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Abstract 

The cement industry is a significant contributor to CO2 emissions worldwide, which demands new measures 
to reduce its environmental impacts. Therefore, finding solutions to reduce the CO2 emissions in cement production 
became necessary. Pozzolanic materials offer an optimum solution approach with both environmental and functional 
advantages. For the investigation of pozzolan effects on the concrete mixture, the modeling part becomes 
a challenging task. This study models and predicts the compressive strength of pozzolanic cement-based concrete 
using deep residual neural networks (DRNNs) and variance-based sensitivity analysis (VBSA). The designed DRNNs 
architecture uses shortcuts (i.e., residual connections) that bypass some layers in the deep network structure in order 
to alleviate the problem of training with high accuracy. The research also examines crucial aspects such as pozzolan 
type, substitution ratio, component proportions, and grinding processes, using data developed by the authors 
and from different pozzolanic concrete compositions from various studies. The proposed model showed a high 
accuracy of R2 = 0.94 for testing data that outperformed traditional literature models, enabling the generation 
of a large sample of synthetic experimental data for further analysis. The VBSA improves knowledge by prioritizing 
the importance of input factors, resulting in a complete method for designing concrete mixes. The analysis revealed 
that silica fume and volcanic ash were the most effective pozzolans in enhancing compressive strength, followed 
by scoria and metakaolin, with optimal substitution ratios ranging from 10 to 15% for most natural pozzolans 
and up to 20–30% for metakaolin and pumicite. Hence, this newly presented analysis framework offers an optimizing 
tool for pozzolanic concrete mix design that could investigate several pozzolana types/proportions, their efficiency, 
and the structural performance of the final concrete mixture.

Keywords  Concrete mixtures, Deep learning, Global sensitivity analysis, Variance-based models, Pozzolanic cement, 
Sustainable concrete, Machine learning

1  Introduction
Cement production is a highly polluting industry that sig-
nificantly harms the environment due to its substantial emis-
sions. As a sizeable energy-consuming sector, the cement 
industry negatively impacts environmental sustainability, 
mainly by releasing organic pollutants (Jokar & Mokhtar, 
2018). The process of cement production requires vast 
energy, from the diesel used to transport raw materials to 
the mills, to the fuel needed to operate the mills and heat 
the kilns. The heating of raw materials in kilns, essential for 
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forming clinker—the primary component of ordinary Port-
land cement (OPC)—produces harmful emissions such 
as sulfur dioxide (SO₂), nitrogen dioxide (NO₂), and car-
bon dioxide (CO₂). The cement industry is estimated to be 
responsible for approximately 8% of greenhouse gas emis-
sions (Belaïd, 2022), making it a significant contributor to 
global warming. Moreover, dust emissions are released 
during the limestone crushing, clinker production, cement 
manufacturing, and packing stages, further contributing to 
environmental degradation (Katare & Madurwar, 2020).

In Egypt, for instance, the cement industry has grown 
greatly in size and capacity over the last 30 years. In 1975, 
four factories produced 4 million tons per year. Until 
2016, 14 factories produced nearly 38 million tons of 
clinker per year, primarily from dry kilns, with only a tiny 
amount from seven wet kilns in two companies. Egypt’s 
production is estimated to be 1.5% of world production. 
According to Ali et  al. (2016), the manufacturing con-
sumption of raw materials (estimated as tons per year) 
is shown in Fig. 1. Consequently, the pollutants emitted 
by cement plants became further concerning. For exam-
ple, some plants release as much as 23,648 Mg/m3 of dust 
into the atmosphere, along with 512.48 Mg/m3 of carbon 
monoxide (CO), 25.27  Mg/m3 of sulfur dioxide (SO₂), 
and 130.69  Mg/m3 of nitrogen dioxide (NO₂). These 
emissions contribute significantly to air pollution and 
exacerbate health risks for nearby populations while also 
playing a role in climate change. The high emissions lev-
els, especially dust and CO₂, emphasize the urgent need 
for cleaner and more sustainable production methods. 
Addressing these environmental challenges is critical to 
reducing the industry’s carbon footprint and protecting 
the environment and public health (Ali et al., 2016).

Different suggested/applied approaches reduce CO₂ 
emissions as much as possible.  There are different 
options to reduce the required energy and greenhouse 
gas emissions from the cement industry; one of them 

is to change the manufacturing system/criteria (e.g., 
applying CO₂ storage and capture technique). Another 
one is to replace partially/fully the clinker/cement with 
pozzolanic materials. The pozzolanic cement (PzC) is 
produced either by partially replacing the clinker or 
partially replacing the cement in the concrete mixture 
(blended cement). The PzC industry not only contributes 
to reducing CO₂ emissions, but also helps to use existing 
natural resources and save disposal costs of byproducts 
waste. One more  eco-friendly property of PzC is that it 
can react with  Ca(OH)2 with reduced heat emissions, 
unlike the OPC. Therefore, using PzC helps to minimize 
the energy required to produce cement and the heat of 
hydration to produce cement composite (Altwair & 
Kabir, 2010; Dunuweera & Rajapakse, 2018).

The energy consumption in cement production mainly 
results from the grinding and clinkering processes. Using 
pozzolans to replace the clinker/cement can reduce 
energy consumption in grinding (depending on the grain 
size) and thermal energy required for clinking, because 
they would be used as they are. Reference (Ghiasvand 
et  al., 2014) found that grinding the pozzolana (Trass) 
as a replacement for clinker required less energy than 
grinding it as a cement replacement in concrete to achieve 
the same percentage of 45  µm residue. Furthermore, 
reference (Rashwan et  al., 2023a) found that replacing 
cement with 10% by weight of Pozzolana (mafic rocks) 
resulted in a 13.75% decrease in energy consumption to 
produce 1 ton of binder. Reducing the burning process 
rate of raw materials will help reduce pollutant emissions. 
Using the PzC seems to be a promising solution to reduce 
the rate of carrying out that process, which is assumed to 
be the leading cause of CO2 emissions.

