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Abstract

The cement industry is a significant contributor to CO, emissions worldwide, which demands new measures

to reduce its environmental impacts. Therefore, finding solutions to reduce the CO, emissions in cement production
became necessary. Pozzolanic materials offer an optimum solution approach with both environmental and functional
advantages. For the investigation of pozzolan effects on the concrete mixture, the modeling part becomes

a challenging task. This study models and predicts the compressive strength of pozzolanic cement-based concrete
using deep residual neural networks (DRNNs) and variance-based sensitivity analysis (VBSA). The designed DRNNs
architecture uses shortcuts (i.e., residual connections) that bypass some layers in the deep network structure in order
to alleviate the problem of training with high accuracy. The research also examines crucial aspects such as pozzolan
type, substitution ratio, component proportions, and grinding processes, using data developed by the authors

and from different pozzolanic concrete compositions from various studies. The proposed model showed a high
accuracy of R?=0.94 for testing data that outperformed traditional literature models, enabling the generation

of a large sample of synthetic experimental data for further analysis. The VBSA improves knowledge by prioritizing
the importance of input factors, resulting in a complete method for designing concrete mixes. The analysis revealed
that silica fume and volcanic ash were the most effective pozzolans in enhancing compressive strength, followed

by scoria and metakaolin, with optimal substitution ratios ranging from 10 to 15% for most natural pozzolans

and up to 20-30% for metakaolin and pumicite. Hence, this newly presented analysis framework offers an optimizing
tool for pozzolanic concrete mix design that could investigate several pozzolana types/proportions, their efficiency,
and the structural performance of the final concrete mixture.

Keywords Concrete mixtures, Deep learning, Global sensitivity analysis, Variance-based models, Pozzolanic cement,
Sustainable concrete, Machine learning

1 Introduction

Cement production is a highly polluting industry that sig-
nificantly harms the environment due to its substantial emis-
sions. As a sizeable energy-consuming sector, the cement
industry negatively impacts environmental sustainability,
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forming clinker—the primary component of ordinary Port-
land cement (OPC)—produces harmful emissions such
as sulfur dioxide (SO,), nitrogen dioxide (NO,), and car-
bon dioxide (CO,). The cement industry is estimated to be
responsible for approximately 8% of greenhouse gas emis-
sions (Belaid, 2022), making it a significant contributor to
global warming. Moreover, dust emissions are released
during the limestone crushing, clinker production, cement
manufacturing, and packing stages, further contributing to
environmental degradation (Katare & Madurwar, 2020).

In Egypt, for instance, the cement industry has grown
greatly in size and capacity over the last 30 years. In 1975,
four factories produced 4 million tons per year. Until
2016, 14 factories produced nearly 38 million tons of
clinker per year, primarily from dry kilns, with only a tiny
amount from seven wet kilns in two companies. Egypt’s
production is estimated to be 1.5% of world production.
According to Ali et al. (2016), the manufacturing con-
sumption of raw materials (estimated as tons per year)
is shown in Fig. 1. Consequently, the pollutants emitted
by cement plants became further concerning. For exam-
ple, some plants release as much as 23,648 Mg/m? of dust
into the atmosphere, along with 512.48 Mg/m?® of carbon
monoxide (CO), 25.27 Mg/m? of sulfur dioxide (SO,),
and 130.69 Mg/m? of nitrogen dioxide (NO,). These
emissions contribute significantly to air pollution and
exacerbate health risks for nearby populations while also
playing a role in climate change. The high emissions lev-
els, especially dust and CO,, emphasize the urgent need
for cleaner and more sustainable production methods.
Addressing these environmental challenges is critical to
reducing the industry’s carbon footprint and protecting
the environment and public health (Ali et al., 2016).

Different suggested/applied approaches reduce CO,
emissions as much as possible. There are different
options to reduce the required energy and greenhouse
gas emissions from the cement industry; one of them
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is to change the manufacturing system/criteria (e.g.,
applying CO, storage and capture technique). Another
one is to replace partially/fully the clinker/cement with
pozzolanic materials. The pozzolanic cement (PzC) is
produced either by partially replacing the clinker or
partially replacing the cement in the concrete mixture
(blended cement). The PzC industry not only contributes
to reducing CO, emissions, but also helps to use existing
natural resources and save disposal costs of byproducts
waste. One more eco-friendly property of PzC is that it
can react with Ca(OH), with reduced heat emissions,
unlike the OPC. Therefore, using PzC helps to minimize
the energy required to produce cement and the heat of
hydration to produce cement composite (Altwair &
Kabir, 2010; Dunuweera & Rajapakse, 2018).

The energy consumption in cement production mainly
results from the grinding and clinkering processes. Using
pozzolans to replace the clinker/cement can reduce
energy consumption in grinding (depending on the grain
size) and thermal energy required for clinking, because
they would be used as they are. Reference (Ghiasvand
et al, 2014) found that grinding the pozzolana (Trass)
as a replacement for clinker required less energy than
grinding it as a cement replacement in concrete to achieve
the same percentage of 45 pm residue. Furthermore,
reference (Rashwan et al, 2023a) found that replacing
cement with 10% by weight of Pozzolana (mafic rocks)
resulted in a 13.75% decrease in energy consumption to
produce 1 ton of binder. Reducing the burning process
rate of raw materials will help reduce pollutant emissions.
Using the PzC seems to be a promising solution to reduce
the rate of carrying out that process, which is assumed to
be the leading cause of CO, emissions.

The incorporation of pozzolana in the cement and
concrete industry is influenced by several key factors that
dictate the behavior and performance of the resulting
concrete. Some of these factors are directly related to
the pozzolana itself, including the type of pozzolan
used, its chemical composition, fineness, the proportion
incorporated in the mixture, the stage at which it is
introduced (whether during clinker production or
directly into the cement), and the number of pozzolan
types included in the mix. Additionally, factors related
to the other components of the concrete mixture play
a significant role. As a result, optimizing pozzolanic
concrete mixtures requires careful consideration of
all these variables to produce a more sustainable and
efficient green concrete (Chihaoui et al., 2022; Golewski,
2022).

Recent studies have been concerned with developing
models that help predict concrete behavior based on
experimental data from previous studies (Haq et al,
2024; Karim et al., 2024; Mottakin et al., 2024; Owais &
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Idriss, 2024). Modeling data play a crucial role in saving
time and resources in labs by providing predictions that
closely approximate experimental outcomes. Despite
this, relatively few studies have focused on developing
models specifically for optimizing pozzolanic concrete
mixtures. This study bridges the gap by introducing a
novel machine learning (ML) framework, specifically
a deep residual neural network (DRNN), combined
with variance-based sensitivity analysis (VBSA)—an
innovative global sensitivity analysis (GSA) tool. This
approach aims to accurately identify and prioritize the
factors influencing the behavior of pozzolanic concrete.

The DRNNs architecture is particularly well-suited
for this purpose because it can handle complicated,
non-linear interactions between controlling variables,
allowing for more exact predictions of concrete
performance under different situations (Alshehri et al.,
2023; Owais, 2024a). The VBSA, which uses the DRNN
model, offers a systematic technique for determining the
relative importance of each parameter (Owais & Moussa,
2024). This method emphasizes the most critical aspects
that affect pozzolanic concrete behavior, such as pozzolan
type, composition, and mix proportions, as well as how
these parameters interact with other components in the
mixture. The newly provided analytical methodology,
which integrates DRNNs and VBSA, has the potential
to considerably increase our knowledge of pozzolanic
concrete mixes. It provides a useful tool for creating
optimum mixes adapted to particular applications,
resulting in more efficient, durable, and sustainable
concrete solutions.

The rest of the article is organized as follows: The next
section reviews the current state of research on related
topics to emphasize this article’s contribution. Section 3
describes the input data and the relevant factors under
investigation. Section 4 outlines the analytical framework
along with the associated mathematical and statistical
methods. Section 5 discusses the modeling outcomes and
sensitivity analysis results. The final section provides the
research conclusions.

2 State of the Art

This section is divided into five subsections. The first
subsection characterizes the different types of pozzolana
and their manufacturing procedures. The second
subsection reviews the advances in the pozzolanic
industry and the various contributions of previous
studies in enhancing concrete mixture properties
through pozzolana. The third subsection explores the
application of ML tools, particularly the DRNNSs, for
predicting the mechanical properties of pozzolanic
concrete mixes. The fourth subsection delves into the
use of the GSA in modeling, explaining its relevance
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in evaluating the influence of various parameters on
concrete performance. Finally, the fifth subsection
highlights the unique contributions of this study,
including its novel approach and significant findings
concerning the optimization of PzC concrete mixtures.

2.1 Advances in the Pozzolanic Industry

Pozzolana is a non-cementitious material primarily com-
posed of silica or a combination of silica and alumina.
While it is not inherently cementitious, pozzolana reacts
with the calcium hydroxide (Ca(OH),) produced during
the hydration of cement, forming additional calcium sili-
cate hydrate (C-S—H), which enhances the strength and
durability of the concrete (Hamada et al., 2023). There are
two main types of pozzolana: natural pozzolana (NPz)
and artificial pozzolana (APz). NPz are derived from
geological sources, while artificial pozzolans are typi-
cally industrial or agricultural byproducts. NPz can be
further classified into two groups based on their origin:
sedimentary and volcanic. Sedimentary natural poz-
zolans include diatomaceous earth, naturally calcined
clay, opaline silica, and cherts (Chindaprasirt & Rukzon,
2008). Volcanic pozzolans include volcanic ash, tuffs,
pumice, and slag. NPz can be used in their natural state
or undergo mechanical or thermal processing to improve
their reactivity and efficiency (Waghmare et al., 2021).
APz, on the other hand, are sourced from waste products
generated by industries or agriculture. Examples include
fly ash, rice husk ash, blast furnace slag, silica fume, palm
oil fuel ash, marble dust, sugarcane bagasse ash, and syn-
thetic zeolites. Both NPz and APz contribute to the poz-
zolanic reaction by reacting with Ca(OH), during cement
hydration, forming more C-S—H while minimizing the
generation of excess heat (Papadakis, 2000). This results
in improved long-term performance of concrete, particu-
larly in terms of strength and durability. Figure 2 illus-
trates the primary types of pozzolans.

