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Abstract

Precast concrete-filled steel tubular (CFST) circular columns assembled with connecting joints are commonly
employed in building structures. However, there is a lack of research regarding the behavior of precast CFST col-
umns that are connected with construction joints made of high-performance concrete (HPC), such as engineered
cementitious composites (ECC) as well as high-strength fiber-reinforced concrete (HSFRC). This paper presents

an experimental investigation of precast CFST circular columns subjected to axial loads, tubed with galvanized steel
sheets (GSS) and connected with joints made of ECC, HSFRC and normal concrete (NC). Ten slender columns are
tested until collapse. The primary studied parameters include the development length along with the connection
concrete type. The experimental results reveal that an increase in the development length of the reinforcement, i.e,,
the length of the connecting concrete joint significantly enhances both the cracking and the load-bearing capacity
of slender CFST precast columns that are connected with an intermediate concrete joint. Moreover, the combination
of GSS tubes with ECC and HSFRC joints markedly enhances the ultimate load, demonstrating an impressive increase
of 115% and 247%, respectively, over the precast NC control column. In addition, three-dimensional nonlinear finite
element modeling is performed considering the initially existing imperfection within the precast CFST columns which
is validated against the experimentally obtained data. These models are utilized to further investigate parameters,
such as GSS thickness and longitudinal reinforcement ratio.

Keywords Precast columns, Concrete-filled steel tubes, Galvanizes steel sheets, Strain hardening cementitious
composites, High-strength fiber reinforced concrete, Finite-element modeling
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1 Introduction

Concrete-filled steel tube (CFST) represents a com-
posite column configuration achieved by filling a steel
tube with concrete, a method widely recognized for its
performance of load bearing capacity in structures (Ci
et al., 2022a; Gopal & Manoharan, 2006; Liao et al., 2013;
Xiong et al., 2024). In particular, CFSTs are widely used
in high-rise buildings and bridge piers due to their ability
to withstand significant axial loads. In this type of struc-
tural element, the steel tube not only confines the con-
crete core but also acts as permanent formwork, which
streamlines the construction process (Ci et al., 2022b;
Hu et al., 2023; Isleem et al., 2023; Liu et al., 2023). CFST
columns offer significantly higher strength, ductility and
resistance to fire and seismic forces compared to conven-
tional reinforced concrete columns.

The prefabrication of precast CFST columns in con-
trolled factory settings emerges as an advantageous
solution, significantly reducing the activities on the con-
struction site, including the formwork preparation, the
reinforcement placement, the concrete casting and cur-
ing. These streamlined processes not only expedite con-
struction but also contribute to substantial reductions
in carbon emissions associated with each project (Ham-
oda et al., 2023a). Despite these advantages of precast
CFST, challenges arise due to transportation limitations,
as precast columns are typically constrained by length
restrictions, necessitating the use of multiple connected
columns to achieve the desired length. In addition, col-
umn splices are often required on-site, driven more by
erection conditions than structural necessity. However,
connecting multiple precast CEST columns offers struc-
tural versatility and adaptability, allowing for efficient
customization of lengths, sizes, and configurations to
suit diverse project needs. This approach streamlines
construction, enhances design flexibility, and promotes
innovation in building design, ultimately contributing to
resilient and sustainable built environments.

Several studies have been carried out previously on the
load-bearing behavior of traditional RC columns (Elwood
& Eberhard, 2009; Hamoda et al., 2024a; Ma et al., 2012;
Saatcioglu & Ozcebe 1989). These studies have shown
that the structural behavior of RC columns depends
mainly on its longitudinal and transverse reinforcement
ratio. The failure modes of RC columns can vary depend-
ing on factors, such as size and applied loads, and include
phenomena, such as cover concrete crushing, rebar buck-
ling, bending as well as combined failure modes (Abadel
et al, 2022; Obaidat et al., 2020). Recently, research
efforts have focused on studying the structural response
of precast concrete (PC) columns (Kuttab & Dougill,
1988; Rave-Arango et al, 2018; Tadi Beni & Mad-
hkhan, 2022). For example, Xu et al. (2023) conducted
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experiments on PC columns to analyze the effects of dif-
ferent classes of concrete, reinforcement configurations
and axial compressive loading on fire resistance. Interest-
ingly, their findings indicated better fire behavior for col-
umns of low-strength concrete compared to those made
of high-strength concrete.

In recent years, an increasing body of comprehensive
studies have been conducted to assess the bearing capac-
ity of CFST columns under both axial as well as lateral
loading (Gu et al., 2024; Zhou et al., 2023). For example,
Ekmekyapar and AL-Eliwi (2016) studied the behavior of
circular CEST columns under axial loading, examining
different ratios of column length to diameter (L/D), col-
umn diameter to steel tube thickness (D/t), steel grades
and concrete classes in their testing program. Their
results underline the direct influence of the L/D ratio on
column behavior, while the D/t ratio has no significant
influence. In addition, Liu et al. (2023) investigated the
size effect of circular CFST columns subjected to axial
compression and revealed discrepancies between cur-
rent design codes and experimental results, especially
in overestimating the peak capacity of short CFST col-
umns with large diameter. In addition, Ci et al. (2022b)
conducted experimental investigations on circular con-
crete-filled double steel tube columns under axial load-
ing, focusing on the slenderness ratio of the column and
the thickness of the internal steel tube. Their results are
consistent with those of previous studies and show that
the ultimate strength decreases with increasing slender-
ness of the column and that the inner steel tube thickness
shows only a marginal influence on the column strength.
Furthermore, the axial compression behavior of columns
reinforced with stainless steel tubes and FRP grids has
been thoroughly investigated in Huang et al. (2023); Hu
et al., 2024).