The incorporation of pozzolana in the cement and 
concrete industry is influenced by several key factors that 
dictate the behavior and performance of the resulting 
concrete. Some of these factors are directly related to 
the pozzolana itself, including the type of pozzolan 
used, its chemical composition, fineness, the proportion 
incorporated in the mixture, the stage at which it is 
introduced (whether during clinker production or 
directly into the cement), and the number of pozzolan 
types included in the mix. Additionally, factors related 
to the other components of the concrete mixture play 
a significant role. As a result, optimizing pozzolanic 
concrete mixtures requires careful consideration of 
all these variables to produce a more sustainable and 
efficient green concrete (Chihaoui et al., 2022; Golewski, 
2022).

Recent studies have been  concerned with developing 
models that help predict concrete behavior based on 
experimental data from previous studies (Haq et  al., 
2024; Karim et al., 2024; Mottakin et al., 2024; Owais & 

Fig. 1  Manufacturing consumption of raw materials 
from an Egyptian cement plant (Ali et al., 2016)
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Idriss, 2024). Modeling data play a crucial role in saving 
time and resources in labs by providing predictions that 
closely approximate experimental outcomes. Despite 
this, relatively few studies have focused on developing 
models specifically for optimizing pozzolanic concrete 
mixtures. This study bridges the gap by introducing a 
novel machine learning (ML) framework, specifically 
a deep residual neural network (DRNN), combined 
with variance-based sensitivity analysis (VBSA)—an 
innovative global sensitivity analysis (GSA) tool. This 
approach aims to accurately identify and prioritize the 
factors influencing the behavior of pozzolanic concrete.

The DRNNs architecture is particularly well-suited 
for this purpose because it can handle complicated, 
non-linear interactions between controlling variables, 
allowing for more exact predictions of concrete 
performance under different situations (Alshehri et  al., 
2023; Owais, 2024a). The VBSA, which uses the DRNN 
model, offers a systematic technique for determining the 
relative importance of each parameter (Owais & Moussa, 
2024). This method emphasizes the most critical aspects 
that affect pozzolanic concrete behavior, such as pozzolan 
type, composition, and mix proportions, as well as how 
these parameters interact with other components in the 
mixture. The newly provided analytical methodology, 
which integrates DRNNs and VBSA, has the potential 
to considerably increase our knowledge of pozzolanic 
concrete mixes. It provides a useful tool for creating 
optimum mixes adapted to particular applications, 
resulting in more efficient, durable, and sustainable 
concrete solutions.

The rest of the article is organized as follows: The next 
section reviews the current state of research on related 
topics to emphasize this article’s contribution. Section 3 
describes the input data and the relevant factors under 
investigation. Section 4 outlines the analytical framework 
along with the associated mathematical and statistical 
methods. Section 5 discusses the modeling outcomes and 
sensitivity analysis results. The final section provides the 
research conclusions.

2 � State of the Art
This section is divided into five subsections. The first 
subsection characterizes the different types of pozzolana 
and their manufacturing procedures. The second 
subsection reviews the advances in the pozzolanic 
industry and the various contributions of previous 
studies in enhancing concrete mixture properties 
through pozzolana. The third subsection explores the 
application of ML tools, particularly the DRNNs, for 
predicting the mechanical properties of pozzolanic 
concrete mixes. The fourth subsection delves into the 
use of the GSA in modeling, explaining its relevance 

in evaluating the influence of various parameters on 
concrete performance. Finally, the fifth subsection 
highlights the unique contributions of this study, 
including its novel approach and significant findings 
concerning the optimization of PzC concrete mixtures.

2.1 � Advances in the Pozzolanic Industry
Pozzolana is a non-cementitious material primarily com-
posed of silica or a combination of silica and alumina. 
While it is not inherently cementitious, pozzolana reacts 
with the calcium hydroxide (Ca(OH)₂) produced during 
the hydration of cement, forming additional calcium sili-
cate hydrate (C-S–H), which enhances the strength and 
durability of the concrete (Hamada et al., 2023). There are 
two main types of pozzolana: natural pozzolana (NPz) 
and artificial pozzolana (APz). NPz are derived from 
geological sources, while artificial pozzolans are typi-
cally industrial or agricultural byproducts. NPz can be 
further classified into two groups based on their origin: 
sedimentary and volcanic. Sedimentary natural poz-
zolans include diatomaceous earth, naturally calcined 
clay, opaline silica, and cherts (Chindaprasirt & Rukzon, 
2008). Volcanic pozzolans include volcanic ash, tuffs, 
pumice, and slag. NPz can be used in their natural state 
or undergo mechanical or thermal processing to improve 
their reactivity and efficiency (Waghmare et  al., 2021). 
APz, on the other hand, are sourced from waste products 
generated by industries or agriculture. Examples include 
fly ash, rice husk ash, blast furnace slag, silica fume, palm 
oil fuel ash, marble dust, sugarcane bagasse ash, and syn-
thetic zeolites. Both NPz and APz contribute to the poz-
zolanic reaction by reacting with Ca(OH)₂ during cement 
hydration, forming more C-S–H while minimizing the 
generation of excess heat (Papadakis, 2000). This results 
in improved long-term performance of concrete, particu-
larly in terms of strength and durability. Figure  2 illus-
trates the primary types of pozzolans.