Using NPz offers sustainable and eco-friendly
benefits to cement production by partially substituting
clinker with natural resources, thus reducing the
environmental impact of cement manufacturing. The
natural characteristics of some NPz make them suitable
as clinker substitutes, especially since they undergo
similar processes, such as quenching, which is the
rapid cooling of volcanic materials. This substitution
reduces the reliance on clinker, leading to lower carbon
emissions and a more sustainable cement product.
However, one of the challenges associated with NPz is
its tendency to reduce early strength in concrete. This
drawback may be attributed to the larger particle size
of NPz grains, which slows down the initial hydration
process. Nevertheless, this issue can be mitigated by
grinding the NPz to the nanoscale, which enhances its
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reactivity and compensates for the early strength loss
(El-Didamony et al.,, 2015). Most of the natural pozzolans
studied are volcanic tuffs, with the most common types
including basalt, rhyolite, trachyte, zeolite, pumice, truss,
and obsidian. The natural formation of NPz generally
eliminates the need for additional thermal processing,
saving energy that would otherwise be required. Due
to its availability as a natural resource, NPz is also cost-
efficient. Studies have shown that incorporating NPz
into cement significantly reduces the heat of hydration.
Furthermore, NPz contributes to long-term hydration,
resulting in improved workability and, over time,
higher compressive strength. NPz also enhances the
durability of concrete by increasing resistance to sulfates
and chlorides. The performance of NPz in cement is
influenced by several factors, including particle size
distribution, specific surface area, chemical composition,
and crystallinity (Zalesk4 et al., 2018).

On the other hand, APz contributes to sustainabil-
ity by utilizing industrial and agricultural byproducts,
such as fly ash, rice husk ash, and silica fume. The APz,
derived from industrial waste, offers environmental

Table 1 Factors affecting the efficiency of pozzolana.

* | Natural Pozzolans

Volcanic origin Sedimentary origin

2 2

Zeolite
Rhyolite
Basalt
Mafik rocks
Trass
Obsidian

Diatomacious earth
Naturally calcinied clay

benefits by reducing disposal costs and preventing pol-
lution from open waste dumps. The high specific sur-
face area and fineness of most APz types accelerate
the hydration process, which leads to early strength
gain but can reduce workability and emit higher heat
of hydration. According to previous studies, APz can
replace clinker or cement in higher proportions than
NPz, making it a highly effective substitute (McCarthy
& Dyer, 2019; Nourredine et al., 2021; Ramezanianpour,
2014). Several factors affect the efficiency of both natu-
ral and artificial pozzolans in cement mixtures (Joshua
et al,, 2018). Table 1 summarizes the key factors influ-
encing pozzolans’ performance, highlighting their
advantages and limitations.

The efficiency of pozzolans is primarily evaluated based
on their chemical, physical, and mechanical proper-
ties. Their pozzolanic activity is determined by how well
they meet the characteristics specified in various stand-
ards. Pozzolans can be incorporated into the cement
production process in two ways: by partially replacing
clinker during cement manufacturing or by substituting
cement directly in concrete mixtures. Both methods are

Efficiency terms Natural pozzolans

Artificial pozzolans

With - Natural resource Save waste disposal cost
v’ Can be used without thermal processing to substitute clinker of the byproducts
v’ Save energy and cost-efficient Ecofriendly
v’ Low heat of hydration High early strength
v’ High workability Higher possible
v’ Higher compressive strength in later ages Substitution ratio
v’ Ecofriendly than the NP
v’ Durable product
Against & Low early strength Lower workability

&) Pozzolanic characteristics differ for the same type of NP according to location,

age of the rock

Higher heat of hydration
Energy consuming
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environmentally sustainable. However, replacing clinker
with pozzolan during cement production is generally
more cost-effective and energy-efficient (Nayaka et al.,
2018).

To assess the quality and effectiveness of pozzolana—
whether natural or artificial—various physical,
chemical, and mechanical tests must be conducted.
Reference (Zaleska et al., 2018) suggested three sets
of characterization methods. The first set focuses on
fundamental physical and chemical prerequisites for
a material to qualify as pozzolan suitable for blended
cement, such as granulometric tests, oxide analysis, and
molecular spectroscopy. The second set examines the
reactivity of the pozzolan through tests like quantitative
X-ray diffraction (XRD), pozzolanic activity evaluation,
and scanning electron microscopy (SEM) combined
with energy dispersive spectroscopy (EDS). The third set
evaluates the mechanical properties. Table 2 summarizes
the characterization methods outlined in previous
studies.

Several key characteristics, including particle size dis-
tribution, specific surface area, chemical composition,
and crystallinity, influence pozzolana’s performance in
cementitious materials. According to previous stud-
ies, the properties of the pozzolan used—such as boiler
ash—are highly dependent on factors like the source
of the material, industrial combustion processes, col-
lection methods, cooling techniques, particle size, and
phase state (Katare & Madurwar, 2020). These factors
play a critical role in determining the overall quality
and reactivity of the pozzolan. The oxide composition
of pozzolana, particularly its silica (SiO,) content, is a
fundamental parameter in evaluating its suitability for
use in concrete. As highlighted in previous research, the
predominant component of pozzolana is SiO,. Various

Table 2 Pozzolan characterization methods.
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standards dictate that the combined content of SiO,,
Al,O;, and Fe,O; should exceed 70% to ensure adequate
pozzolanic activity. Reference Hamada et al, (2023)
reviewed previous studies and found that the contents
of SiO,, Al,O3 and Fe,O; existed in NPz were (40—-80)%,
(10-20)%, and (0—13)%, respectively.

Characterizing pozzolana is essential for predicting the
performance of the resulting cementitious composites. It
enables the determination of optimal dosages in concrete
mixtures, which is crucial for designing sustainable and
efficient concrete with reduced environmental pollutants.
By understanding the physical and chemical properties of
pozzolana, engineers can optimize concrete formulations
to achieve the desired mechanical properties and long-
term durability (Hung et al., 2018).

2.2 Pozzolanic Cement in Concrete Mixtures
Incorporating PzC significantly influences cementitious
composites’ properties in both their fresh and hardened
states. Various studies have examined the effects of
adding pozzolanic materials to cement matrices, focusing
on factors like density, water demand, heat of hydration,
setting times, and workability for fresh concrete, as
well as compressive, flexural, and splitting strengths,
permeability, and durability for hardened concrete. The
performance of PzC concrete is influenced by several
key factors, including the type of pozzolana used,
pozzolan-to-clinker/cement ratio, chemical composition,
the number of pozzolanic materials involved, and
the fineness of the pozzolan (Dembovska et al., 2017;
Senhadji et al., 2012).

The workability of PzC concrete can be measured using
slump tests for normal concrete and flow tests, L-box, and
V-funnel tests for self-compacting mortar (Hamada et al.,
2023). Initial and final setting times are also key indicators

Characterization Methodology

Estimation

Limits/ASTM

Granulometry

Oxides/elemental analysis

Laser diffraction

X-ray fluorescence

Particle size upper limit (45 um)—40%
residue

Si02 +AI203 + Fe203
>70%

Molecular spectroscopy

Reactivity tests

Compressive strength of pastes

Frattini test
Chapelle test

Strength activity index SAI

Pozzolan effectiveness coefficient
PEC

Detect harmful organic substances -

if exist
Qualitative (pozzolanic/not)

Quantitative
giving the amount of portlandite
in mg fixed by 1 g of the material

Qualitative
Quantitative

The lower limit of 650 mg
portlandite/g of material

SAI>75% for 28-days cured samples

+0<PEC< 1 then acts as pozzolan
- PEC<0, then acts as filler only
« PEC> 1 PzC then better than the OPC
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of workability. For instance, reference Hassan et al., (2019)
replaced cement clinker with synthetic zeolite at ratios of
1, 3, 5, 7, and 10%, increasing the setting time and thereby
improving workability. Another study found that replac-
ing 25% of cement with volcanic tuffs (rhyolite) resulted in
initial and final setting times ranging from 160 to 215 min
and 200 to 255 min, respectively (Eldahroty et al., 2023).
The fineness and content of pozzolans also impact work-
ability. Finer particles tend to fill voids more efficiently,
thereby improving workability (Zeyad & Almalki, 2021).
However, increasing the volcanic ash content can reduce
workability (Hammat et al., 2021). The reactivity of cer-
tain pozzolans, such as volcanic ash, zeolites, and diato-
maceous earth, tends to improve over time(Abréo et al,
2020). Mixing water demand increases when clinker is
replaced with NP due to particle agglomeration, high spe-
cific surface area, and internal porosity (Juenger & Sid-
dique, 2015).

The density of PzC concrete is another important factor.
A study in Omrane and Rabehi (2020) found that replacing
cement with natural pozzolana (NP) in recycled self-com-
pacting concrete (SCC) reduced the density by 0.88, 1.46,
1.72, and 1.94% for replacement ratios of 5, 10, 15, and
20%, respectively, due to the lower density of NPz com-
pared to cement.

Regarding heat of hydration, PzC is expected to reduce
the overall heat release. For example, reference Al-Chaar
(2013) replaced cement with three different NPz and com-
pared between the results of the heat of hydration test of
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one of them from Saudi Arabia (Pozzolan S1), and class F
Fly ash. The results showed that the heat of hydration of
S1 was less than the one of the FA mixture by 15%, while
the FA mixture resulted in less heat of hydration than the
control mixture by 30%. Another study in Eldahroty et al.
(2023) showed that replacing 25% of cement with volcanic
tuffs reduced the heat of hydration from 303.9 J/g in the
reference sample to between 269.9 and 289.6 J/g after 7
days.