Investigating the performance of precast concrete col-
umns with connecting joints has been a focus of recent
research, although there are still few references that
specifically address the characterization of such con-
nections. A recent experimental study by Hamoda et al.
(2024b) investigated the axial behavior of slender RC pre-
cast columns having circular cross section and a normal
concrete intermediate joint. Their comprehensive test
program investigated the impact of the ratio of the longi-
tudinal reinforcement as well as the development length
of the embedded steel bars on the axial behavior of pre-
cast columns and showed significant improvements with
increasing reinforcement ratio and embedment length.
The seismic response of PC columns containing bolted
joints consisting of column shoes, bolts and grout was
investigated by Wang et al. (2020). Their experimental
results showed that PC columns with hybrid connections
exhibit comparable seismic behavior to cast-in-place
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concrete columns in the mid-story height range. In addi-
tion, Tullini and Minghini (2016) conducted an experi-
mental program focusing on full-scale precast concrete
column connections containing grouted joints and
subjected to different loading conditions. Their results
emphasized the effectiveness of stress transfer along the
joint area. In addition, Hu et al. (2017) investigated bolted
end-plate connections, which exhibited structural behav-
ior similar to that of cast-in-place concrete columns.
These collective efforts shed light on the diverse connec-
tion possibilities for precast concrete columns and their
effects on load-bearing capacity.

In modern construction practice, the trend is increas-
ingly moving towards replacing normal concrete (NC)
with high-performance concrete (HPC) as well as fiber-
reinforced concrete (FRC) to enhance the strength and
structural performance of concrete under wide range of
load configurations and scenarios (Baktheer et al., 2022,
2024a; Li et al., 2023). A subtype of HPC, engineered
cementitious composites (ECC) are mainly character-
ized by their hardening behaviour after cracking (Chia-
dighikaobi et al., 2024; Hamoda et al., 2024c; Wei et al,,
2022; Zhang et al, 2023). Compared to NC, ECC has
higher flexural and tensile strengths as well as higher
ductility (Dong et al., 2022; Hamoda et al.,, 2023b; Lai
et al, 2023). High-strength fiber-reinforced concrete
(HSFRC), which is fortified with steel fibers, also exhibits
improved mechanical properties. In addition, both ECC
and HSFRC contribute to a reduction in crack widths,
which can minimize corrosion and concrete deteriora-
tion (Xu et al., 2021). Their use in structural elements has
shown promise in improving flexural properties, ductility
and failure modes (Dong et al., 2022; Hung et al., 2023;
Lai et al., 2023). These advances in concrete technology
have been applied in reinforced concrete (RC) and pre-
cast columns. For example, Emara et al. (2023) compared
the behavior of RC columns from ECC with NC columns
exposed to axial loading, showing that ECC columns with
fibers content of 1.5% polypropylene had demonstrated
better ultimate compressive strength, ductility as well as
durability. In addition, Hu et al. (2023) studied the axial
compression response of square tubular steel columns
filled with HSFRC and found that although the addition
of steel fibers did not change the failure modes, the post-
peak behavior improved with increasing fiber volume
fraction. In addition, Hamoda et al. (2023a) investigated
the use of HPC in the intermediate connection of precast
concrete (PC) columns using strain-hardening cementi-
tious composites (SHCC) as well as ECC. The results
showed that cracking and load-bearing capacity increase
significantly with longer steel bars and higher reinforce-
ment ratios. In addition, the increasing use of galva-
nized steel tubes in concrete-filled tubular steel columns
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(CFEST) in recent years underlines their beneficial prop-
erties, including high corrosion resistance, stability and
load-bearing capacity (Fang et al., 2020).

The current literature reveals a significant gap in
understanding the behavior of precast columns con-
nected with normal and high-performance concrete,
especially in the context of concrete-filled steel tubular
columns (CFST) with high performance composite con-
nections, such as ECC or HSFRC. To address this gap,
this study aims to evaluate the effectiveness of this inno-
vative approach in comparison with typical PC columns
with NC connections. Through tests on circular slen-
der PC columns under axial compression with different
embedded lengths, to capture their behavior until col-
lapse. Using 3D nonlinear finite element models (FEM),
that validate the experimental results, the impact of lon-
gitudinal reinforcement ration as well as the thickness of
the galvanized steel sheet (GSS) on the performance of
precast CEST columns connected with high performance
concrete is investigated.

2 Experimental Program
2.1 Description of the Specimens and Investigated
Parameters
Ten slender PC columns with circular cross section were
fabricated and subjected to monotonic compressive axial
load until failure. To evaluate the improvement in capac-
ity of the slender PC columns using precast NC filled in
circular GSS tubes for the upper and lower part of the
column as shown in Fig. 1 and using different interme-
diate concrete connection types, a normal slender RC
column without intermediate connection and without
circular GSS tubes with total length of 750 mm was addi-
tionally tested and regarded as a control specimen.

