding
between FS and paste is perfect, and there is almost no
visible defect, attributed to the fact that FS has sharp
edges and rougher surface texture which is favour-
able to the adhesion between aggregate and paste (Das
et al., 2023; Islam et al., 2021). Another reason for the
good bonding is that FS has a porous structure, and
the water released from the pores of FS migrates to
the hardened cement paste at the late stage of hydra-
tion, forming a micro-hydration environment that
promotes the hydration reaction, and the generation
of additional hydration products makes the aggregate-
paste interface denser (Zhu et al., 2023). In addition,
DS embedded in FS particles was observed to play a
filling effect. The effects of local moisture release and
filling between aggregates are demonstrated in Fig. 23.
The porous structure of FS aggregates releases moisture
during the later stage of hydration, creating a micro-
hydration environment in the local interfacial zone,
promoting the formation of hydration products, and
enhancing the bond between aggregates and paste. It
can be observed from Fig. 22¢ that the aggregate-paste
interface of the D-0.4 samples had discontinuous cracks
with a widest width of about 15 pm. Figure 22d shows
that the interface quality of sample D-0.5 is significantly
compromised due to the presence of penetrating nar-
row cracks with a maximum width of about 15 um. This
may be due to the high content of DS components with
high specific surface area, which makes the hydration
reaction proceed incompletely and thus prevents the
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(d) D-05

Fig. 22 SEM images of the interface between aggregate and cement paste of 28 d mortar samples: a RO b D-0.3 ¢ D-0.4 d D-0.5

formation of hydration products in the pore structure
at samples D-0.4 and D-0.5.

The microstructures of the hydration products of
RO, D-0.3, D-0.4, and D-0.5 were displayed in Fig. 24,
in which the types of hydration products were deter-
mined based on a combination of morphology and EDS
analyses. Figure 24a shows that very abundant needle-
and-rod AFt crystals were found on the RO sample of
the control mortar, which was dispersed in a randomly
oriented pattern, intertwined into an overall network,
and densified the microstructure of the mortar through
microscale enhancement and filling effects. Figure 24b
shows that the needle-and-rod AFt crystals are also
present in the D-0.3 sample, but with a lower number
and thickness than the RO sample. In addition, a cer-
tain number of flocculated C-S-H crystals were also
observed, as FS is rich in calcium oxide and magnesium

oxide, which react with the cement to form additional
calcium and magnesium hydrate products (Das et al.,
2023). It can be found from Fig. 24c that the needle-
and-rod AFt crystals could no longer be detected in
sample D-0.4, and only a certain number of flocculated
C-S-H crystals can be observed, as well as a few flaky
CH crystals. Figure 24d shows that only a few dispersed
flaky CH crystals are present in the D-0.5 sample, indi-
cating that a high percentage of DS prevents the growth
of cement hydration products. CH crystals have low
strength and are easily broken under external force,
thereby contributing to strength degradation of D-0.4
and D-0.5 samples.
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5 Evaluations of Economy and Embodied
Environmental Impact

The total cost and cost efficiency (Cp) of different test
sequences are shown in Fig. 25. To simplify the analy-
sis, materials contributing less than 1% to C, have been
omitted from the chart. As depicted in Fig. 25, the total
cost and C, value for mortar using RS as aggregate are
111.30 USD/m? and 2.41 USD/m3.MPa, respectively. In
contrast, using DS and FS as substitute aggregates can
reduce the total cost by 31.3-32.7% and the C, value by
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8.3-46.9%. The reduction in total cost is attributed to
the lower cost of novel aggregates, while the decrease
in C, value results from a combination of reduced
aggregate costs and enhanced compressive strength.
Moreover, as the a value increases, the C, value of the
new aggregate mortar shows an upward trend, mainly
due to the decrease in compressive strength. Notably,
although grading optimization did not significantly
change the total cost of raw materials, it achieved a sig-
nificant reduction in the C, value in optimized grada-
tion sequences by 17.2-19.2% through improving the
compressive strength of the mortar, further highlight-
ing the economic benefits of grading optimization.

The total potential carbon emission (2 ECO,) and the
ECO, efficiency (CI) of different test sequences are shown
in Fig. 26. Similarly, materials contributing less than 1%
to CI have been omitted from the chart. As depicted
in Fig. 26, the total potential carbon emission and CI
value for mortar using RS as aggregate are 318.79 kg/
m? and 6.90 kg/m>®MPa, respectively. Compared to RS,
using DS and FS as aggregate for replacement results
in lower ECO, emissions from the extraction, process-
ing, and transportation phases, leading to a decrease in
total potential carbon emission by 6.4%. At a=0.3, the
composite aggregate mortar exhibits a lower CI value
than the control group, with D-0.3 and O-0.3 being 11.9
and 27.7% lower, respectively. However, as o increases
from 0.3 to 0.5, despite minimal change in total poten-
tial carbon emissions, the CI values of mortar produced
from composite aggregates before and after grading
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Fig. 24 SEM images of hydration products of 28 d mortar samples: a R0 b D-0.3 ¢ D-0.4 d D-0.5
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optimization increase by 44.6 and 46.3%, respectively,
due to the marked decrease in compressive strength. This
demonstrates the potential contribution of grading opti-
mization in reducing environmental impact.