The compressive strength of concrete is often the most
important characteristic affected by incorporating poz-
zolanic cement into a cementitious matrix. Several stud-
ies have explored the effects of using both NPz and APz
types as partial replacements for clinker or cement on the
compressive strength of resulting concrete. Some stud-
ies have even examined the simultaneous use of multi-
ple types of pozzolana. Reference Dwivedi et al., (2006)
investigated bamboo leaf ash as a substitute for 20% of the
cement, finding that it exhibited comparable compressive
strength at 28 days to control samples, with pozzolanic
reactivity increasing over time and at higher temperatures.
In another study, fresh basalt powder was used to replace
up to 20% of ordinary cement paste, resulting in improved
mechanical properties (El-Didamony et al, 2015). Fig-
ure 3 depicts the compressive strength of concrete over
time with different portions of basalt (Moawad et al,
2021). Similarly, reference (Moawad et al., 2023) studied
the behavior of high-strength concrete (HSC) with 5, 10,
and 15% natural basalt, concluding that 10% replacement
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Fig. 3 Compressive strength of concrete after 7,28,56, and 90 days using 7.5%, 15%, and 22.5% of basalt.
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was the optimal ratio. Reference Moawad et al., (2023)
also examined using 25% basalt to replace the clinker, and
found that this proportion yielded good results in terms of
compressive strength and pozzolanic reactivity.

Studies also explored using volcanic ash or volcanic tuff
as clinker or cement replacements. For example, reference
Ghiasvand et al., (2014) used Trass as a clinker and cement
replacement at 25 and 35%, both in fine and coarse states.
The compressive strength values after 7, 28, and 90 days
were higher for fine Trass, especially at 28 and 90 days,
as shown in Fig. 4. The results indicated that finer poz-
zolana particles produced stronger concrete, and replacing
clinker with pozzolana consumed less energy than replac-
ing cement. Table 3 shows the differences in the compres-
sive strength values between the replaced clinker and the
replaced cement by the same proportion of 25% of Trass
(fine).

In the same study, the same proportions were used as
cement replacement in concrete mixtures, and the sam-
ples were tested under compression to compare the results
(Ghiasvand et al., 2014). The compressive strengths of the
concrete mixtures with Trass replacing cement are shown
in Fig. 5. When the cement was partially replaced by Trass,
the compressive strength of the fine cement mixtures
was still higher than in other cases. However, at a 25%
replacement level, the compressive strength was lower
compared to non-replaced fine cement. This contrasts
clinker replacement, which resulted in higher compres-
sive strength at the same proportion. Further findings of
Rashwan et al., 2023b suggested that using ophiolitic mafic
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Table 3 Compressive strength values of the OPC replaced
clinker and replaced cement by 25% of Trass after 7, 28,
and 90 days.

25% substitution for Compressive strength (MPa)

7d 28d 90d
OPC (fine) 33 42 46
Clinker (fine) 27 43 47
Cement (fine) 25 41 43

rocks (OMR) in cement paste at 5% or 10% replacement
levels increased compressive strength at all curing stages.
The authors of the present research recently con-
tributed to an experimental study on pozzolanic con-
crete’s strength development (Hassanein et al., 2022).
The study used six different types of cement: ordinary
Portland cement CEM I-42.5N, sulfate resisting cement
CEM [-42.5-SR-5; two types of Portland pozzolanic
cement with different grades CEM II/B-P(42.5) and
CEM II/B-P(32.5), sulfate resisting pozzolanic cement
CEM IV/A(P) 42.5SR, and low heat Portland pozzolanic
cement CEM II/B-P (32.5N) L.H. The study included
casting concrete mixtures with a design compressive
strength of 25 MPa. The samples were tested at differ-
ent ages, ranging from 3 to 180 days. Selected measured
compressive strengths of the tested concrete samples
are shown in Fig. 6. All concrete mixtures achieved
the required strength for all investigated cement types.
Regarding strength development, all concrete mixtures

o
wn O

(98]
S

[\
W

[\
o

Compressive strength (MPa)
9

—
=]

(@) 9]
1

Coarse OPC

Fine OPC  Coarse -25%

Coarse -35%
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showed an increase or stabilization with the concrete
age, except for CEM II/B-P(42.5), which showed slightly
lower strength at 180 days than that for 90 days. The
study recommended further research on the strength
development of high-strength pozzolanic concretes and
investigating the potential effects of different admixture
types on their performance over time.

In conclusion, the above studies contribute valuable
insights to optimizing pozzolanic cement mixtures.
This database of findings can inform the development
of advanced models, such as DRNNs, to predict the
performance of PzC concrete mixture, thereby support-
ing sustainability and enhancing concrete efficiency.

2.3 Modeling Attempts of Pozzolanic Concrete Mixture
Numerous efforts have been made to optimize pozzolanic
concrete mixtures using advanced computational
techniques. These approaches aim to improve the
accuracy and efficiency of predicting critical properties
such as compressive strength, workability, and durability
by utilizing various artificial intelligence (AI) and
machine learning models.

Predicting the compressive strength of pozzolanic
concrete using natural pozzolans was first attempted
in reference Rebouh et al., (2017) by combining neural
networks (NNs) with genetic algorithms (GAs). Their
hybrid NN-GA model showed strong predictive power
with a high correlation value of 0.93. By integrating the
optimization capabilities of GAs with the prediction
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capabilities of NN, this approach advances state-of-the-
art artificial intelligence model accuracy in the building
materials domain.

Similarly, a computer-aided method for predicting
pozzolanic concrete mixtures’ slump and compressive
strength was established in Kao et al. (2018). Their
model—verified using experimental data—proved to be
very beneficial for pozzolanic concrete mix design by
allowing for more exact control over concrete qualities
during the design phase. The technique considers the two
most important aspects of concrete performance—its
strength and workability.

To go even further, reference Moradi et al., (2021)
examined the compressive strength of pozzolanic
concrete with metakaolin (MK) or silica fume (SF) and
compared two models, multiple linear regression (MLR)
and artificial neural networks (ANN). According to their
findings, the ANN model outperformed the MLR model
significantly, with a correlation value of 0.9961. The
study findings suggested that predicting the behavior of
pozzolanic concrete using ANN models is the best option
since they are better at capturing complicated non-linear
correlations in material parameters.

In order to make these models even better, reference
Ashrafian et al., (2024a) combined ANN with global
sensitivity analysis to determine which variables most
impact metakaolin concrete’s compressive strength.
They found that compressive strength was most affected
by MK-specific surface area and SiO,/Al,O; ratio. Once
they identified these critical factors, they helped create
more efficient concrete mixes by increasing the model’s
predicted accuracies.

Using a REPtree model, pozzolanic concrete that
incorporates industrial byproducts was evaluated more
recently in reference (Ashrafian et al., 2024b). With a
correlation value of 0.960 and an RMSE of 7.884 MPa, the
REPtree model achieved better performance than other
machine learning models, according to their analysis. A
water-to-cement (w/c) ratio of 0.17, a superplasticizer-to-
cement ratio of 1.88%, and a supplemental cementitious
material-to-binder ratio of 0.15 were the ideal mix
proportions predicted by this ensemble meta-model,
which was created to forecast the cement content at
584 kg/m?. Utilizing industrial byproducts in their study
highlights the possibility of implementing sustainable
techniques in the manufacturing of concrete.

Other  computational approaches have been
investigated to further investigate the feasibility of using
deep learning models and support vector machines
(SVMs) for pozzolanic mixture performance prediction.
These models, in conjunction with experimental solid
databases, help researchers and engineers develop the
ideal mix proportions that reduce material costs and
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improve concrete manufacturing sustainability (Salami
etal.,, 2021).

Al-based methodologies such as ANN, SVM, REPtree,
and hybrid models like NN-GA may optimize concrete
qualities in the design of pozzolanic concrete mixtures.
These models can improve pozzolanic concrete’s
performance and longevity, facilitate the efficient
investigation of mix design factors, and increase the
precision of strength forecasts.

Despite these advances, the potential for applying
DRNN s to predict the properties of PzC concrete remains
an untapped opportunity. DRNNs, which have shown
great success in handling complex, high-dimensional
data in other applications (Alshehri et al., 2023; Idriss &
Owais, 2024), could be particularly effective when paired
with the GSA to better understand the underlying factors
influencing pozzolanic concrete properties. Given that
DRNNs have not yet been applied to this problem, it
presents an exciting and valuable avenue for this study to
be explored.

2.4 Global Sensitivity Analysis

Sensitivity analysis (SA) is typically performed as a post-
processing step after the measurement or prediction of
a variable. Due to the increasing demand for samples,
conducting SA in laboratory conditions is often
challenging, and thus, the majority of SA for material
properties is carried out during the modeling phase. The
accuracy of any SA technique heavily depends on the
model’s ability to simulate the effect of input factors on
the output variable. In general, SA aims to assess how
changes in the input variables of a numerical model
affect the variations in the response (output) variable.
The complexity and objectives of SA are determined
by the specific modeling domain in which it is applied.
Throughout the SA process, several critical decisions
must be made by the analyst, starting with the selection
of the output modeling approach, determining the
input factor domain limits, deciding how to navigate
the input factor space, and choosing the appropriate SA
methodology (Owais et al., 2024).

SA is generally divided into two categories: local
sensitivity analysis (LSA) and global sensitivity analysis
(GSA), based on the extent of input factor variation.
LSA focuses on measuring the sensitivity of the output
factor by varying one input factor at a time, starting from
a reference or ideal value, while keeping all other inputs
at their nominal levels (e.g., the mean). In contrast, GSA
takes into consideration changes in all input factors when
evaluating sensitivity throughout the whole input factor
space. Because of this, GSA is able to take into account
interactions between input variables, while LSA is limited
to analyzing “one-variable-at-a-time” (OAT). For a more
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complete picture of input—output correlations, GSA may
investigate both OAT and “all-variables-at-a-time” (AAT)
(Schwartz et al., 2013).

To provide a more comprehensive view of the system’s
behavior, GSA may also deal with cases where the input
elements are constant or changing. Using the right
approach to answer the questions posed is essential
when doing SA. Some older methods are still in use,
such as partial derivatives, but newer ones provide more
sophisticated approaches, such as the elementary effects
test (Morris, 1991), variance-based sensitivity analysis
(Saltelli, et al., 2008), and density sensitivity (Spear
& Hornberger, 1980). These approaches use various
indicators, such as the variance of the distributions of
the input variables or the correlation between them.
However, most of these indicators, with the exception of
partial derivatives, cannot be easily estimated analytically
(Owais & Ahmed, 2022; Pianosi et al., 2016). Therefore,
sampling algorithms, such as Latin Hypercube Sampling
(LHS) or Monte Carlo (MC) simulations, are commonly
employed to compute these indices (Tarantola et al,
2012).