This study focuses on the performance of slender CEST
circular columns, characterized by slenderness ratios (\)
up to 29, tested under axial loading until collapse. The
research deliberately investigates slender CFST circu-
lar columns to explore their vulnerability to buckling,
phenomena intrinsic to members with high slenderness
ratios. The primary objective is to evaluate the critical-
ity of intermediate construction joints on such columns
and their impact on the load-carrying capacity and stabil-
ity. Specifically, the study examines the influence of the
embedded development length (L) of (4D, 16D, and 18D)
and the concrete type used in the joint connection. By
maintaining a slenderness ratio within a controlled range
and ensuring that it remains below the critical buckling
threshold, the study isolates the effect of the joint and
development length parameters, minimizing poten-
tial confounding factors. This focused approach aims to
provide a quantitative assessment of joint efficiency and
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Fig. 1 Reinforcement geometric details for the proposed columns. a Master CO column. b CFST column (Units: in mm)

Table 1 Details of the tested columns

Group Column’sID Identical details Variable details
Type of HPC connection ~ Development
length (Ly)
Control co NC circular column - -
G-N N-L1 =Precast NC filled inside circular tube of GSS NC 14D
=Circular NC columns with 100 mm diameter
N-L3 and 250 mm length 220
G-E E-L1 =Reinforcement: 4D10 encircled with 8 mm ECC 14D
EL2 stirrups each 80 mm 18D
=Width-to-depth ratio is 200
E-L3 22D
G-H H-L1 HSFRC 14D
H-L2 18D

H-L3 22D
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its implications for the stability and strength of slender
structural members.

Within the test program, two parameters were inves-
tigated, namely, the type of concrete connection (NC,
ECC and HSFRC) as well as Ly of the embedded steel
bars or connecting concrete joint, whereby three differ-
ent embedment lengths of 14D, 18D and 22D were inves-
tigated as summarized in Table 1, where D represents the
bar diameter. The tested columns with intermediate con-
nection were categorized into three groups depending on
the type of connection. For the naming of the tested col-
umns, "N" stands for NC, "E" for ECC and "H" for HSFRC
and the second number L1, L2 and L3 stands for the
development length of the embedded steel bars of 14D,
18D and 22D, respectively.

The columns comprised three segments, two of which
consisted of precast NC-filled circular GSS tubes joined
together by an intermediate joint of NC, ECC or HSFRC,
as shown in Fig. 1. All columns were circular and had a
diameter of 100 mm. The upper and lower part of the
precast NC had a length of 250 mm, while the intermedi-
ate part had a different length depending on the investi-
gated length of the embedded steel bars (see Fig. 1). All
columns had the same reinforcement with 4D12 as longi-
tudinal reinforcement and ring stirrups in a closed form
with an 8 mm diameter, which were arranged at a vertical
distance of 80 mm.

2.2 Material Properties and Mix Proportion

The specimens were produced using a ready mix of NC,
ECC, and HSFRC, with their respective mix proportions
outlined in Table 2. From Table 2, it is apparent that ECC
requires a larger amount of cement as well as high-range
water reducer in comparison with SHFRC. Thus, for
economic considerations, SHFRC emerges as the more
favorable choice for filling the joint connection of precast
columns.

To characterize the properties of the materials used
within the test program, both uniaxial tension as well as
uniaxial compression tests were performed. The com-
pression tests were performed using 150 mm X300 mm
cylinders on the same experimenting day. Tests in uni-
axial tension were performed using dog bone specimens

Table 2 Mix proportion
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in compliance with the recommendations of the ACI
(2019), as shown in Fig. 2e. The compressive and tensile
strengths of all concrete types, including NC, ECC and
HSERC, as well as the recorded strains at f.” and f, and the
maximum strains are outlined in Table 3. The direct ten-
sile stress—strain performance for ECC and HSFRC with
the tests shown in Fig. 2b was idealized.

In addition, tensile tests were performed on coupons to
evaluate the mechanical characteristics of the galvanized
steel sheets and the steel bars used (see Fig. 2c, d). The
recorded tensile stress—strain response of steel bars, steel
bolts and galvanized steel sheets are shown in Fig. 2b
together with idealized multilinear uniaxial tension laws.
The yield stress of the 8 mm steel bars was determined to
be 289 MPa, while that of the 12 mm bars was measured
at 345 MPa. In terms of tensile strength, the 8 mm bars
exhibited a strength of 441 MPa, whereas the 10 mm bars
had a tensile strength of 552 MPa. For the galvanized
steel sheet, the yield stress was recorded as 235 MPa,
with a corresponding tensile strength of 357 MPa.

2.3 Preparation and Production of CFST Precast Columns
As illustrated in Fig. 3a, circular steel tubes were fabri-
cated using galvanized steel sheets fastened with three
steel bolts. These tubes were then filled with NC to pro-
duce two precast CFST panels for each column to be
tested. The precast CFST panels had a height of 250 mm
and additional lengths for the connections (L,) of 14D,
18D and 22D which were previously reported (Fayed
et al., 2023; Hossain et al., 2015).

To construct the full-length columns, two pre-
cast CEST panels, each 250 mm long, were assembled
together in opposite directions, leaving a gap (L,) for
casting NC, ECC or HSFRC inside, as depicted in Fig. 2b,
c. As an example, the combination of two precast CFST
panels having a length of 250 mm joined with Ly=168,
216 and 264 resulted in a total column length of 668 mm,
716 mm and 764 mm, giving slenderness ratios within
ranges of 27-29, respectively, according to ECP-203
(2018). The chosen different embedded lengths, giving
smaller variation in total slenderness, were selected to
minimize the reflection of the slenderness ratio and to
examine the influence of the embedded length parameter.