Using NPz offers sustainable and eco-friendly 
benefits to cement production by partially substituting 
clinker with natural resources, thus reducing the 
environmental impact of cement manufacturing. The 
natural characteristics of some NPz make them suitable 
as clinker substitutes, especially since they undergo 
similar processes, such as quenching, which is the 
rapid cooling of volcanic materials. This substitution 
reduces the reliance on clinker, leading to lower carbon 
emissions and a more sustainable cement product. 
However, one of the challenges associated with NPz is 
its tendency to reduce early strength in concrete. This 
drawback may be attributed to the larger particle size 
of NPz grains, which slows down the initial hydration 
process. Nevertheless, this issue can be mitigated by 
grinding the NPz to the  nanoscale, which enhances its 
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reactivity and compensates for the early strength loss 
(El-Didamony et al., 2015). Most of the natural pozzolans 
studied are volcanic tuffs, with the most common types 
including basalt, rhyolite, trachyte, zeolite, pumice, truss, 
and obsidian. The natural formation of NPz generally 
eliminates the need for additional thermal processing, 
saving energy that would otherwise be required. Due 
to its availability as a natural resource, NPz is also cost-
efficient. Studies have shown that incorporating NPz 
into cement significantly reduces the heat of hydration. 
Furthermore, NPz contributes to long-term hydration, 
resulting in improved workability and, over time, 
higher compressive strength. NPz also enhances the 
durability of concrete by increasing resistance to sulfates 
and chlorides. The performance of NPz in cement is 
influenced by several factors, including particle size 
distribution, specific surface area, chemical composition, 
and crystallinity (Záleská et al., 2018).

On the other hand, APz contributes to sustainabil-
ity by utilizing industrial and agricultural byproducts, 
such as fly ash, rice husk ash, and silica fume. The APz, 
derived from industrial waste, offers environmental 

benefits by reducing disposal costs and preventing pol-
lution from open waste dumps. The high specific sur-
face area and fineness of most APz types accelerate 
the hydration process, which leads to early strength 
gain but can reduce workability and emit higher heat 
of hydration. According to previous studies, APz can 
replace clinker or cement in higher proportions than 
NPz, making it a highly effective substitute (McCarthy 
& Dyer, 2019; Nourredine et al., 2021; Ramezanianpour, 
2014). Several factors affect the efficiency of both natu-
ral and artificial pozzolans in cement mixtures (Joshua 
et al., 2018). Table 1 summarizes the key factors influ-
encing pozzolans’ performance, highlighting their 
advantages and limitations.

The efficiency of pozzolans is primarily evaluated based 
on their chemical, physical, and mechanical proper-
ties. Their pozzolanic activity is determined by how well 
they meet the characteristics specified in various stand-
ards. Pozzolans can be incorporated into the cement 
production process in two ways: by partially replacing 
clinker during cement manufacturing or by substituting 
cement directly in concrete mixtures. Both methods are 

Fig. 2  The main classification of pozzolana

Table 1  Factors affecting the efficiency of pozzolana.

Efficiency terms Natural pozzolans Artificial pozzolans

With ‑ Natural resource
✔ Can be used without thermal processing to substitute clinker
✔ Save energy and cost-efficient
✔ Low heat of hydration
✔ High workability
✔ Higher compressive strength in later ages
✔ Ecofriendly
✔ Durable product

Save waste disposal cost 
of the byproducts
Ecofriendly
High early strength
Higher possible 
Substitution ratio 
than the NP

Against ⨂ Low early strength
⨂ Pozzolanic characteristics differ for the same type of NP according to location, 
age of the rock

Lower workability
Higher heat of hydration
Energy consuming
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environmentally sustainable. However, replacing clinker 
with pozzolan during cement production is generally 
more cost-effective and energy-efficient (Nayaka et  al., 
2018).

To assess the quality and effectiveness of pozzolana—
whether natural or artificial—various physical, 
chemical, and mechanical tests must be conducted. 
Reference (Záleská et  al., 2018) suggested three sets 
of characterization methods. The first set focuses on 
fundamental physical and chemical prerequisites for 
a material to qualify as pozzolan suitable for blended 
cement, such as granulometric tests, oxide analysis, and 
molecular spectroscopy. The second set examines the 
reactivity of the pozzolan through tests like quantitative 
X-ray diffraction (XRD), pozzolanic activity evaluation, 
and scanning electron microscopy (SEM) combined 
with energy dispersive spectroscopy (EDS). The third set 
evaluates the mechanical properties. Table 2 summarizes 
the characterization methods outlined in previous 
studies.

Several key characteristics, including particle size dis-
tribution, specific surface area, chemical composition, 
and crystallinity, influence pozzolana’s performance in 
cementitious materials. According to previous stud-
ies, the properties of the pozzolan used—such as boiler 
ash—are highly dependent on factors like the source 
of the material, industrial combustion processes, col-
lection methods, cooling techniques, particle size, and 
phase state (Katare & Madurwar, 2020). These factors 
play a critical role in determining the overall quality 
and reactivity of the pozzolan. The oxide composition 
of pozzolana, particularly its silica (SiO₂) content, is a 
fundamental parameter in evaluating its suitability for 
use in concrete. As highlighted in previous research, the 
predominant component of pozzolana is SiO₂. Various 

standards dictate that the combined content of SiO₂, 
Al₂O₃, and Fe₂O₃ should exceed 70% to ensure adequate 
pozzolanic activity. Reference Hamada et  al., (2023) 
reviewed previous studies and found that the contents 
of SiO2, Al2O3, and Fe2O3 existed in NPz were (40–80)%, 
(10–20)%, and (0–13)%, respectively.