Currently, GSA is widely used in a variety of appli-
cations, including model verification and calibration,
uncertainty reduction, robust decision-making, and sys-
tem controller analysis (Nguyen & Kok, 2007; Nossent
et al.,, 2011; Shin et al., 2013; Sieber & Uhlenbrook, 2005).
This is largely because GSA overcomes the limitations of
LSA by providing a more holistic understanding of how
input factors affect system performance. However, to the
best of the authors’ knowledge, GSA has not yet been
applied in the analysis of pozzolanic concrete mixtures.
Therefore, one of the key contributions of this study will
be the application of VBSA to PzC concrete mix design.
This will provide a novel insight into the sensitivity of
PzC properties to different input variables, allowing for
more precise and reliable optimization of the mixture. By
incorporating VBSA into the study of PzC mixtures, the
research aims to improve our understanding of how vari-
ous factors influence the performance of pozzolanic con-
crete and enhance the overall efficiency and sustainability
of concrete mix design.

2.5 Research Significance

To this end, this study evaluates various types of
pozzolana, assessing their effectiveness and optimizing
their portions to create efficient, sustainable, and eco-
friendly concrete. Additionally, it examines the best
stage for incorporating pozzolana with cement by
evaluating the recommended incorporation methods. To
predict the compressive strength of pozzolanic concrete
containing one or more natural or artificial pozzolanas,
this study employs a novel framework of analysis based
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on the DRNNSs as an innovative ML tool and VBSA as
one of the GSA techniques. The DRNNs demonstrated
superior performance compared to traditional ML
tools identified in the literature, significantly excelling
in various accuracy metrics. Following the modeling
phase, the VBSA is conducted to identify the primary
factors influencing compressive strength. The main
contributions of the current study can be summarized as
follows.

2.5.1 First Application of DRNNs in Pozzolanic Concrete
Modeling

To the best of the authors’ knowledge, this is the first
study to apply Deep Residual Neural Networks (DRNN5)
for predicting the compressive strength of pozzolanic
cement-based concrete mixtures. While conventional
neural networks (e.g., ANN, CNN, LSTM) have been
applied in civil engineering contexts, the use of DRNNs—
capable of deeper architectures without performance
degradation—has not yet been explored in this domain.

2.5.2 Integration with Global Sensitivity Analysis (VBSA)
Although previous research has used basic sensitivity
analysis tools in cement and concrete applications,
this is the first study to integrate a DRNN model with
variance-based sensitivity analysis (VBSA) for pozzolanic
concrete. This hybrid framework allows us not only to
predict strength with high accuracy, but also to quantify
and rank the influence of input variables (e.g., pozzolan
type, fineness, admixtures, etc.) on the output in both
isolated and interactive contexts.

2.5.3 Large-Scale and Diverse Dataset with Synthetic
Augmentation

The current study compiled a unique and comprehensive
dataset drawn from 15 different laboratories and
augmented it with 3000 synthetically generated samples.
This enriched dataset captures a wide spectrum of
pozzolanic material behaviors and enables robust model
training and sensitivity analysis across diverse conditions,
something not addressed in earlier literature that
typically relies on small, homogeneous datasets.

2.5.4 Advanced Deep Learning Architecture Tailored
for Static Multivariate Inputs

Unlike image or sequence data for which CNNs and
LSTMs are naturally suited, the current study involves
structured multivariate tabular data. The DRNN
architecture was specially tailored with 36 layers,
convolutional blocks, and residual connections to
effectively handle the nonlinear, high-dimensional
relationships in  concrete mix design. Further
discussion is included in Section 4.1, explaining why
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this architecture offers a significant advancement over
traditional ANN or shallow DL models.

2.5.5 New Practical Insights from Model-Based Optimization
Beyond modeling accuracy, the current study provides
practically relevant recommendations for optimizing mix
proportions, pozzolan substitution ratios, and admixture
combinations.

2.5.6 Contribution to Sustainable Construction

The current study contributes to sustainability in
construction by offering a predictive model to reduce
cement content while maintaining performance, and
a prescriptive tool to guide eco-friendly mix design
decisions. This dual function (prediction + design
guidance) makes the presented framework a novel and
practical contribution to green concrete technology.

3 Input Data

A comprehensive rationale was followed towards
selecting the parameters for the current study. The initial
selection of input parameters was based on domain
knowledge, an extensive review of the literature, and
their physical and chemical relevance to the behavior of
pozzolanic cementitious systems. Specifically, factors
commonly reported to influence compressive strength
are considered, including:

Mix proportions (cement, water, sand, gravel),

Type and content of pozzolans,

Fineness of cement and pozzolans,

Type of grinding (inter vs. separate),

Use of chemical admixtures (superplasticizers, air-
entraining/water-reducing),

o Specimen dimensions and curing age.

© O O © ©

To assess the relative importance of these input
parameters, a Variance-Based Sensitivity Analysis
(VBSA) was applied, as detailed in Sect. 5.2. This analysis
quantifies both the main effect and total effect of each
input feature on the predicted compressive strength at 28
and 90 days. Finally, the feature importance derived from
the VBSA served not only to justify input selection, but
also to optimize mix design in the synthetic data analysis
(Sect. 5.3).

The input data for this study were meticulously gath-
ered from previous research conducted across various
laboratories (i.e., 15 labs), collectively referred to as Xj.
In particular, labl5 represents the study’s results (Miil-
ler & Guido, 2016) as the experimental contribution by
the authors. The data included 126 different concrete
mixtures from different studies using different types
of pozzolan, as mentioned in Table 4. This dataset was
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Table 4 The labs, number of mixtures, and the used pozzolan of

each.
Labno. Number  Type of pozzolan Reference
cn):ixtures
1 4 Basalt Moawad et al,, (2021)
2 4 Basalt with SF Moawad et al., (2023)
3 10 Volcanic tuffs Ghiasvand et al,, (2014)
4 9 Rhyolite and SF Eldahroty et al, (2023)
5 11 NP Perlite, and BFS ~ Fodil and Mohamed (2018)
6 5 Volcanic ash Deboucha et al,, (2015)
7 16 Pumicite with FA Mousavinezhad et al., (2023)
8 8 Metakaolin Paiva et al, (2012)
9 5 Metakaolin Narmatha and Felixkala
(2016)
10 5 Metakaolin Al-Hashem and et al,, (2022)
11 20 Metakaolin William et al., (2019)
12 5 Metakaolin Koneru et al,, (2023)
13 5 Scoria Ayene et al., 2023)
14 7 Scoria Ozvan et al, (2012)
15 12 NP Hassanein et al,, (2022)

systematically organized into six primary categories: mix
proportions, types of pozzolan, fineness, additives, grind-
ing type, and specimen dimensions. Additionally, to facil-
itate comprehensive data analysis, an extra 3,000 sample
records were synthetically generated based on the col-
lected data statistics, enriching the dataset and enabling
more robust statistical evaluations after the modeling
stage.

Table 5 provides a comprehensive overview of the input
and output data parameters, detailing each category’s
associated units, modeled symbols, and statistical ranges,
including minimum, maximum, and mean values.
For instance, the mix proportions category includes
crucial parameters such as gravel content, sand content,
water content, and cement content. Each parameter
is quantified in kg/m?3 highlighting the variations in
mixture compositions utilized across different studies.
Additionally, the pozzolana parameters include both the
types and contents of different pozzolans, where Xg and
Xo represent the quantities of two distinct pozzolana
types incorporated in the concrete mix.

The collected data encompassed a wide variety of
both natural and artificial pozzolans, which were
subsequently coded for model development. The coding
scheme is outlined in Table 6, providing clarity on the
types of pozzolana incorporated in the analysis and their
corresponding codes.

The fineness of both cement and pozzolana is repre-
sented in terms of specific surface area (cm?/gm), with
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Table 5 The input and output data nomination.
Category Input parameter Unit Modeled Range
symbol
Minimum Maximum Mean
Laboratory Lab no. = X, - - -
Mix proportions Gravel content kg/m? X5 627 1640.27 1014.362
Sand content kg/m? X5 204 964 71743
Water content kg/m? Xy 1014 225.26 165.18
Cement content kg/m3 X5 1183 620 33823
Pozzolana Pozzolanal type - X0 - - -
Pozzolan 2 type - X1 - - -
Pozzolana 1 content kg/m3 Xg 0 160 4543
Pozzolana 2 content kg/m3 Xy 0 130 5.83
Fineness Cement cm?/gm X, 2965 6775 1985.36
Pozzolana cm?/gm X3 4060 9503 3068.33
Additives Admixture] kg/m?* X 0 135 2.73
Admixture2 kg/m? X, 0 10 047
Grinding type Inter/separate - Xis - - -
Specimen Dimensions - Xi4 - - -
Output variable Compressive strength at 28_days MPa Y, 14.94 9533 4346
Compressive strength at 90_days MPa Y, 19.54 88.5 27.24

" Integer variable

Table 6 Pozzolan type and its entered code.

Pozzolan type Pozzolan code

Basalt

Volcanic tuff
Rhyolite

Natural pozzolan
Perlite

Volcanic ash
Pumicite
Metakaolin
Scoria

Silica fume

— = O 00 N O U1 A W N —

Blast furnace slag

Table 7 The entered nomination for the fineness values.

Component Fineness (cmzlgm)

Cement <3500  3500:5000 >5000
Pozzolan <5000 5000:7900 >8000
Entered value expression 1 2 3

its values assigned coded numbers for ease of analy-
sis. Table 7 shows the fineness classification of cement
and pozzolana according to the specified requirements.
To further understand how fineness might affect the

material qualities and performance of the finished con-
crete, this chart categorizes fineness into three separate
levels. There are three distinct ranges for cement fine-
ness, defined by specific surface area: below 3500 cm?/
gm, between 3500 and 5000 cm?/gm, and over 5000 cm?/
gm. In the same way, pozzolana fineness is classified as
follows: less than 5000 cm?/gm, between 5000 and 7900
cm?/gm, and equal to or higher than 8000 cm?/gm. Using
this categorization, we can better grasp how varying
degrees of fineness impact the pozzolanic reactivity and
general performance of concrete mixes.