Concrete Cement with 52.5R F.Agg (kg/m°) C.Agg. (kg/m?) F.A. (kg/m?) W/b PP (%) HRWR (kg/m?3)
(kg/m3)

NC 355 698 1143 - 042 - -

ECC 558 436 - 665 023 2.20 15

HSFRC 471 672 1090 28 030 2.00 96

Cement grade 52.50 N/mm?, F.Agg. fine aggregate, C.Agg. coarse aggregate, FA. fly ash, W/b water-to-bender ratio (bender =Cement+ F.A), PP polypropylene fiber,

HRWR high range water reducer
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Table 3 Concrete properties
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Concrete type Compression Tension
f.(N/mm?) Strain at f. Maximum strain Maximum elastic f,  Strain atf, Maximum strain
(N/mm?)
NC 32 0.002 0.003 276 0.0002 0.0015
ECC 47 0.0031 0.005 398 0.0018 0.059
HSFRC 75 0.00017 0.0038 8.1 0.0023 0.036

(b)

Fig. 3 Construction and assembling of the CFST columns: a reinforcement and embedded bolted connectors, b arrangement of columns for filling
of the intermediate construction joint, ¢ flowable PE-ECC, and d casting of HSFRC

The connection between the precast CFST columns and
the NC/ECC/HSEFRC infill was facilitated by a cylindrical
formwork, as illustrated in Fig. 3b, ¢, d, into which casta-
ble NC/ECC/HSFRC material could be poured.

To guarantee the quality of the intermediate construc-
tion connections, multiple measures were taken dur-
ing the preparation and assembly of the precast CFST
columns. These included ensuring precise alignment of
the cross section and minimizing eccentricity, carefully
concreting the connection zone to achieve proper bond-
ing, and positioning the embedded reinforcement accu-
rately within the joint. In addition, efforts were made to
ensure that the concrete surface of the precast CFST col-
umns matched the properties of the connection material,
ensuring uniformity across the joint.

(d)

2.4 Experimental Setup and Measuring Techniques
The test program presented in this study was conducted
in the testing laboratory of Kafrelsheikh University in
Egypt. Using a 1000 kN hydraulic jack securely fixed to
a stiff steel frame, the circular precast slender CFST col-
umns were subjected to an axial compressive force as
illustrated in Fig. 4. The base of the column was fixed in
all directions to prevent any movement or rotation. On
the other hand, the upper part of the column was only
free to allow the movement in the axial direction in
which the load was applied. The same boundary condi-
tions were applied to all columns.

Linear variable displacement transducers (LVDTs) were
strategically positioned vertically to measure the vertical
displacement resulting from the axial load, as depicted
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Hydraulic jack
- e.

Fig. 4 Test setup and instrumentation

in Fig. 4. In addition, two PI displacement transducers
were utilized to measure the crack opening displacement
occurring on the surface of the concrete column (see
Fig. 4). Subsequently, all of these transducers were con-
nected to a system for collecting recorded data to facili-
tate automatic recording during the experimentation
process, as illustrated in Fig. 4.

3 Experimental Results and Related Discussion

3.1 Deformed Shape and Failure Mode

The evaluated values of crack loading (P,,) as well as the
ultimate loading (P,) are summarized in Table 3 together
with the corresponding vertical displacements (A,
and A,,) and the failure mode. Figure 5a shows the fail-
ure pattern exhibited in the control specimen CO0, while
Fig. 5b—j illustrates the failure modes observed in the
precast CFST columns with NC, ECC and HSFRC con-
nections, respectively.

The control column, CO, exhibited a concrete crush-
ing failure, as depicted in Fig. 5a. In contrast, all precast
CEST columns exhibited a combined failure mode, char-
acterized by concrete crushing at the intermediate NC/
ECC/HSERC connection. This was often accompanied by
rippling of the GSS of the tubed column, with occasional
instances of column buckling.

Columns with an embedded length of 18D, as well as
those featuring HSFRC intermediate joints, exhibited
buckling, as illustrated in Fig. 5. Notably, columns with

Datalogger  |amuadenad B = ===
‘ xl'
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ECC intermediate joints displayed hairline cracks in the
concrete connection, as exemplified in Fig. 5g. A distinct
pattern emerged in the location of concrete crushing
within the columns: for those with NC joints, the crush-
ing extended along the entire length of the concrete joint
(Fig. 5b, c), whereas in columns with ECC and HSFRC
joints, it primarily occurred at the interface between the
precast CFST and the intermediate joints (Fig. 5f, g, h).

Furthermore, a closer examination revealed nuanced
differences in failure behavior. In columns with HSFRC
joints and an embedded length of 18D, only localized
interface failure was observed, without clear cracking of
the concrete connection (Fig. 5i). Moreover, in columns
with HSFRC joints and embedded lengths of 22D, failure
was more pronounced in the precast CFST parts of the
beam, as depicted in Fig. 5j. This observation underscores
the influence of both joint type and embedded length on
the distribution of failure mechanisms within the CFST
columns.

The crack width (w,,) at the connection interface of the
columns corresponding to the cracking load P, meas-
ured through the PI gauges (Fig. 4), exhibited a decrease
in value as the embedded length increased, as outlined in
Table 4. Notably, columns with NC joints displayed the
highest crack width values, whereas those with HSFRC
joints demonstrated the smallest crack width values.
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Buckling with
rippling and
concrete crushing

Concrete crushing

(b) (© (d)

Fig.5 Failure mode of the tested columns: a Column CO, b Column N-L1, ¢ Column N-L2, d Column N-L3, e Column E-L1, f Column E-L2, g Column
E-L3, h Column H-L1, i Column H-L2, and j Column H-L3
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Buckling with ‘ ! Rippling and
rippling and e interface crushing
connection crushing N