Characterizing pozzolana is essential for predicting the 
performance of the resulting cementitious composites. It 
enables the determination of optimal dosages in concrete 
mixtures, which is crucial for designing sustainable and 
efficient concrete with reduced environmental pollutants. 
By understanding the physical and chemical properties of 
pozzolana, engineers can optimize concrete formulations 
to achieve the desired mechanical properties and long-
term durability (Hung et al., 2018).

2.2 � Pozzolanic Cement in Concrete Mixtures
Incorporating PzC significantly influences cementitious 
composites’ properties in both their fresh and hardened 
states. Various studies have examined the effects of 
adding pozzolanic materials to cement matrices, focusing 
on factors like density, water demand, heat of hydration, 
setting times, and workability for fresh concrete, as 
well as compressive, flexural, and splitting strengths, 
permeability, and durability for hardened concrete. The 
performance of PzC concrete is influenced by several 
key factors, including the type of pozzolana used, 
pozzolan-to-clinker/cement ratio, chemical composition, 
the number of pozzolanic materials involved, and 
the fineness of the pozzolan (Dembovska et  al., 2017; 
Senhadji et al., 2012).

The workability of PzC concrete can be measured using 
slump tests for normal concrete and flow tests, L-box, and 
V-funnel tests for self-compacting mortar (Hamada et al., 
2023). Initial and final setting times are also key indicators 

Table 2  Pozzolan characterization methods.

Characterization Methodology Estimation Limits/ASTM

Granulometry Laser diffraction Particle size upper limit (45 µm)—40% 
residue

Oxides/elemental analysis X-ray fluorescence SiO2 + Al2O3 + Fe2O3
 > 70%

Molecular spectroscopy Detect harmful organic substances 
if exist

–

Reactivity tests Frattini test Qualitative (pozzolanic/not) –

Chapelle test Quantitative
giving the amount of portlandite 
in mg fixed by 1 g of the material

The lower limit of 650 mg 
portlandite/g of material

Compressive strength of pastes Strength activity index SAI Qualitative SAI ≥ 75% for 28-days cured samples

Pozzolan effectiveness coefficient 
PEC

Quantitative • 0 < PEC < 1 then acts as pozzolan
• PEC < 0, then acts as filler only
• PEC > 1 PzC then better than the OPC
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of workability. For instance, reference Hassan et al., (2019) 
replaced cement clinker with synthetic zeolite at ratios of 
1, 3, 5, 7, and 10%, increasing the setting time and thereby 
improving workability. Another study found that replac-
ing 25% of cement with volcanic tuffs (rhyolite) resulted in 
initial and final setting times ranging from 160 to 215 min 
and 200 to 255  min, respectively (Eldahroty et  al., 2023). 
The fineness and content of pozzolans also impact work-
ability. Finer particles tend to fill voids more efficiently, 
thereby improving workability (Zeyad & Almalki, 2021). 
However, increasing the volcanic ash content can reduce 
workability (Hammat et  al., 2021). The reactivity of cer-
tain pozzolans, such as volcanic ash, zeolites, and diato-
maceous earth, tends to improve over time(Abrão et  al., 
2020). Mixing water demand increases when clinker is 
replaced with NP due to particle agglomeration, high spe-
cific surface area, and internal porosity (Juenger & Sid-
dique, 2015).

The density of PzC concrete is another important factor. 
A study in Omrane and Rabehi (2020) found that replacing 
cement with natural pozzolana (NP) in recycled self-com-
pacting concrete (SCC) reduced the density by 0.88, 1.46, 
1.72, and 1.94% for replacement ratios of 5, 10, 15, and 
20%, respectively, due to the lower density of NPz com-
pared to cement.

Regarding heat of hydration, PzC is expected to reduce 
the overall heat release. For example, reference Al-Chaar 
(2013) replaced cement with three different NPz and com-
pared between the results of the heat of hydration test of 

one of them from Saudi Arabia (Pozzolan S1), and class F 
Fly ash. The results showed that the heat of hydration of 
S1 was less than the one of the FA mixture by 15%, while 
the FA mixture resulted in less heat of hydration than the 
control mixture by 30%. Another study in Eldahroty et al. 
(2023) showed that replacing 25% of cement with volcanic 
tuffs reduced the heat of hydration from 303.9  J/g in the 
reference sample to between 269.9 and 289.6  J/g after 7 
days.

The compressive strength of concrete is often the most 
important characteristic affected by incorporating poz-
zolanic cement into a cementitious matrix. Several stud-
ies have explored the effects of using both NPz and APz 
types as partial replacements for clinker or cement on the 
compressive strength of resulting concrete. Some stud-
ies have even examined the simultaneous use of multi-
ple types of pozzolana. Reference Dwivedi et  al., (2006) 
investigated bamboo leaf ash as a substitute for 20% of the 
cement, finding that it exhibited comparable compressive 
strength at 28  days to control samples, with pozzolanic 
reactivity increasing over time and at higher temperatures. 
In another study, fresh basalt powder was used to replace 
up to 20% of ordinary cement paste, resulting in improved 
mechanical properties (El-Didamony et  al., 2015). Fig-
ure  3 depicts the  compressive strength of concrete over 
time with different portions of basalt (Moawad et  al., 
2021). Similarly, reference (Moawad et  al., 2023) studied 
the behavior of high-strength concrete (HSC) with 5, 10, 
and 15% natural basalt, concluding that 10% replacement 

Fig. 3  Compressive strength of concrete after 7,28,56, and 90 days using 7.5%, 15%, and 22.5% of basalt.
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was the optimal ratio. Reference Moawad et  al., (2023) 
also examined using 25% basalt to replace the clinker, and 
found that this proportion yielded good results in terms of 
compressive strength and pozzolanic reactivity.