Two types of admixtures were included in the param-
eters: admixture 1 represented different types of super-
plasticizers, and admixture 2 represented additional
types of admixtures (water-reducing or air-entraining)
used with the superplasticizers.

Finally, the compressive strengths at 28 and 90 days,
Y1 and Y5, respectively, are the outcome variables of
importance in this investigation. These variables serve
as essential performance indicators for the pozzolanic
concrete being studied, allowing a comprehensive
evaluation of the impact of different input parameters on
strength development over time.

As a first step toward further study, this thorough data
collection and classification will allow us to understand
better how various mix components affect the
compressive strength of pozzolanic concrete.

During preprocessing, we applied both statistical and
domain-based outlier detection techniques. Z-score
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filtering was used to flag values beyond+3 standard
deviations from the mean, and they were carefully
reviewed. Flagged values were cross-checked against
known physical limits and published ranges in pozzolanic
concrete literature. For example, excessively high or low
water-to-cement ratios or unrealistic pozzolan contents
were identified, excluded, or corrected. Finally, scatter
plots and histograms were used to further confirm
the removal of spurious entries before training the
model. Only data points that passed both statistical
and engineering plausibility checks were retained for
model training and validation. To address potential
inconsistencies, biases, and the data preprocessing steps
applied to ensure dataset integrity, particular precautions
are considered in the current study and summarized as
follows:

+ The compiled dataset consists of experimental data
from 15 different laboratories (as indicated in Table 4),
each contributing unique pozzolanic concrete mix
compositions and test results. Recognizing the poten-
tial variability in measurement techniques, units, and
mix design practices across these sources, a multi-
level consistency verification procedure was applied,
including: standardizing units (e.g., kg/m? for all mate-
rial quantities, cm?/g for fineness), harmonizing age
categories for compressive strength (e.g., interpolating
missing values to unify 28-day and 90-day datasets)
and cross-validating outlier values against reported lit-
erature ranges to flag potential errors.

«+ Since the datasets sourced from different studies may
be skewed toward specific pozzolan types, curing
conditions, or strength classes, particular steps were
implemented to mitigate these biases, including: aug-
mented the dataset with 3,000 synthetic samples gen-
erated using statistical distributions derived from the
collected data, and applied data normalization and
encoding techniques, especially for categorical varia-
bles like pozzolan type and grinding method, to ensure
equitable representation during model training.

+ Instances of missing or incomplete entries were care-
fully addressed: first, imposition using domain-spe-
cific heuristics (e.g., inferring water content based on
known water—cement ratios). Second, the exclusion
of records with critical missing or inconsistent fields
that could not be reliably estimated. After cleaning,
only records with complete and validated parameter
sets were included in the modeling phase, ensuring the
model was trained on high-quality, consistent data.

+ The effectiveness of these cleaning and standardiza-
tion steps was validated through: goodness-of-fit
evaluation of the DRNN model, which showed mini-
mal overfitting and balanced error distributions (see
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Fig. 10). Error independence and normality confir-
mation via line-of-equality (LOE) and residual plots.
Reproduction of known experimental trends (e.g., the
effect of pozzolan type and fineness on the strength)
in the synthetic data analysis (Sect. 5.3), affirming the
internal consistency of the dataset.

4 Analysis Framework

The developed framework comprises four main steps:
data preparation, modeling, testing, and post-processing
analysis. In the first step, the data are prepared, and the
relevant components and their respective domain areas
are identified, as described in Sect. 3. The second step
involves processing the literature data categories, after
which the combined data are input into the DRNNs
model, leaving out testing data used to assess the mod-
el’s transfer learning capability across different labs. The
third step focuses on testing the model using various
goodness-of-fit metrics to establish confidence in the
GSA. In the final step, the model is used to forecast com-
pressive strength values for a broad range of synthetically
generated input data based on the predefined factors
domain (i.e., input data description). The post-processing
tool, VBSA, generates sensitivity results/indices. These
phases are illustrated in the general workflow presented
in Fig. 7.

4.1 Machine Learning Technology

ML emerged as a subfield of artificial intelligence in the
1990s. Unlike symbolic approaches, it utilizes statistical
and probabilistic models and tools (Langley, 2011;
Rosental, 2003). In essence, ML enables computers
to learn to perform specific tasks by analyzing large
datasets (Dietterich, 2000; Miiller & Guido, 2016). Before
applying these methods, a step called feature extraction
is necessary to identify the characteristics that provide
the most relevant information. The sample data are then
used to train the system to recognize features and discern
patterns (Avci et al, 2021; Haenlein & Kaplan, 2019;
Marani & Nehdi, 2020). Deep Learning (DL) methods
were introduced to overcome the limitations of manually
designed features in complex ML applications (Avci
et al.,, 2021; Owais, 2024b). DL is inspired by discoveries
in neuroscience and mimics how the nervous system
processes and communicates information. DL layers
consist of hidden layers in an artificial neural network
and involve advanced algorithms.

Furthermore, based on training data, ML can be clas-
sified as supervised, unsupervised, semi-supervised,
or reinforcement learning (Alpaydin, 2020; Ivanovic &
Radovanovic, 2015). Supervised and unsupervised learn-
ing are the most widely used types of machine learning,
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o Identify the number of input factors.
e Choose the sampling strategy.

e Choose the sample size.
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Fig. 7 The framework of analyzing PzC concrete mixtures.

especially in engineering (Almutairi & Owais, 2025;
Taffese & Sistonen, 2017). In supervised learning, the sys-
tem learns from a dataset containing both input values
and their corresponding outputs, allowing it to predict
future outcomes based on this relationship. On the other
hand, unsupervised learning involves datasets where only
the inputs are known, and the system must find patterns
or predict outputs without explicit guidance (Taffese
et al., 2015). The modeling conducted in this study falls
under supervised learning.

DL techniques, specifically Deep Neural Networks,
were developed to address the limitations of hand-crafted
features in advanced ML systems (Avci et al., 2021;
Haenlein & Kaplan, 2019). DL models can automatically
connect features to desired outputs and perform feature
extraction (Schmidhuber, 2015). With adequate training,
DL systems can directly map raw inputs to target outputs
without needing explicit feature extraction, and they can
identify hierarchical abstract features that explain simpler
learned patterns (Owais & Sayed, 2025). This allows DL
algorithms to break down complex tasks into manageable
problems and solve them effectively (Owais, 2024a).

The compressive strength of PzC concrete mixtures
is a complex phenomenon influenced by numerous
factors with highly correlated interactions. To model this
complexity, convolution layers are utilized in this work. The
developed framework aims to uncover latent connections
between input and output variables while achieving
optimal prediction accuracy. Reference Du et al., (2016)
introduced the Residual Network (ResNet) concept to the
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DL framework to improve gradient propagation in very
deep networks and resolve associated challenges. ResNet
uses shortcut connections that bypass several network
layers, allowing high-accuracy training and enabling layers
to learn residual functions from layer inputs rather than
unrelated functions (Almutairi & Owais, 2024; Alshehri
etal., 2023). This concept is applied in this work using Deep
Residual Neural Networks (DRNNS).

The depth of the DRNNs used is set at 36 layers,
divided into three main sections:

o The first section includes an input layer with a
convolutional layer (CL), a rectified linear unit
activation layer (ReLU), and a batch normalization
layer (BNL).

o The second section consists of a stack of four
Residual Building Units (ResBU), which form the
core of the structure.

+ The final section contains three layers: a fully con-
nected layer (FCL), a Softmax layer, and an output
layer.

The first layer normalizes the input data before passing
it into the network. This normalization process adjusts
the incoming data by subtracting the mean values.
Table 8 provides the mathematical notations used in the
proposed DRNN:S, highlighting their key functions. The
controlling functions are as follows:

Hy1 = RelU[f (H)) + id(H))], (1)
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Table 8 Nomenclature.

Symbol Definition

Hi Is the output of the I resbu

id(Hy) Is the identity function

H, Is the input of the ™ resbu

f(H) Is the residual function

G Is the batch input value

G Is the normalized activation value

Yo Is the mean of the predicted compressive strength values
Ym Is the mean of the measured compressive strength values
y Is compressive strength after 28 days

€ Is an Epsilon attribute

B Is a learnable offset

s Is the mini-batch mean

UBZ Is the mini-batch variance

n Is the number of total data points

p Is a subscript that denotes predicted values
m Is a subscript that denotes measured values
z Is the input values of the Softmax layer

y Is a learnable scale factor

r Is the sequence length

t Is the number of testing data points
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Each Residual Building Unit (ResBU) in the proposed
framework is composed of two parts: the main branch
and the residual branch. The main branch contains six
layers: two convolution layers (CL), two rectified linear
unit (ReLU) activations, and two batch normalization
layers (BNL). The BNL serves as an intermediary

MSE =
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between the CL and the ReLU, maintaining this structure
consistently throughout the Deep Residual Neural
Networks (DRNNs). The residual branch, functioning
as a shortcut, bypasses the first five layers of the main
branch (i.e, CL-BNL-ReLU-CL-BNL), connecting
directly before the final ReLU. The main branch then
incorporates the output of the residual branch through
an elementwise addition before the final activation layer.
The computations within each ResBU follow Eq. (1).
Interestingly, the identity function (id(H_l)) in the
shortcut path does not add any computational burden
but ensures a smoother gradient flow (Du et al., 2016;
Owais et al., 2020a).

As illustrated in Fig. 8a, each ResBU includes both
a main and a residual branch. In the main branch, each
convolutional layer is followed by a BNL and a ReLU acti-
vation. The shortcut in the residual branch allows input
values to bypass the main branch’s layers and connect
directly to the final ReLU layer, as shown in Fig. 8b. The
residual output is combined with the main output before
the final activation layer. This configuration ensures effi-
cient gradient propagation without increasing the com-
putational complexity (Du et al., 2016).