(e) ®

Buckling with
rippling and local . 8 Deterioration
interface failure 4 of the two

precast CFSTs

Buckling
accompanied with
Rippling and

interface crushing

(h) (1) )

Fig.5 continued

3.2 Cracking and Ultimate Loads 4%, as shown in Table 4. The close agreement between the
Table 4 provides a summary of the recorded loads at which  experimental and theoretical values indicates that the ECP-
the first crack appears (P_,) and the ultimate loads (P,) for 203 code (ECP, 2018) provides a reliable estimate of the cir-
all columns. The ECP-203 (2018) provided close prediction  cular column’s capacity. However, the slight difference also
to the NC circular column giving small underestimation of  highlights the importance of experimental validation to
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account for actual condition. It can be mentioned that the
ECP-203 (2018) recommends the ultimate strength equa-
tion, used for estimated nominal strength (P,) as well, in a
form presented in Eq. 1 as follows:

_0.67*<pc*fc’>x<AC+As*<ps*fy

P 1
¢ Ve Vs )
0.67 "% A Ag % g
P, = * Qe * f * e AsHos 5y ©
1 1
where

f." is the concrete compressive strength, y, is a factor of
safety can be taken as 1.75, A, is the concrete area cross
section, A, area of the reinforcement, y, is a factor of
safety can be taken as 1.34, f is the steel yield strength,
¢, and ¢, are the reduction factor for circular section
according to the boundary conditions can be considered
as 0.65 and 0.62, respectively.

Notably, the cracking force recorded in all precast
CFST columns with intermediate joints exceeded that
of the control specimen, except for the shortest column
with NC connection (i.e., with an embedded length of 14
D), which amounted to approximately 0.91 of the crack-
ing load of the control column. For instance, columns
NC-L2 and NC-L3 exhibited cracking loads that were
14% and 35% larger than the control NC column, respec-
tively. In the case of columns with ECC joints, the crack-
ing loads for ECC-L1, ECC-L2, and ECC-L3 were 65%,
86%, and 140% of the cracking load of the control col-
umn CO, respectively. Similarly, for columns with HSFRC
joints, only column HSFRC-L1 experienced a cracking
load that was 145% higher than the control column CO.

It is evident that the delay in the first crack occurrence
in all tested precast CFST columns correlates with the
increase in the development length of the longitudinal
bars, consequently elevating the characteristic crack-
ing force (P.,). Table 4 demonstrates this trend clearly.
For instance, increasing the development length from
14 to 18D, and then to 22D in the precast columns with
NC joints resulted in an increment in the cracking load
by 26% and 48% accordingly. In similar way, for the col-
umns with ECC joints, the cracking force saw increments
of 12% and 45%, respectively, when the embedded length
was increased from 14 to 18D and 22D. The observed
trend aligns with the experimental results documented in
Hamoda et al., 2023a for circular PC columns with con-
necting joints made of HPC. Among the three investi-
gated types of intermediate joints, columns with HSFRC
joints exhibited the largest cracking load compared to
NC and ECC joints.

The recorded ultimate load in all precast CFST columns
tested with intermediate joints, comparable in length to
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the NC control specimen CO (i.e., columns that have a
development length of 22D and total length of 764 mm),
exceeded that of CO. Utilizing GSS tubes enhanced the
ultimate load of column NC-L3 by 29% compared to the
control column CO. Moreover, combining GSS tubes with
ECC and HSFRC joints resulted in remarkable increases
in the ultimate load, with increments of 115% and 247%,
respectively.

The trend of increasing embedded length leading to
higher ultimate loads is evident from Table 4. For exam-
ple, in columns with ECC joints, increasing the embed-
ded length from 14 to 18D and then to 22D resulted in
incremental ultimate load increases of 15% and 45%,
respectively. This trend was similarly observed for col-
umns with NC and HSERC joints. Consistently, among
the three types of investigated intermediate joints, col-
umns with HSFRC joints demonstrated the largest ulti-
mate load compared to those with NC and ECC joints.

3.3 Load-Deflection Response

The load—vertical displacement development of all exper-
imented columns are shown in Fig. 6, with the vertical
displacements measured at the cracking force and at the
ultimate force listed in Table 4. In general, all columns
exhibited a linear response up to crack development,
whereby the elastic load limits increased with increasing
intermediate joint length. From Fig. 6a and Table 4, it is
evident that the recorded displacements at which the first
crack occurs and the failure loads for the columns with
NC joints are relatively close to those of the NC control
column. In contrast, larger values were recorded for col-
umns with ECC joints, while the columns with HSFRC
joints exhibited the largest vertical displacements at the
ultimate load. An increasing vertical displacement at
ultimate load was observed for columns with HSFRC
joints with the increase of the embedded length, whereas
a decreasing trend was observed for columns with ECC
joints. Figure 6 illustrates that all columns enter the plas-
tic phase with hardening behavior until reaching the ulti-
mate load. It is worth noting, however, that columns with
ECC connections showed softer behavior after the ulti-
mate load until final failure, as shown in Fig. 6b.

3.4 Absorbed Energy and Elastic Stiffness

The energy absorbed (J) of all columns was computed
from the overall area below the load—displacement curve,
using the approach commonly used in literature [e.g.,
(Abadel et al., 2024; Gopal & Manoharan, 2006; Punu-
rai et al,, 2013)]. Table 4 contains a comparison of the
calculated energy ] values for all tested columns. The
utilization of the GSS tube resulted in improved energy
absorption. For instance, comparing column NC-L3 with
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a total length of 764 mm to the control column with a
total length of 750 mm, Table 4 indicates a 45% increase
in energy absorption. This enhancement can be attrib-
uted to the confinement effect introduced by the GSS
steel tube. Furthermore, incorporating ECC with strain
hardening behavior and HSFRC with crack bridging
effect in the intermediate joint, along with the GSS tubes,
resulted in a significant and remarkable improvement
in energy absorption compared to the NC column. For
instance, when comparing column ECC-L3 and HSFRC-
L3, both with a total length of 764 mm, to the control
column with a total length of 750 mm, Table 4 demon-
strates energy absorption increases of 157% and 414%,
respectively.