Studies also explored using volcanic ash or volcanic tuff 
as clinker or cement replacements. For example, reference 
Ghiasvand et al., (2014) used Trass as a clinker and cement 
replacement at 25 and 35%, both in fine and coarse states. 
The compressive strength values after 7, 28, and 90  days 
were higher for fine Trass, especially at 28 and 90  days, 
as shown in Fig.  4. The results indicated that finer poz-
zolana particles produced stronger concrete, and replacing 
clinker with pozzolana consumed less energy than replac-
ing cement. Table 3 shows the differences in the compres-
sive strength values between the replaced clinker and the 
replaced cement by the same proportion of 25% of Trass 
(fine).

In the same study, the same proportions were used as 
cement replacement in concrete mixtures, and the sam-
ples were tested under compression to compare the results 
(Ghiasvand et al., 2014). The compressive strengths of the 
concrete mixtures with Trass replacing cement are shown 
in Fig. 5. When the cement was partially replaced by Trass, 
the compressive strength of the fine cement mixtures 
was still higher than in other cases. However, at a 25% 
replacement level, the compressive strength was lower 
compared to non-replaced fine cement. This contrasts 
clinker replacement, which resulted in higher compres-
sive strength at the same proportion. Further findings of 
Rashwan et al., 2023b suggested that using ophiolitic mafic 

rocks (OMR) in cement paste at 5% or 10% replacement 
levels increased compressive strength at all curing stages.

The authors of the present research recently con-
tributed to an experimental study on pozzolanic con-
crete’s strength development (Hassanein et  al., 2022). 
The study used six different types of cement: ordinary 
Portland cement CEM I-42.5N, sulfate resisting cement 
CEM I-42.5-SR-5; two types of Portland pozzolanic 
cement with different grades CEM II/B-P(42.5) and 
CEM II/B-P(32.5), sulfate resisting pozzolanic cement 
CEM IV/A(P) 42.5SR, and low heat Portland pozzolanic 
cement CEM II/B-P (32.5N) L.H. The study included 
casting concrete mixtures with a design compressive 
strength of 25 MPa. The samples were tested at differ-
ent ages, ranging from 3 to 180 days. Selected measured 
compressive strengths of the tested concrete samples 
are shown in Fig.  6. All concrete mixtures achieved 
the required strength for all investigated cement types. 
Regarding strength development, all concrete mixtures 

Fig. 4  Compressive strengths of concrete mixes made up of cement containing different proportions of Trass as a clinker replacement.

Table 3  Compressive strength values of the OPC replaced 
clinker and replaced cement by 25% of Trass after 7, 28, 
and 90 days.

25% substitution for Compressive strength (MPa)

7d 28d 90d

OPC (fine) 33 42 46

Clinker (fine) 27 43 47

Cement (fine) 25 41 43
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showed an increase or stabilization with the concrete 
age, except for CEM II/B-P(42.5), which showed slightly 
lower strength at 180  days than that for 90  days. The 
study recommended further research on the strength 
development of high-strength pozzolanic concretes and 
investigating the potential effects of different admixture 
types on their performance over time.

In conclusion, the above studies contribute valuable 
insights to optimizing pozzolanic cement mixtures. 
This database of findings can inform the development 
of advanced models, such as DRNNs, to predict the 
performance of PzC concrete mixture, thereby support-
ing sustainability and enhancing concrete efficiency.

2.3 � Modeling Attempts of Pozzolanic Concrete Mixture
Numerous efforts have been made to optimize pozzolanic 
concrete mixtures using advanced computational 
techniques. These approaches aim to improve the 
accuracy and efficiency of predicting critical properties 
such as compressive strength, workability, and durability 
by utilizing various artificial intelligence (AI) and 
machine learning models.

Predicting the compressive strength of pozzolanic 
concrete using natural pozzolans was first attempted 
in reference Rebouh et  al., (2017) by combining neural 
networks (NNs) with genetic algorithms (GAs). Their 
hybrid NN-GA model showed strong predictive power 
with a high correlation value of 0.93. By integrating the 
optimization capabilities of GAs with the prediction 

Fig. 5  Compressive strengths of concrete mixes made up of cement containing different proportions of Trass as a cement replacement.
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capabilities of NNs, this approach advances state-of-the-
art artificial intelligence model accuracy in the building 
materials domain.

Similarly, a computer-aided method for predicting 
pozzolanic concrete mixtures’ slump and compressive 
strength was established in Kao et  al. (2018). Their 
model—verified using experimental data—proved to be 
very beneficial for pozzolanic concrete mix design by 
allowing for more exact control over concrete qualities 
during the design phase. The technique considers the two 
most important aspects of concrete performance—its 
strength and workability.

To go even further, reference Moradi et  al., (2021) 
examined the compressive strength of pozzolanic 
concrete with metakaolin (MK) or silica fume (SF) and 
compared two models, multiple linear regression (MLR) 
and artificial neural networks (ANN). According to their 
findings, the ANN model outperformed the MLR model 
significantly, with a correlation value of 0.9961. The 
study findings suggested that predicting the behavior of 
pozzolanic concrete using ANN models is the best option 
since they are better at capturing complicated non-linear 
correlations in material parameters.