The convolution layers (CL) perform their task by
applying filters over the input data, learning internal
features through these filters, which extract local
patterns. The CL generates feature maps using sliding
filters that compute the dot product of their respective
weights, inputs, and biases (Zang et al., 2018). Following
this, the BNL regularizes the output to prevent overfitting
(Ioffe & Szegedy, 1502). Additionally, the BNL accelerates
the training process by normalizing and reorienting each
input channel, improving the model’s robustness and
reducing sensitivity to initialization (Goodfelow et al,
2016). Equation (3) governs the mini-batch scaling and
shifting process in the BNL, where learnable parameters
(y and p) adjust the scaling, and the epsilon value (¢)
ensures numerical stability during training (Almutairi
et al., 2024).

The output from the BNL is passed through the ReLU
activation, which introduces non-linearity and enables
the network to learn complex representations (Szegedy,
et al.,, 2015). Equation (4) applies the ReLU function to
each input element (z]v), preventing negative values while
maintaining the input size. ReLU was chosen for its
superior performance compared to other activation
functions like hyperbolic tangent or sigmoid, allowing for
faster training and more accurate generalization without
requiring extensive deep-learning iterations (Owais et al.,
2020b; Ramachandran et al., 1710).

In the fully connected layer (FCL), all neurons are
connected in an all-to-all manner with the preceding
layer, allowing the network to utilize all previously



Abdelsattar et al. Int J Concr Struct Mater (2025) 19:77 Page 16 of 30
————
;’ -~ - =~ S
g H, S .
= /, l N
2 / \
2 / \
/ \
2 / \
= ! \
2 / \
= / Batch Norm. \
H v \
i 1 ’, ReLU “
I | Residual BuildingUnit | 1 ! id(H)) 1
= | 1 1 ]
21 I I 1
3 [ Residual Building Unit ] I I :
w
2| ] Batch Norm. H
= ' [ Residual Building Unit | : 1 I
= | \ fHD !
i1 | Residual Building Unit | 1 \ H
| M —————— —————————— J \ 1
\ /
£ Fully Connected /
$ J ‘\\ ReLU /
& N\ v !
<
£ \ = 1 !
£ 1.1 = ReLU[f(H) + td(H)] /
N JRe
N N ,/
~ ~ ’/

(a) The main structure
Fig. 8 The employed DRNNSs structure.

learned features for the most accurate predictions
(Goodfelow et al., 2016; Owais et al., 2019). The FCL
is linked to the Softmax layer, which calculates the
probability distribution of the predicted compressive
strength values. The Softmax function, described by
Eq. (5), is a normalized exponential function used for
multi-class classification. It generalizes the logistic
sigmoid function for this purpose (Bishop, 2006).

Finally, at the output layer, the model’s performance
is measured using the loss function and mean-squared
error (MSE), calculated by Egs. (6) and (7). These metrics
help adjust the difference between predicted and actual
compressive strength values. During the training process,
36 filters of size four are applied in each CL, generating 36
feature maps. A mini-batch size of 256 is used, employing
the stochastic gradient descent algorithm, which is
optimal for weight initialization, particularly in networks
using ReLU layers (He et al., 2015; Owais, 2024c).

4.2 Goodness-of-Fit Statistics
The DRNNs model employed in this study is
considered valuable as it offers an alternative to the

-
Il T

(b) The structure of the ResBU

physical laboratory processes for conducting various
experiments using the GSA procedure. Replacing
these experimental setups with a numerical model for
predicting the compressive strength of PzC concrete
mixtures can be especially useful, given that the VBSA
approach requires numerous samples to achieve
convergence (as shown in the results section). The
importance of goodness-of-fit metrics is emphasized
since the reliability of VBSA conclusions is contingent
upon these values. The literature presents many such
metrics, each assessing model accuracy differently
(Owais & Alshehri, 2020).

Coefficient of determination (R?), root mean square
error (RMSE), mean absolute percentage error (MAPE),
and residual plots are some of the well-established
performance measures utilized to assess the model’s
predictions in this study (Pellinen, 2002). For every
model, these metrics may be computed separately.
The correlation between anticipated and observed
values, denoted by R? is calculated using the following
equation:
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Relying on a single accuracy metric (e.g., R*) may be
misleading, as it does not comprehensively assess model
performance. Therefore, using a combination of accuracy
metrics is crucial for drawing reliable conclusions about
model behavior. Additional global bias indicators should
be examined to assess model bias. The line-of-equality
(LOE) plot, which displays the difference between the
observed and predicted values, is handy for this purpose.
Ideally, this plot shows a random distribution of points
with constant width around the LOE. This tool helps
check whether the model meets assumptions of constant
variance, normality, and independence of errors (Hussain
& Akbar, 2022; Tsai et al., 1998).

The root mean square error (RMSE) is a quadratic
scoring method that reflects the average magnitude of
prediction errors, while MAPE is a linear metric that
assigns equal importance to all individual deviations
from the mean error (Owais et al., 2021). Both RMSE
and MAPE are used in this study to assess the deviations

between predicted and actual values, with their
calculations shown below:
"’Ll (J’mi—ypi 2
RMSE = || == 2m 7 100, ©)
n
(1—1 rymi*ypi-l
MAPE = == Imi_ « 100. (10)

These collective metrics provide a thorough evaluation
of model performance, enabling more accurate
predictions and reliable conclusions regarding the
behavior of PzC concrete mixtures.

4.3 Variance-Based GSA

While DL methods are powerful tools for making pre-
dictions, they often lack transparency when understand-
ing the underlying relationships in their models, making
interpretation difficult (Jiang et al., 2020). To address this
issue, sensitivity analysis (SA) can be employed to clarify
the cause-and-effect dynamics between inputs and out-
puts of a trained DRNNs model. This section introduces
the VBSA for predicting the compressive strength of
PzC concrete mixtures. Integrating VBSA into the analy-
sis enables a more comprehensive understanding of the
relationships between the input factors and the predicted
compressive strength. Additionally, it allows for the
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quantitative evaluation of how much each input variable
contributes to the final prediction.

To reduce the need for extensive experimental test-
ing, a model-based approach is proposed, which
involves calculating the partial derivatives as follows:

Compressivestrengthafter28/90days — y
. ) _ Yy
—f(xl,xZ,...,xL....,xk).Rk—>RSz—a—xi,VX. (11)

In this equation, S; represents the sensitivity index,
which indicates the significance of the input variable x;.
in determining the value of y. However, the local sensi-
tivity analysis (LSA) approach has two key limitations:
some models may not be differentiable, and the sensi-
tivity index can give misleading results when the input
variables are highly correlated. This method also relies
on strong assumptions regarding model normality, lin-
earity, and monotonicity, making it unsuitable for more
complex models.

To overcome these challenges, VBSA was developed.
Unlike LSA, VBSA analyzes a global set of samples,
accounting for variable interactions (joint effects)
among the input variables. Its variance-based form
produces robust sensitivity indices across the entire
input domain, capturing the influence of each input
factor while allowing all others to vary (Owais &
Matouk, 2021; Saisana et al., 2005). In the context
of the complex DRNN model used in this study,
VBSA provides a deep insight into how multiple
intercorrelated variables interact with the output.
Two primary indices are used in VBSA to evaluate the
importance of the input factors (Saltelli et al., 2006):

Sf — Vx,[EXN,(y/xl)]

: , Vi,
13 V[y]

(12)

Ex (V. [ly/X~i
SiT: XNZ( x,[y/ l]),in.
Viyl
In these equations, «x; is the input variable under

analysis, and X~; refers to all other variables except x;.
Equation (12) defines the first-order sensitivity index

(13)

(S{ ), which measures the contribution of x; to the total
variance of y without accounting for interactions with
other variables. Meanwhile, Eq. (13) calculates the total
sensitivity index (SiT), which includes both the direct and
interactive effects of x; on y. Both indices range from 0
to 1, where 1 indicates that the variable fully explains the
variation in y, and 0 implies no influence on the outcome.

The first-order index (S{ ) helps rank the significance of
input variables, but a low value should not automatically
dismiss the variable as unimportant. Instead, the total
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effect index (S{ ) is a more reliable indicator of whether a
variable impacts the output (Owais et al., 2013).

In practice, probability density functions are assigned
to each variable to calculate these indices. Fortunately,
the precise representation provided by the DRNNs
enables high-confidence sensitivity analysis using Latin
hypercube sampling (LHS), which explores the entire
input space (Saltelli et al., 2006). The VBSA-LHS process
can be summarized as follows:

Generate a sample matrix T:

X11 X12 ... X1i X1k
X21 X22 X2i

T = (14)
Xul Xu2 -+« Xui xuk

+ Here, k is the number of input variables, and y is the
sample size. Each row represents an experiment from
the LHS trials.

« Divide the sample matrix 7 into two equal parts: A
and B.

+ Create a new matrix B by replacing the x; column in
B with the corresponding column from A.

+ Compute the output vectors Y using the DRNN
model:

<
m\txi

"
2
_ +1
gyf— |’ . (15)
yu:/Z y;‘

Finally, calculate the first-order (S{ ) and total (SLT )
sensitivity indices for each variable as follows:

2vA yvB _ A2
szﬁY Y E(Y),

16
: Var(Y4) (16)

2yB yB 4 p(yA)
sT=1-%
: Var(Y4)

(17)

The purpose of Eqgs. (14—17) is to average the effects
of all input variables to determine their global impact on
the response variable. It’s important to note that the first-

order sensitivity (S{ ) represents the effect of a variable
when all others are held constant (OAT). Conversely, the
total sensitivity (SI.T) captures the variable’s impact when
others are allowed to vary (AAT). If the relationships
between the variables are linear and independent, the
two indices will yield similar values. However, this
averaging method is crucial because the model does not
guarantee linearity, monotonicity, or independence. It
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is also essential to select an adequate sample size y to
ensure that the variance and covariance are properly
represented, and adjustments to this value will be
discussed in the subsequent section.

5 Numerical Study

5.1 Evaluation of DRNNS

The methods developed in this study were implemented
using MATLAB 2021a on a personal computer equipped
with a 2.6 GHz Intel® Xeon® CPU, 64 GB of RAM, and a
GeForce GTX 1050 graphics card. The input and output
data from the literature database were normalized for use
in the proposed DRNNSs architecture.