The elastic stiffness values (K) recorded in all columns
are listed in Table 4 which are defined in terms of the
linear response slope of the relationship between load
and vertical deformation. With the exception of column
N-L1, all precast CEST slender columns with NC/ECC/

(c)

Fig. 6 Load-vertical displacement development: a Group GN, b Group GE, and ¢ Group GH

HSFRC connections exhibited larger elastic stiffness in
comparison with the control specimen CO. For instance,
the NC-L2 and NC-L3 columns exhibited 7% and 29%
higher elastic stiffness, respectively, than the NC control
column CO. In similar way, columns ECC-L1, ECC-L2,
and ECC-L3 exhibited elastic stiffness values 48%, 72%,
and 134% larger than the CO column, respectively. Com-
paring the stiffness values (K) of the three types of joints
for the shortest column with a total length of 668 mm,
the HSFRC joint resulted in the largest stiffness among
the three types of joints, as summarized in Table 4. Con-
sidering columns with a total length of 764 mm, which
are relatively comparable to the control column, the use
of GSS tubes increased stiffness by 29% compared to the
control specimen CO0. Furthermore, combining GSS tubes
with ECC joints resulted in a stiffness increase of 134%.
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4 Numerical Simulation

4.1 Model's Construction

To analyze the behaviour of the tested columns under
simulated conditions, three-dimensional nonlinear
finite element models (FEM) have been developed using
Abaqus simulation software. These models meticulously
replicated the actual geometry of the columns, including
the positioning and dimensions of the steel reinforce-
ment bars and galvanized steel sheets, as detailed in
Fig. 1 and Table 1.

The concrete column, incorporating NC, ECC, and
HSFRC, was modeled using three-dimensional (3D)
eight-node solid hexahedron-shaped brick elements
(C3D8R) with a maximum size of 10 mm. This element
size was carefully chosen based on a mesh sensitiv-
ity analysis to ensure the results are independent of the
mesh itself. Similarly, the reinforcing steel, including
both vertical bars and horizontal stirrups, was modeled
with 3D two-node truss elements (T3D2) capable of car-
rying only axial forces. All steel bars were modeled as
truss elements to reduce computational cost compared
to modeling them as beam elements, especially; no dual
action was noticed for all experimented columns as pre-
viously modelled (Hamoda et al., 2024b, 2024d, 2025).
These steel elements utilized the same 10 mm size as the
concrete elements. Finally, the GSS were modeled using
the identical element type (C3D8R) and size (10 mm) as
the concrete column, as illustrated in Fig. 7a, while the
installed CO model can be seen in Fig. 7b.

In the intermediate construction joint, the extended
bars from each pre-cast column were spliced by aligning
each bar beside its counterpart from the adjacent col-
umn, as illustrated in Fig. 7a. This configuration ensured
proper load transfer and structural continuity. In the
Abaqus simulation, the construction joint was defined
as the host region, while the spliced bars were mod-
eled as embedded elements within this host region. This
modeling approach effectively captured the interaction
between the embedded steel and the surrounding con-
crete, ensuring an accurate representation of the joint’s
behaviour under load.

The model simplifies the interaction between mate-
rials for computational efficiency. A perfect bonding
was considered between the reinforcing bars and con-
fined concrete, assuming the concrete as a single entity
and the steel as embedded elements within it. Similarly,
the contact between the concrete column and the sur-
rounding GSS was modeled using a surface-to-surface
approach. This approach incorporates two features: a
penalty function with a friction coefficient of 0.6 in the
tangential direction (allowing for some slippage), and
hard contact in the normal direction (preventing separa-
tion). This same interaction method was applied between
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all concrete surfaces within the model but with a friction
coefficient of 0.8. The results confirmed that the friction
coefficients used herein (i.e., 0.6 and 0.8) are consistent
with previously reported values (Hamoda et al., 2023b,
2023c, 2023d, 2024b, 2024c, 2024e, 2024f, 2025).

To accurately replicate the experimental setup, the
finite element model mirrored the boundary conditions
and loading scenario (Alharthai et al., 2024; Baktheer
et al., 2024b; Hamoda et al., 2024a). The column’s base
was fixed in all directions, preventing any movement or
rotation. Conversely, the top of the column was only free
to move along the axial direction, which was where the
load was applied. Coupling constraints were used to con-
nect reference points on the top and bottom surfaces of
the column to the applied restraints and load. To ensure
a smooth transition at the beginning and end of the load-
ing process, a gradually increasing amplitude was speci-
fied for the loading step, minimizing any sudden changes
in kinetic energy.