In order to make these models even better, reference 
Ashrafian et  al., (2024a) combined ANN with global 
sensitivity analysis to determine which variables most 
impact metakaolin concrete’s compressive strength. 
They found that compressive strength was most affected 
by MK-specific surface area and SiO₂/Al₂Oₜ ratio. Once 
they identified these critical factors, they helped create 
more efficient concrete mixes by increasing the model’s 
predicted accuracies.

Using a REPtree model, pozzolanic concrete that 
incorporates industrial byproducts was evaluated more 
recently in reference (Ashrafian et  al., 2024b). With a 
correlation value of 0.960 and an RMSE of 7.884 MPa, the 
REPtree model achieved better performance than other 
machine learning models, according to their analysis. A 
water-to-cement (w/c) ratio of 0.17, a superplasticizer-to-
cement ratio of 1.88%, and a supplemental cementitious 
material-to-binder ratio of 0.15 were the ideal mix 
proportions predicted by this ensemble meta-model, 
which was created to forecast the cement content at 
584 kg/m3. Utilizing industrial byproducts in their study 
highlights the possibility of implementing sustainable 
techniques in the manufacturing of concrete.

Other computational approaches have been 
investigated to further investigate the feasibility of using 
deep learning models and support vector machines 
(SVMs) for pozzolanic mixture performance prediction. 
These models, in conjunction with experimental solid 
databases, help researchers and engineers develop the 
ideal mix proportions that reduce material costs and 

improve concrete manufacturing sustainability (Salami 
et al., 2021).

AI-based methodologies such as ANN, SVM, REPtree, 
and hybrid models like NN-GA may optimize concrete 
qualities in the design of pozzolanic concrete mixtures. 
These models can improve pozzolanic concrete’s 
performance and longevity, facilitate the efficient 
investigation of mix design factors, and increase the 
precision of strength forecasts.

Despite these advances, the potential for applying 
DRNNs to predict the properties of PzC concrete remains 
an untapped opportunity. DRNNs, which have shown 
great success in handling complex, high-dimensional 
data in other applications (Alshehri et al., 2023; Idriss & 
Owais, 2024), could be particularly effective when paired 
with the GSA to better understand the underlying factors 
influencing pozzolanic concrete properties. Given that 
DRNNs have not yet been applied to this problem, it 
presents an exciting and valuable avenue for this study to 
be explored.

2.4 � Global Sensitivity Analysis
Sensitivity analysis (SA) is typically performed as a post-
processing step after the measurement or prediction of 
a variable. Due to the increasing demand for samples, 
conducting SA in laboratory conditions is often 
challenging, and thus, the majority of SA for material 
properties is carried out during the modeling phase. The 
accuracy of any SA technique heavily depends on the 
model’s ability to simulate the effect of input factors on 
the output variable. In general, SA aims to assess how 
changes in the input variables of a numerical model 
affect the variations in the response (output) variable. 
The complexity and objectives of SA are determined 
by the specific modeling domain in which it is applied. 
Throughout the SA process, several critical decisions 
must be made by the analyst, starting with the selection 
of the output modeling approach, determining the 
input factor domain limits, deciding how to navigate 
the input factor space, and choosing the appropriate SA 
methodology (Owais et al., 2024).

SA is generally divided into two categories: local 
sensitivity analysis (LSA) and global sensitivity analysis 
(GSA), based on the extent of input factor variation. 
LSA focuses on measuring the sensitivity of the output 
factor by varying one input factor at a time, starting from 
a reference or ideal value, while keeping all other inputs 
at their nominal levels (e.g., the mean). In contrast, GSA 
takes into consideration changes in all input factors when 
evaluating sensitivity throughout the whole input factor 
space. Because of this, GSA is able to take into account 
interactions between input variables, while LSA is limited 
to analyzing “one-variable-at-a-time” (OAT). For a more 
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complete picture of input–output correlations, GSA may 
investigate both OAT and “all-variables-at-a-time” (AAT) 
(Schwartz et al., 2013).

To provide a more comprehensive view of the system’s 
behavior, GSA may also deal with cases where the input 
elements are constant or changing. Using the right 
approach to answer the questions posed is essential 
when doing SA. Some older methods are still in use, 
such as partial derivatives, but newer ones provide more 
sophisticated approaches, such as the elementary effects 
test (Morris, 1991), variance-based sensitivity analysis 
(Saltelli, et  al., 2008), and density sensitivity (Spear 
& Hornberger, 1980). These approaches use various 
indicators, such as the variance of the distributions of 
the input variables or the correlation between them. 
However, most of these indicators, with the exception of 
partial derivatives, cannot be easily estimated analytically 
(Owais & Ahmed, 2022; Pianosi et al., 2016). Therefore, 
sampling algorithms, such as Latin Hypercube Sampling 
(LHS) or Monte Carlo (MC) simulations, are commonly 
employed to compute these indices (Tarantola et  al., 
2012).

Currently, GSA is widely used in a variety of appli-
cations, including model verification and calibration, 
uncertainty reduction, robust decision-making, and sys-
tem controller analysis (Nguyen & Kok, 2007; Nossent 
et al., 2011; Shin et al., 2013; Sieber & Uhlenbrook, 2005). 
This is largely because GSA overcomes the limitations of 
LSA by providing a more holistic understanding of how 
input factors affect system performance. However, to the 
best of the authors’ knowledge, GSA has not yet been 
applied in the analysis of  pozzolanic concrete mixtures. 
Therefore, one of the key contributions of this study will 
be the application of VBSA to PzC concrete mix design. 
This will provide a novel insight into the sensitivity of 
PzC properties to different input variables, allowing for 
more precise and reliable optimization of the mixture. By 
incorporating VBSA into the study of PzC mixtures, the 
research aims to improve our understanding of how vari-
ous factors influence the performance of pozzolanic con-
crete and enhance the overall efficiency and sustainability 
of concrete mix design.