The model validation procedures were carefully
designed to ensure the robustness, accuracy, and
generalizability of the Deep Recurrent Neural
Network (DRNN) model. These procedures included
a combination of train—test splitting, cross-validation,
overfitting prevention techniques, and tests for model
generalizability, including transfer learning capabilities.

To begin, the dataset was divided using a standard
80/20 train—test split. In this setup, 80% of the data
was allocated for training the DRNN model, while the
remaining 20% was set aside for independent testing.
This division was performed randomly to minimize any
selection bias and to ensure that the test subset accurately
represented the full distribution of the input parameters.
Such a random partitioning helps in producing more
realistic and reliable estimates of model performance on
unseen data.

In addition to the initial train—test split, a fivefold
cross-validation strategy was employed during the
hyperparameter tuning phase to enhance the evaluation
rigor. This approach involved dividing the training
data into five equal folds, iteratively using four folds for
training and one for validation. This method ensured
that the model's performance was not dependent on
any single data partition and allowed for the assessment
of consistency across multiple data subsets. The results
showed a stable performance, with R? values consistently
ranging from 0.91 to 0.94 and RMSE variations within
acceptable limits, highlighting the model’s robustness
and reliability.

To guard against overfitting—a common issue in deep
learning models—several strategies were implemented.
First, residual analysis was conducted, and as illustrated
in Fig. 10, the residual plots showed normally distrib-
uted and independent errors for both training and test-
ing data, with no noticeable trends or clustering. This
suggested a well-fitted model without signs of overfit-
ting. Furthermore, batch normalization layers were inte-
grated throughout the DRNN architecture to regularize
the training process, reduce variance, and improve model



Abdelsattar et al. Int J Concr Struct Mater (2025) 19:77

Page 19 of 30

Table 9 Goodness-of-fit statistics of average DRNNSs predictions compared with different ML tools.

Model Training data Testing data
R? RMSE% MAPE% R? RMSE% MAPE%
MLR 0.75 13.34 10.56 0.72 17 1222
ANN 0.86 6.87 543 0.84 845 573
SVM 0.88 445 3.68 0.88 567 3.88
REPtree 0.92 333 242 0.90 3.98 3.20
CNNs 0.93 312 2.34 0.92 3.89 3.1
LSTMs 0.93 3.13 235 0.90 3.99 3.22
DRNNs 0.95 3.02 2.76 0.94 3.26 2.96
Optimizable DRNNs
100 [ Estimated minimum MSE
—@— Observed minimum MSE
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Fig. 9 Optimizing process of DRNNs hyperparameters.

generalization. Finally, the close alignment of perfor-
mance metrics such as R?, RMSE, and MAPE across
both training and testing sets indicated that the model
successfully captured generalizable patterns rather than
overfitting to the training data.

Lastly, the model’s generalizability and transfer learning
capabilities were critically evaluated. One of the major
strengths of the proposed framework lies in its capacity
to generalize across a broad range of experimental con-
ditions, supported by the diverse data collected from

15 different laboratories. To rigorously test this capabil-
ity, the testing phase was designed to include scenarios
where lab-specific data were withheld from training and
later used to evaluate transfer learning performance. The
results, summarized in Table 9, demonstrated that the
model maintained high predictive accuracy even on pre-
viously unseen data, thereby confirming its strong gener-
alization and transfer learning potential.
During the parameter tuning and training process
for the DRNNs model, each convolutional layer (Conv)
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Fig. 10 True values vs. DRNNS prediction values.

generated 30 feature maps using kernels of size four. The
stochastic gradient descent algorithm was employed with
a mini-batch size of 128. The initial learning rate was set
to 0.02 for weight initialization and decayed exponen-
tially to 0.005 after 30 epochs. As illustrated in Fig. 9,
these parameters were optimized during early hyperpa-
rameter tuning. Figure 10 demonstrates the accuracy of
the DRNNs predictions when compared to the actual
data, showcasing the model’s ability to capture the high
variance in compressive strength as the target output.

A multi-criteria  evaluation was conducted,
comparing the DRNNs with other ML methods.
However, a direct comparison to reported accuracies
in the literature is considered unfair due to the
uniqueness of the collected data. Table 9 highlights
the strong performance of the DRNNs across
various metrics, as discussed in the goodness-of-fit
section when compared to the best-performing ML
methods applied to the same data set. Although models
such as Convolutional Neural Networks (CNNs), Long
Short-Term Memory networks (LSTMs), and Deep
Residual Neural Networks (DRNNSs) fall under the
broader category of deep neural networks, DRNNs are
uniquely suited for modeling problems with complex,
nonlinear dependencies and a relatively structured
but static input space such as ours. CNNs are highly
effective in spatial feature extraction (e.g., images), and
LSTMs excel in temporal sequence modeling. However,
the compressive strength prediction task addressed in
this study involves neither image data nor time-series
patterns but rather tabular multivariate inputs with
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high-dimensional interactions between physical and
chemical features of concrete mix components.

DRNNs offer a distinct advantage due to their
ability to mitigate the vanishing gradient problem in
deep networks using shortcut (residual) connections.
This enables deeper architectures to learn complex
relationships without degradation in performance. The
residual units allowed the network to retain important
low-level features while capturing deeper nonlinear
patterns, which are essential for modeling material
behavior.

To validate this, a benchmarking study was included in
Table 9, where the performance of DRNNs is compared
to CNNs and LSTMs on the same dataset. The results
showed that DRNNs achieved a higher R? value, lower
RMSE, and more stable residual error distribution
compared to both CNNs and LSTMs. These outcomes
confirm that DRNNs are better suited for this type of
material-property prediction problem.

The similar accuracy between the training and testing
phases confirms that the model learned the underlying
patterns without overfitting the data. Model bias was
further evaluated using data distribution around the LOE
in Fig. 10, which indicated a normal error distribution
and evidence of error independence. These validation
steps are crucial for ensuring that the DRNNs effectively
capture the relationships between the input parameters
and the output. If the model accurately learns the latent
features of PzC concrete mixture components and their
role in determining compressive strength, the VBSA
could reliably identify the most important input factors.

5.2 VBSA Results
After validating the DRNNs model, it is now ready for the
VBSA analysis. The model examines k input components,
each divided into ¢ levels, creating a grid of ¢k-by-
¢k prediction points. In this case, with up to eleven
input components and ten values each, around eleven
trillion points are evaluated. To determine the number
of samples required, two approaches can be used:
deterministic and stochastic. Deterministic sampling
systematically selects p samples to uniformly cover the
entire domain, ensuring all areas are represented. On
the other hand, stochastic methods treat input data
as random variables with defined probability density
functions (PDFs) and generate p samples accordingly.
In this study, Latin Hypercube Sampling (LHS) with a
deterministic approach was applied to align with the
fixed mixing design and environmental conditions of PzC
concrete mixtures.

LHS is a statistical method used to generate samples
from a quasi-random multivariate distribution, ensuring
each sample appears uniquely positioned across all
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Fig. 12 Prioritization of parameters by main and total effects after 28 days.

axes. When sampling a function with » variables, each
variable’s range is divided into ¢ intervals with equal
probability, meeting the requirements of the LHS
method. One key advantage of this approach is the
independence of the sampling process, allowing random
samples to be collected sequentially without overlap.
Another benefit is the ability to track which samples have
already been used, ensuring efficient sample collection.
The accuracy of VBSA indices increases with the sam-
ple size p, though available computational resources
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limit it. The challenge lies in determining the appropriate
number of evaluations necessary for reliable sensitivity
indices. As shown in Fig. 11, sensitivity indices stabilize
as the sample size increases, and a sample size of 51,000
was sufficient for the main and total effect indices to
converge.

The VBSA plays a crucial role in ranking the parame-
ters based on their impact on compressive strength, both
independently and in combination with other variables.
The VBSA clearly highlights each parameter’s impact on
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the compressive strength of concrete, both as an inde-
pendent (main effect) and in combination with other
factors (total effect), measured after 28 and 90 days. The
model generated numerous hypothetical records to iden-
tify the general behavior of each parameter, as shown in
Fig. 11. Figure 12 indicates that cement content emerged
as the most influential factor in compressive strength
after 28 days, whether or not other parameters were con-
sidered. The significance of other factors, such as gravel
and water content, the presence of admixtures, and
the use of an additional pozzolan, became more appar-
ent when considering their interactions. These factors
showed promising effects when evaluated together. Also,
Fig. 12 shows that the ranking of parameters based on
their main effect differs from their ranking based on total
effect, except for cement and water content, which con-
sistently showed the most significant influence on com-
pressive strength. Even with extensive sampling, gravel
content, additional pozzolan, and two types of admix-
tures had notable effects when accounting for interac-
tions with other parameters.

Over time, in concrete curing, the prioritization of
these parameters shifted. As depicted in Fig. 13, cement
content remained the most significant factor when its
main effect was isolated, while using additional admix-
tures showed the most substantial impact when con-
sidering other variables. Though pozzolan content had
minimal main effect, it exhibited a robust total effect
when used in combination with other parameters, espe-
cially when two types of pozzolan were used. Similarly,
the fineness of cement and pozzolan, along with the
grinding type, had significant total effects.
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Comparing the total effects after 28 and 90 days
revealed that factors such as grinding type, fineness,
pozzolan type, pozzolan content, and the use of admix-
tures—particularly when two types were used—became
more pronounced over time. Figure 14 demonstrates the
contributions of each parameter to the increase in com-
pressive strength from 28 to 90 days. Cement and gravel
content, combined with using two admixtures, were key
contributors to this increase. The effect of cement fine-
ness also became evident over time.

As can be interpreted, VBSA calculates both main
effect indices (first-order sensitivity) that reflect the
isolated contribution of each input factor to output
variance, and the total effect indices, which include
interaction effects, i.e., how a variable contributes in
combination with others. By comparing the differences
between these two, we identified variables with strong
synergistic behavior, even if their main effects were
moderate or low. For instance, the second pozzolan
type showed a low main effect but a high total effect,
indicating that its influence is primarily through
interactions with other mix components (e.g., cement
content, pozzolan fineness). Admixtures, especially
when combined (superplasticizer + secondary
admixture), display enhanced interaction effects
with water content and cement fineness. The cement
and water contents clearly influence workability and
strength balance, with total effects higher than the
sum of their individual main effects. Finer pozzolans,
particularly when used in combination (e.g., silica
fume + metakaolin), showed enhanced strength
outcomes, suggesting synergistic reactivity. Although
grinding type had limited impact in isolation, its
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interaction with pozzolan fineness and cement content
had notable effects on early strength development.