4.2 Constitutive Modeling of Materials

This study considered both linear and nonlinear behavior
for the concrete material in the model. Linear behavior
relied on the Young’s modulus and Poisson’s ratio, pre-
sented in Table 3. To capture the more complex, nonlin-
ear material behavior of concrete, the concrete damage
plasticity (CDP) model was used. This model considers
cracking under tension and crushing under compression
as the two primary failure and dissipative mechanisms.
For the nonlinear stress—strain relationship in compres-
sion, Eq. 3 developed by Wight and MacGregor (2005) as
used:

)
fc/ w14 (%)nk (3)

This equation incorporates the concrete compressive
stress (f;), the reference compressive strength based on
a cylinder (f,), the strain at peak stress (g,) (Table 3), a
curve-fitting factor (n), and a factor controlling the slope
of the stress—strain response (k). Equations 4 and 5 define
the specific values for 1, and K:
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This study adopted previously established stress—strain
correlations for both ECC and HSFRC according to Zhou
et al. (2015). These correlations, detailed in Egs. 6 and 7
are grounded in comprehensive experimental results,
providing a robust framework for understanding the
stress—strain behavior of these advanced materials. Equa-
tion 5 characterizes the stress—strain curve under com-
pression, while Eq. 5 represents the curve under tension
as follows:

Epe. &c < 04eg

ﬁ:

Epe

’
c

Eoé, (1 —0.308 =< + 0.124) 04eg < ec < &g

(6)

&é} 0 <& < e
Et
fi=q " 7)
Siu — fic
Jie+t (e —6xc) & <& < e
tu — Etc

where the concrete’s stiffness is denoted as (E,) and strain
at peak stress is (¢,). f;) and &, denote the concrete’s ten-
sile strength and strain at first crack. f,, and ¢, refer to
tensile strength and its corresponding strain.

Table 5 CDP parameters
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To simulate the behaviour of steel elements in a con-
crete column, a bi-linear elastic—plastic behaviour model
with hardening was utilized. This model effectively repre-
sents two primary characteristics of steel: its initial elastic
response under stress, followed by its transition to plastic
deformation. The incorporation of hardening allows for
a more accurate depiction of the steel’s capacity to bear
additional load after yielding, ensuring a realistic repre-
sentation of the material’s performance throughout the
loading process. For defining the steel material proper-
ties, the actual methodology was employed based on the
experimentally observed curved stress—strain response,
which was then idealized linearly as shown in Fig. 2a to
avoid the complicated model solving. This methodol-
ogy is more reliable and has been executed in previous
numerical studies (Hamoda et al., 2023b, 2023c, 2023d,
2024c, 2024¢€; Hu et al., 2024).

4.3 Sensitivity of Numerical CDP Parameters

This section focuses on two key aspects crucial for finite
element modeling of concrete behavior: plasticity param-
eters and mesh size. The required plasticity param-
eters [Table 5; Emara et al., 2023; Hamoda et al., 2019,
2023a, 2023b, 2023c, 2023d, 2024b)] convert the uniaxial
stress—strain relationship of concrete, which considers
tension in one direction only, to a more realistic biaxial
relationship that accounts for tension or compression
in two directions. These parameters include the dilation

Concrete v ¢ Foo/feo K s angle (y), eccentricity (¢), biaxial-to-uniaxial yield stress
NC 25 0.1 116 067 0001  ratio (f,,/f.,), ratio of tensile to compressive stress invari-
ECC 30 ants (K), and the viscosity parameter (x4). In addition,
HSFRC 30 the study investigated the impact of mesh size, a critical
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factor influencing accuracy and computational efficiency.
A mesh size of 10 mm was found to provide acceptable
results (see Fig. 8) without significantly increasing pro-
cessing time. It is worth noting that the dilation angles
differ according to the concrete types, as listed in Table 5,
which can be attributed to variations in concrete com-
position, strength, and the level of confinement. The
internal structure of the material and its degree of con-
finement determine the dilation angle, which is a meas-
urement of how concrete expands under shear stress.
These distinctions show how the mechanical charac-
teristics of the various types of concrete cause them to
react differently to applied stresses (Hamoda et al., 2019,
2023c¢, 2023d).

4.4 Initial Imperfection

In general, the reinforced concrete structural elements
are exposed to effects of initially existing imperfections
that can be attributed to geometric properties, construc-
tion process or boundary conditions (Chen et al., 2013;
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Hamoda et al., 2024e; Harvey & Cain, 2020; Liao et al,,
2013). Several executions were attempted with vari-
ous assumed eccentricities as a result of initial imper-
fection. Such imperfections were assumed to have the
values varying from h/1000 up to h/400 at mid-height
giving, where h is column length as previously reported
(Hamoda et al., 2023a, 2024b). The imperfection value of
L/400 presented satisfied exhibition for modelling both
the ultimate capacity, mode of failure and load—displace-
ment response development as shown in Figs. 8 and 9,
respectively.

4.5 FEM Verification

To ensure the accuracy of the FEMs, their results were
compared against those obtained from the experimen-
tal program. This validation process considered both
the load versus axial displacement curve (Fig. 9) and
the observed failure modes (Fig. 10). In addition, the
numerical estimated absorbed energy can be seen in
(Fig. 11) for sample E-L2. As can be seen in the figures,
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Fig. 10 FE versus experimental failure modes with respect to initial imperfection (Liao et al,, 2013; Liu et al., 2023): a Column CO, b Column N-L1, ¢

Column E-L2, and d Column H-L3
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a good correlation was achieved between the FEM pre-  approximately 10%, with a corresponding overesti-
dictions and the experimental data for the tested col- mation of displacement by around 2%. Moreover, the
umns. Notably, the FEMs slightly overestimate the FEMs could reasonably simulate the cracking behaviors
maximum load-carrying capacity of the columns by of tested columns and predict their failure modes, as
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shown in Fig. 10. In addition, Fig. 12 shows the behav-
ior of stresses formed on the CFST columns through
von Mises stresses. Figure 12 confirms that the stresses
occurred at both GSS tubs along with those on acting
on blots were less than those generated at the connec-
tion. This may also confirm the avoidance of premature
failures on bolts.