2.5 � Research Significance
To this end, this study evaluates various types of 
pozzolana, assessing their effectiveness and optimizing 
their portions to create efficient, sustainable, and eco-
friendly concrete. Additionally, it examines the best 
stage for incorporating pozzolana with cement by 
evaluating the recommended incorporation methods. To 
predict the compressive strength of pozzolanic concrete 
containing one or more natural or artificial pozzolanas, 
this study employs a novel framework of analysis based 

on the DRNNs as an innovative ML tool and VBSA as 
one of the GSA techniques. The DRNNs demonstrated 
superior performance compared to traditional ML 
tools identified in the literature, significantly excelling 
in various accuracy metrics. Following the modeling 
phase, the VBSA is conducted to identify the primary 
factors influencing compressive strength. The main 
contributions of the current study can be summarized as 
follows.

2.5.1 � First Application of DRNNs in Pozzolanic Concrete 
Modeling

To the best of the authors’ knowledge, this is the first 
study to apply Deep Residual Neural Networks (DRNNs) 
for predicting the compressive strength of pozzolanic 
cement-based concrete mixtures. While conventional 
neural networks (e.g., ANN, CNN, LSTM) have been 
applied in civil engineering contexts, the use of DRNNs—
capable of deeper architectures without performance 
degradation—has not yet been explored in this domain.

2.5.2 � Integration with Global Sensitivity Analysis (VBSA)
Although previous research has used basic sensitivity 
analysis tools in cement and concrete applications, 
this is the first study to integrate a DRNN model with 
variance-based sensitivity analysis (VBSA) for pozzolanic 
concrete. This hybrid framework allows us not only to 
predict strength with high accuracy, but also to quantify 
and rank the influence of input variables (e.g., pozzolan 
type, fineness, admixtures, etc.) on the output in both 
isolated and interactive contexts.

2.5.3 � Large‑Scale and Diverse Dataset with Synthetic 
Augmentation

The current study compiled a unique and comprehensive 
dataset drawn from 15 different laboratories and 
augmented it with 3000 synthetically generated samples. 
This enriched dataset captures a wide spectrum of 
pozzolanic material behaviors and enables robust model 
training and sensitivity analysis across diverse conditions, 
something not addressed in earlier literature that 
typically relies on small, homogeneous datasets.

2.5.4 � Advanced Deep Learning Architecture Tailored 
for Static Multivariate Inputs

Unlike image or sequence data for which CNNs and 
LSTMs are naturally suited, the current study involves 
structured multivariate tabular data. The DRNN 
architecture was specially tailored with 36 layers, 
convolutional blocks, and residual connections to 
effectively handle the nonlinear, high-dimensional 
relationships in concrete mix design. Further 
discussion is included in Section  4.1, explaining why 
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this architecture offers a significant advancement over 
traditional ANN or shallow DL models.

2.5.5 � New Practical Insights from Model‑Based Optimization
Beyond modeling accuracy, the current study provides 
practically relevant recommendations for optimizing mix 
proportions, pozzolan substitution ratios, and admixture 
combinations.

2.5.6 � Contribution to Sustainable Construction
The current study contributes to sustainability in 
construction by offering a predictive model to reduce 
cement content while maintaining performance, and 
a prescriptive tool to guide eco-friendly mix design 
decisions. This dual function (prediction + design 
guidance) makes the presented framework a novel and 
practical contribution to green concrete technology.

3 � Input Data
A comprehensive rationale was followed towards 
selecting the parameters for the current study. The initial 
selection of input parameters was based on domain 
knowledge, an extensive review of the literature, and 
their physical and chemical relevance to the behavior of 
pozzolanic cementitious systems. Specifically, factors 
commonly reported to influence compressive strength 
are considered, including:

o	 Mix proportions (cement, water, sand, gravel),
o	 Type and content of pozzolans,
o	 Fineness of cement and pozzolans,
o	 Type of grinding (inter vs. separate),
o	 Use of chemical admixtures (superplasticizers, air-

entraining/water-reducing),
o	 Specimen dimensions and curing age.

To assess the relative importance of these input 
parameters, a Variance-Based Sensitivity Analysis 
(VBSA) was applied, as detailed in Sect. 5.2. This analysis 
quantifies both the main effect and total effect of each 
input feature on the predicted compressive strength at 28 
and 90 days. Finally, the feature importance derived from 
the VBSA served not only to justify input selection, but 
also to optimize mix design in the synthetic data analysis 
(Sect. 5.3).

The input data for this study were meticulously gath-
ered from previous research conducted across various 
laboratories (i.e., 15 labs), collectively referred to as X1 . 
In particular, lab15 represents the study’s results (Mül-
ler & Guido, 2016) as the experimental contribution by 
the authors. The data included 126 different concrete 
mixtures from different studies using different types 
of pozzolan, as mentioned in Table  4. This dataset was 

systematically organized into six primary categories: mix 
proportions, types of pozzolan, fineness, additives, grind-
ing type, and specimen dimensions. Additionally, to facil-
itate comprehensive data analysis, an extra 3,000 sample 
records were synthetically generated based on the col-
lected data statistics, enriching the dataset and enabling 
more robust statistical evaluations after the modeling 
stage.