6 Statistical Analysis and Comprehensive
Evaluation

To explore the interrelationships among performance
indicators of composite aggregate mortars, a statisti-
cal analysis was performed. The Pearson proximity
matrices for flowability, compressive strength, flex-
ural strength, split tensile strength, and porosity are
shown in Fig. 27. Among the positive correlations, the
relationship between flexural strength and split tensile
strength is the strongest, with a correlation coefficient
of 0.938. This may be attributed to the similarity in
their failure mechanisms, both dominated by interfacial
cracking. In contrast, the positive correlation between
flowability and compressive strength is the weakest,
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with a coefficient of 0.765, possibly because flowabil-
ity is more influenced by the characteristics of the fresh
paste, while compressive strength primarily depends
on the compactness and interfacial bonding after hard-
ening. Among the negative correlations, the relation-
ship between porosity and compressive strength is
the strongest, with a correlation coefficient of —0.875.
This is due to the direct impact of porosity on mortar
compactness, where higher porosity leads to increased
internal defects, significantly reducing the mortar’s
ability to withstand compressive loads. In comparison,
the negative correlation between porosity and split ten-
sile strength is the weakest, with a coefficient of —0.616,
likely because split tensile strength is more influenced
by aggregate interfacial properties and stress distribu-
tion, and is relatively less sensitive to internal porosity.

The statistical analysis indicates that performance indi-
cators with strong positive correlations, such as flexural
strength and split tensile strength, reflect similarities in
their stress mechanisms. Meanwhile, in negative corre-
lations, the strong inverse relationship between porosity
and compressive strength highlights the critical role of
compactness on compressive performance. These analy-
ses provide further basis for optimizing the mix propor-
tions of composite aggregate mortars.

Building on the insights from the statistical analysis, a
comprehensive evaluation of the performance of alter-
native aggregate sequences was conducted using a six-
dimensional radar diagram, as shown in Fig. 28. This
diagram plots the relationships of flowability, compres-
sive strength, elastic modulus, porosity, ECO, emission,
and cost efficiency, with the latter three represented by
their reciprocals. The values in the radar diagram repre-
sent the ratios of each experimental sequence and con-
trol group (RO) for a given parameter. Figure 28a shows
that D-0.3 mortar is superior to RO in the indicators of
compressive strength, modulus of elasticity, ECO, emis-
sion (reciprocal) and cost efficiency, which are increased
by 8.4, 3.6, 13.5 and 54.6% respectively; but in terms of
flowability and porosity (reciprocal), 13.5% and 5.3%
lower than RO, respectively. As the aggregate composite
ratio « increases, all the indices show a decreasing trend.
D-0.4 is lower than RO by 6.2—-21.6% in each performance
index except for cost efficiency, and D-0.5 is lower than
RO by 21.5-32.5% in each performance index, except for
cost efficiency (see Fig. 28b, c). After aggregate grading
optimization, the six-dimensional indices of the samples
with different composite ratios are improved to different
degrees. For O-0.3 samples, except for a slightly lower
flowability of 2.3% compared to RO, other performance
indices were improved by 2.9-89.4% as compared with
the control group, as shown in Fig. 28a. The O-0.4 sample
is better than the control group in elastic modulus, ECO,
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emission, and cost efficiency, however, its compressive
strength, flowability and porosity were inferior to the
control group, those were decreased by 7.5-12.6%, espe-
cially the porosity was 12.6% lower than that of the con-
trol group, as shown in Fig. 28b. Figure 28c shows that,
for the O-0.5 sample, although its aggregate grading was
optimized, its indices were far lower than that of the con-
trol group except for the cost efficiency, indicating that
the ratio of DS and FS is not suitable.

In terms of mechanical strength, the most unfa-
vourable group using the new composite aggregate is
the D-0.5 sequence, whose 7 d and 28 d compressive
strengths were 15.29 MPa and 33.95 MPa respectively.
The compressive strengths of all mortar sequences