Plastic dissipation energy observed numerically
(ALLPD) and internal potential energy (ALLPD) pro-
vided valuable insights into permanent deformations
and structural damage, as it represents the energy con-
sumed by irreversible processes within the material (Saad
et al., 2023, 2024a). Notably, ALLPD is a subset of the
total internal energy ALLIE (Dai et al., 2010; Saad et al,,
2024b). Fig. 11 illustrates the evolution of plastic dissi-
pation energy and internal potential energy during the
loading process for the entire model and its key com-
ponents: the normal concrete region, GSS parts, rebars,
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and the connection region. These components contribute
40%, 32%, 18%, and 10%, respectively, to the total internal
energy (ALLIE), and 45%, 35%, 15%, and 0.1%, respec-
tively, to the plastic dissipation energy (ALLPD). These
findings from the energy analysis align well with the
experimentally observed failure modes and deformations
in the specimens.

4.6 Parametric Study

Having successfully validated the FEMs against experi-
mental results, the researchers employed them for fur-
ther parametric studies to explore the impact of two
key factors on column capacity: GSS thickness and
reinforcement ratio. The study investigated a range of
GSS thicknesses (0.5, 0.7, 1.0, 1.2, and 1.5 mm) and
reinforcement ratios (1.44%, 2.00%, 2.66%, and 4.00%).
The observed relationships between load and vertical
displacement are presented in Figs. 13 and 14-.
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Figure 13 clearly shows that increasing the thickness
of the GSS leads to a minor, disproportionate increase
in load-bearing capacity for both columns with NC and
ECC joints (Fig. 13a). For the columns with NC joints,
for example, increasing the GSS thickness from 0.5 mm
up to 1.0 mm and 1.5 mm led to an increase in load-
bearing capacity of 4% and 8%, respectively. Larger
increases in load-bearing capacity were observed for
columns with ECC joints (Fig. 13b). In particular,
increasing the GSS thickness from 0.5 mm to 1.0 mm
and 1.5 mm increased the ultimate load by 12% and
14%, respectively. These results illustrate the larger sen-
sitivity of columns with ECC connection to the varia-
tions in GSS thickness compared to columns with NC
joint.

The influence of the ratio of longitudinal reinforcement
on the load—vertical displacement behavior for both col-
umn groups is shown in Fig. 14. A reduction in the rein-
forcement ratio for columns with NC joints from 4%
to 2.6%, 2% and 1.44% led to a decrease in the ultimate
bearing capacity by 17%, 24% and 29%, respectively. In
the group of columns with ECC joints, a reduction of the
reinforcement ratio from 4% to 2.6%, 2% and 1.44% led
to a reduction of the ultimate load by 6%, 12% and 16%,
respectively. These results emphasize the weaker influ-
ence of the longitudinal reinforcement ratio in columns
with ECC joint compared to those with NC joint.

It is worth noting that the current study still has some
imitations. First, only one test was performed for each
parameter combination, which limits the possibility of
performing a statistical analysis. Additional tests would
be beneficial to confirm the reliability of the results. Sec-
ond, while this research provides insight into the behav-
ior of CFST columns with intermediate connections,
future studies should compare these findings with pure
CFST columns to better understand the impact of the
connection on load-bearing capacity. Finally, while the
Concrete Damage Plasticity model was used in this study,
it has known limitations in capturing the full complexity
of concrete behavior under various stress configurations,
as noted in prior research [e.g., (Baktheer & Classen,
2024; Bazant et al., 2022)]. Future work may explore the
use of more advanced macro- and meso-scale models to
achieve more accurate predictions.

5 Conclusions

Based on the performed experimental study as well as
numerical investigation of the CFST columns assembled
with connecting joints, the following concluding remarks
can be made:
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1. The most common mode of failure of all CFST pre-
cast columns tested was a combined failure mode
characterized by concrete crushing at the intermedi-
ate NC/ECC/HSFRC connection combined with rip-
pling of the GSS of the tubular column.

2. The incorporation of GSS tubes with NC joint led to
a notable 29% increase in the ultimate load in com-
parison with the control NC precast specimen. Fur-
thermore, the combination of GSS tubes with ECC
and HSFRC joints yielded significant enhancements
in the ultimate load, with impressive increase by
115% and 247%, respectively.

3. The use of GSS tubes in the precast columns resulted
in an improved energy absorption of 45% compared
to the NC precast specimens. The incorporation
of ECC and HSFRC connections together with the
GSS tube resulted in a significant and remarkable
improvement in the absorption of energy in the pre-
cast CFST column by 157% and 414%, respectively.

4. The integration of GSS tubes in the precast columns
led to a 29% increase in elastic stiffness compared to
the control specimen. Moreover, the combination of
GSS tubes with ECC joints resulted in a significant
stiffness enhancement of 134%.

5. The cracking force, ultimate force, elastic stiff-
ness and energy absorption were found to show an
increasing trend with the increase in the develop-
ment length of the bars/splice joints for all joint types
investigated.

6. The parametric studies conducted utilizing the vali-
dated 3D nonlinear finite element models revealed
that variations in GSS thickness resulted in minimal
effect on the columns load-bearing capacity of with
intermediate connections. Conversely, alterations in
the longitudinal reinforcement ratio exerted a more
pronounced impact on the bearing amplitude of the
columns.
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