5.3 Synthetic Data Analysis

As mentioned before, an additional 3,000 synthetic
data records are generated to allow for a more in-depth
exploration of how the main program categories impact
compressive strength. Each mix component exhibited
an optimal weight range that contributed to higher com-
pressive strength values. Figure 15 presents the optimal
weight range for each component as determined by the
model.

The analysis revealed the expected optimal absolute
weights for the components of pozzolanic concrete mix-
tures: sand (400-650 kg/m?), gravel (900-1011 kg/m?),
superplasticizer (13 kg/m?®), additional admixture (if pre-
sent, 10 kg/m?), water/cement ratio (0.5-0.6 for normal
concrete and less than 0.4 for high-strength concrete),
and pozzolan content (100-150 kg/m?). These values
were found to be optimal for achieving high compres-
sive strength. Some high-strength predictions at elevated
w/c ratios reflect model-inferred outcomes based on
multi-factor interactions in the synthetic dataset and
should be interpreted cautiously, considering potential
extrapolation effects beyond the range of typical experi-
mental observations. Figure 16 demonstrates that the
higher the cement content, the higher the compressive
strength. Based on the input data, most studies indicated
that compressive strength often surpassed the speci-
fied design strength. Consequently, reducing the cement
content might be advisable to meet the required strength
more precisely. Only about 15% of the input records met

the specified design strength without significant excess.
For instance, the lowest pozzolanic cement content
required to achieve 25 MPa after 28 days was 259 kg/m?3
if 30% of cement was replaced by scoria (Rosental, 2003)
and 272 kg/m? if 15% of cement was replaced by basalt
(Moawad et al., 2021).

The type and content of pozzolan also significantly
influenced compressive strength, as shown in Fig. 17.
The analysis reveals that mixtures including silica fume
and volcanic ash consistently produced higher predicted
compressive strength values across different optimal
ranges (i.e., 100-150 kg/m? substitution levels) (Eldah-
roty et al., 2023). Some natural pozzolans demonstrated
compressive strength values close to those achieved by
artificial pozzolans, making local availability a key factor
in pozzolan selection.

The model found that a pozzolan content of
approximately 150 kg/m® was optimal. While the model
treated pozzolan content in absolute terms, determining
the optimal pozzolan-to-cement ratio can improve
the overall mix design and contribute to reducing CO,
emissions. Table 10 outlines the optimal substitution
ratios of various pozzolan types, based on the collected
data.

Most natural pozzolans were effective at substitution
ratios between 10 and 15%, with metakaolin and scoria
reaching up to 20% and pumicite allowing up to 30%
substitution for normal concrete. Depending on their
pozzolanic properties, industrial and agricultural
byproducts could support higher substitution ratios.

Fineness, both of cement and pozzolan, was also stud-
ied, as shown in Fig. 18. The results showed that the
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compressive strength of pozzolanic concrete increased
as the fineness of pozzolan increased. Finer pozzolans
react more readily with calcium hydroxide (Ca(OH),),
produced during cement hydration, forming more cal-
cium silicate hydrate (C—S—H), which is responsible for
strength development. However, increased cement fine-
ness led to a reduction in compressive strength, likely
due to a larger surface area that may cause incomplete
hydration. Over time, this effect may stabilize, suggest-
ing that using finer pozzolan with coarser cement could
be advantageous.
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Regarding grinding methods, both inter-grinding and
separate grinding had a similar effect on compressive
strength, with separate grinding yielding slightly higher
values. The presence of admixtures, particularly when
used alongside superplasticizers, further enhanced
compressive strength.

In conclusion, the synthetic data and model results
highlighted the importance of optimizing cement and
pozzolan content, considering local pozzolan availabil-
ity, fineness of materials, and the use of admixtures to
achieve the desired compressive strength while reduc-
ing resource use and emissions. The proposed model
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results underscore the critical role of cement content in
achieving the desired compressive strength. Optimizing
the minimum cement content necessary for the specific
design strength is essential. Selection of pozzolan type
depends on its pozzolanic activity, availability, ease of
preparation, and cost. NPz substitution typically ranges
from 10 to 15%, except for metakaolin and scoria, which
can reach 20%, and pumicite, which may increase to
30%. APz can achieve even higher substitution ratios.

Finer pozzolans generally lead to higher compressive
strength, and it is recommended to use separate grind-
ing for slightly better results when replacing cement with
pozzolan. However, this recommendation differs from
Ghiasvand et al. (2014), who advocated for inter-grinding
pozzolan with clinker as a more energy-efficient tech-
nique while enhancing compressive strength.

With the aid of the VBSA, the trained model could con-
sider the absolute effect of each parameter, which clarifies
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Table 10 Optimal substitution ratios for different pozzolan
types.

Type of pozzolan

Optimum substitution Substitute for
ratio (range)

Dealuminated Kaolin DK 25% Cement
Calcined clay 20% Cement
Metakaolin (7.5-20)% Cement
Scoria 20% Cement
Trass 20-25% Clinker/cement
Volcanic Tuffs 10% Cement
Basalt 7.5-15% Cement
Trachyte Not more than 25% Cement
Zeolite 3% Clinker
Pumicite 20-30% Cement
Fly ash FA 15-35% Cement
Silica fume SF 10% Cement
Blast furnace slag BFS 20% Cement

the total effect of each parameter over time. Upon the
VBSA results, it was noticed that the total effect of using
an additional type of pozzolan was high, although its
main effect was not noticeable. Then, the model’s recom-
mendations include using two types of pozzolan, incor-
porating admixtures, paying attention to the fineness of
cement and pozzolan, and favoring separate grinding for
optimal compressive strength.

Finally, the proposed framework—combining DRNNs
with VBSA—is designed to assist engineers and
material designers in selecting and optimizing concrete
mix designs without requiring extensive lab trials.
Specifically, industry professionals can use the model to
predict compressive strength for various combinations of
pozzolan types, proportions, admixtures, and mix ratios
before physical testing. Also, the proposed framework

Compressive strength 28 days MPa

Pozzolan Fineness
Fig. 18 Effect of fineness on compressive strength after 28 days.
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can be used to evaluate trade-offs between performance
and sustainability (e.g, maximizing strength while
minimizing cement content) and to explore optimal
substitution ratios for available local pozzolans, as shown
in Table 10, helping reduce costs and environmental
impact. This predictive capability is especially beneficial
in projects with tight timelines, budgets, or sustainability
goals.

6 Conclusions

This research advances the field of sustainable concrete
production by optimizing pozzolanic cement mixtures,
contributing to the global effort to reduce CO, emis-
sions in the cement industry. Using a hybrid framework
that combines machine learning and sensitivity analysis,
the study leverages both experimental and synthetic data
to model concrete compressive strength with high preci-
sion. The proposed model, based on DRNNSs, achieved
a coefficient of determination (R%) of 0.94 and RMSE
within+3 MPa, confirming its accuracy in predicting
compressive strength across a diverse dataset. By apply-
ing VBSA, the model quantitatively identified the most
influential parameters affecting compressive strength.
Cement content ranked as the most critical factor (total
sensitivity index =~ 0.65), followed by water content,
pozzolan type, and admixture dosage. The model also
revealed strong interaction effects—especially for sec-
ondary pozzolan types and fineness—where their total
effects were substantial (SiT>0.20) despite low direct
contributions. These findings provide measurable insight
into the complex behavior of pozzolanic systems.

The DRNN-VBSA framework is designed to be
scalable and modular. It can be retrained using
local data, deployed in user-friendly tools, and
integrated into existing design workflows. The model

Compressive strength 28 days MPa

Cement Fineness
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demonstrated strong generalization capability with
its foundation in a broad input domain, spanning 15
laboratory datasets and 3,000 augmented samples. This
allows engineers to generate rapid strength predictions
and optimize mix designs based on measurable targets,
such as achieving 28-day strengths of>40 MPa while
minimizing cement use. The study’s findings are
consistent with prior literature and refine it through
quantitative thresholds. For example, optimal pozzolan
substitution ratios were found to be 10-15% for natural
pozzolans like volcanic ash, and up to 20-30% for
metakaolin and pumicite. Finer pozzolans (>8000
cm?/g) enhanced strength by 6-10 MPa compared to
coarser ones. Superplasticizer dosages around 13 kg/
m? and cement contents> 300 kg/m* were associated
with the highest compressive strength. Separate
grinding marginally outperformed inter-grinding in
terms of strength (+ 1-2 MPa), while the latter remains
preferable for energy efficiency. Combinations of two
pozzolan types outperformed single-pozzolan mixes,
highlighting synergistic effects that were evident in
the total sensitivity indices. Cement content remained
the dominant driver of compressive strength across
all curing stages, with other factors—such as gravel
content, water-to-cement ratio, admixture use,
and grinding method—becoming more influential
when evaluated for their interactive contributions.
Between 28 and 90 days of curing, pozzolan-related
parameters (type, content, and grinding method)
became increasingly significant. Synthetic data further
pinpointed optimal weight ranges: 100-150 kg/
m® for pozzolan, 13 kg/m? for superplasticizer, and
water-to-cement ratios of 0.35-0.45 for high-strength
applications. These ranges serve as precise benchmarks
for performance-based mix optimization.

This study also opens measurable avenues for future
research. Promising directions include testing hybrid
natural-synthetic pozzolan blends, refining multi-
admixture strategies, and expanding the framework
to predict durability indicators such as sulfate resist-
ance and chloride permeability, once reliable long-term
datasets are available. Integrating life cycle assessment
(LCA) tools is also recommended to evaluate envi-
ronmental trade-offs in pozzolan sourcing, grinding
energy, and admixture production, particularly in vary-
ing geographic contexts. The proposed DRNN-VBSA
model ultimately forms a foundation for data-driven,
sustainable, and high-performance concrete mix
design.
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