meet the ASTM C1329 (2016) specification, as shown
in Fig. 29. Improved flowability benefits better plas-
ticity and concrete pouring. However, for 3D printing
concrete, the suitable flowability ranges from 140 to
210 mm (Ma et al, 2018; Tay et al., 2019). As shown
in Fig. 29, the material flowability of D-0.3, O-0.3,
0-0.4, and O-0.5 meets the requirement of 3D print-
ing. The direct use of mortars D-0.4 and D-0.5 for 3D
printing may lead to quality degradation, to improve
the flowability of these two mixes, additives like high-
efficiency water-reducing and dispersing agents should
be incorporated (Rahul et al.,, 2019). As for economic
benefits, all the new composite aggregates exhibit sig-
nificantly higher economic efficiency compared to
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RO, with reductions in the cost (C,) ranging from 8.5
to 46.9%. When considering the costs associated with
solid waste processing, these economic benefits are
even more pronounced. In addition, when « is low, the
test sequence can exhibit lower ECO, emission index
(CI) than the control group. Thus, the new compos-
ite aggregates provide a balanced approach, achieving
substantial economic gains while maintaining reason-
able environmental impact, especially in the case of the
D-0.3 and O-0.3 sequence. In this study, FS was used as
fine aggregate replacement rather than cement, result-
ing in small CI reductions, which become higher than
the control group at higher a values. If FS is ground
into ash and used as a partial replacement for cementi-
tious materials, it could effectively reduce the CI values,
thereby achieving truly low-carbon and environmen-
tally friendly materials. This approach will be further
explored in future studies to enhance environmental
sustainability.

Although the above evaluations cover mechanical,
economic, and environmental performance, durability,
a crucial factor, was not addressed in this study. At the
chemical level, the amorphous phases present in DS and
ES participate in pozzolanic reactions to generate addi-
tional C-S-H gel. This process is similar to the mecha-
nism of supplementary cementitious materials reported
by Panda et al. (PANDA et al., 2024a, 2024b), enhanc-
ing the matrix’s resistance to acid and sulfate attack
through the formation of stable hydration products. At
the physical structure level, the combination of DS and
ES exhibits a unique synergistic effect: the fine DS parti-
cles (D50=0.15 mm) effectively fill the porous structure
of FS to reduce the overall porosity of the system, while
the rough surface and internal pore structure of FS may
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inhibit chloride ion diffusion through dual mechanisms
of physical adsorption and pore blockage (Nanda et al.,
2025). This synergistic effect is expected to significantly
improve the material's impermeability (Nanda et al,
2025).

However, in the absence of specific experimental data,
the above assumptions remain speculative and require
further validation through experimental results. Future
studies will incorporate durability tests to verify these
hypotheses and comprehensively evaluate the long-term
performance of DS and FS composite aggregates.

7 Conclusion

This study systematically investigated the complete
replacement of river sand with optimized compos-
ite aggregates consisting of dune sand (DS) and fer-
rochrome slag (FS) for sustainable mortar production.
The flowability, compressive strength, flexural strength,
splitting tensile strength, modulus of elasticity, and
microstructural properties of the new mortar have
been examined and compared with the control group.
The following conclusions can be drawn from the test
results:

1. The flowability of mortars made with composite
aggregates decreased with increasing DS content,
exhibiting values 2.4-29.5% lower than the reference
mix. This reduction is attributed to both the higher
specific surface area of fine DS particles requiring
more cement paste for lubrication and the lower
sphericity and circularity of FS particles increasing
frictional resistance. Grading optimization reduced
particle gaps and friction between mortar compo-
nents, improving flowability by 12.8—-15.9% for the
same composite ratio.

2. At the age of 28d, mortar containing 30% DS and
70% FS demonstrated optimal compressive strength
reaching 59.8 MPa, exceeding the control group by
8.4%, while the 50% DS and 50% FS mixture showed
the lowest strength at 33.95 MPa, falling 26.5%
below control values. Grading optimization signifi-
cantly enhanced mechanical properties, improving
28-day compressive strength by 20.5-23.2% and flex-
ural strength by 14.4-32.8%, primarily attributed to
reduced internal porosity and improved interfacial
transition zones between aggregates and cement
matrix.

3. SEM analysis showed that the porosity of the mortar
increased with the increase in the mass percentage of
DS in the aggregate. The grading-optimized samples
showed a denser surface with richer hydration prod-
ucts under the microscope, and the pores and cracks
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were significantly reduced compared with those
before optimization. The results of porosity analy-
sis showed that the porosity of the gradation-opti-
mized samples decreased by 7.4—10%. This exhibits
a consistent regularity with the results of mechanical
strength.

4. Optimizing the use of DS and FS as alternative aggre-
gates significantly reduces costs and potential carbon
emissions. The C, and CI values of sequence O-0.3
decreased by 47.3 and 27.7%, respectively, compared
to the control group. This improvement stems from
the low-cost DS and zero-cost FS as an industrial
by-product compared to traditional river sand, with
a reduced environmental footprint during extrac-
tion and processing. FS could be further utilized as
a cementitious replacement material to enhance sus-
tainability.

5. The results of the comprehensive performance evalu-
ation showed that all the indices tended to decrease
with the increase in composite ratio. However, the
optimized grades improved the performance, and
five performance indices of the mortar made of
optimized grades of 30% DS and 70% ES are signifi-
cantly better than the control group. The strength of
all mixes met the requirements of the ASTM C1329
specification, however, the flowability of mortars
D-0.4 and D-0.5 needs to be improved to meet the
requirements of 3D printing.
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