Table 5 provides a comprehensive overview of the input 
and output data parameters, detailing each category’s 
associated units, modeled symbols, and statistical ranges, 
including minimum, maximum, and mean values. 
For instance, the mix proportions category includes 
crucial parameters such as gravel content, sand content, 
water content, and cement content. Each parameter 
is quantified in kg/m3, highlighting the variations in 
mixture compositions utilized across different studies. 
Additionally, the pozzolana parameters include both the 
types and contents of different pozzolans, where X8 ​ and 
X9 represent the quantities of two distinct pozzolana 
types incorporated in the concrete mix.

The collected data encompassed a wide variety of 
both natural and artificial pozzolans, which were 
subsequently coded for model development. The coding 
scheme is outlined in Table  6, providing clarity on the 
types of pozzolana incorporated in the analysis and their 
corresponding codes.

The fineness of both cement and pozzolana is repre-
sented in terms of specific surface area (cm2/gm), with 

Table 4  The labs, number of mixtures, and the used pozzolan of 
each.

Lab no. Number 
of 
mixtures

Type of pozzolan Reference

1 4 Basalt Moawad et al., (2021)

2 4 Basalt with SF Moawad et al., (2023)

3 10 Volcanic tuffs Ghiasvand et al., (2014)

4 9 Rhyolite and SF Eldahroty et al., (2023)

5 11 NP, Perlite, and BFS Fodil and Mohamed (2018)

6 5 Volcanic ash Deboucha et al., (2015)

7 16 Pumicite with FA Mousavinezhad et al., (2023)

8 8 Metakaolin Paiva et al., (2012)

9 5 Metakaolin Narmatha and Felixkala 
(2016)

10 5 Metakaolin Al-Hashem and et al., (2022)

11 20 Metakaolin William et al., (2019)

12 5 Metakaolin Koneru et al., (2023)

13 5 Scoria Ayene et al., 2023)

14 7 Scoria Ozvan et al., (2012)

15 12 NP Hassanein et al., (2022)
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its values assigned coded numbers for ease of analy-
sis. Table  7 shows the fineness classification of cement 
and pozzolana according to the specified requirements. 
To further understand how fineness might affect the 

material qualities and performance of the finished con-
crete, this chart categorizes fineness into three separate 
levels. There are three distinct ranges for cement fine-
ness, defined by specific surface area: below 3500 cm2/
gm, between 3500 and 5000 cm2/gm, and over 5000 cm2/
gm. In the same way, pozzolana fineness is classified as 
follows: less than 5000 cm2/gm, between 5000 and 7900 
cm2/gm, and equal to or higher than 8000 cm2/gm. Using 
this categorization, we can better grasp how varying 
degrees of fineness impact the pozzolanic reactivity and 
general performance of concrete mixes.

Two types of admixtures were included in the param-
eters: admixture 1 represented different types of super-
plasticizers, and admixture 2 represented additional 
types of admixtures (water-reducing or air-entraining) 
used with the superplasticizers.

Finally, the compressive strengths at 28 and 90  days, 
Y1 and Y2 , respectively, are the outcome variables of 
importance in this investigation. These variables serve 
as essential performance indicators for the pozzolanic 
concrete being studied, allowing a comprehensive 
evaluation of the impact of different input parameters on 
strength development over time.

As a first step toward further study, this thorough data 
collection and classification will allow us to understand 
better how various mix components affect the 
compressive strength of pozzolanic concrete.

During preprocessing, we applied both statistical and 
domain-based outlier detection techniques. Z-score 

Table 5  The input and output data nomination.

* Integer variable

Category Input parameter Unit Modeled 
symbol

Range

Minimum Maximum  Mean

Laboratory Lab no. –* X1 – – –

Mix proportions Gravel content kg/m3 X2 627 1640.27 1014.362

Sand content kg/m3 X3 204 964 717.43

Water content kg/m3 X4 101.4 225.26 165.18

Cement content kg/m3 X5 118.3 620 338.23

Pozzolana Pozzolana1 type – X10 – – –

Pozzolan 2 type – X11 – – –

Pozzolana 1 content kg/m3 X8 0 160 45.43

Pozzolana 2 content kg/m3 X9 0 130 5.83

Fineness Cement
Pozzolana

cm2/gm
cm2/gm

X12
X13

2965
4060

6775
9503

1985.36
3068.33

Additives Admixture1 kg/m3 X6 0 13.5 2.73

Admixture2 kg/m3 X7 0 10 0.47

Grinding type Inter/separate – X15 – – –

Specimen Dimensions – X14 – – –

Output variable Compressive strength at 28_days MPa Y1 14.94 95.33 43.46

Compressive strength at 90_days MPa Y2 19.54 88.5 27.24

Table 6  Pozzolan type and its entered code.

Pozzolan type Pozzolan code

Basalt 1

Volcanic tuff 2

Rhyolite 3

Natural pozzolan 4

Perlite 5

Volcanic ash 6

Pumicite 7

Metakaolin 8

Scoria 9

Silica fume 10

Blast furnace slag 11

Table 7  The entered nomination for the fineness values.

Component Fineness (cm2/gm)

Cement  < 3500 3500:5000  > 5000

Pozzolan  < 5000 5000:7900  ≥ 8000

Entered value expression 1 2 3
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filtering was used to flag values beyond ± 3 standard 
deviations from the mean, and they were carefully 
reviewed. Flagged values were cross-checked against 
known physical limits and published ranges in pozzolanic 
concrete literature. For example, excessively high or low 
water-to-cement ratios or unrealistic pozzolan contents 
were identified, excluded, or corrected. Finally, scatter 
plots and histograms were used to further confirm 
the removal of spurious entries before training the 
model. Only data points that passed both statistical 
and engineering plausibility checks were retained for 
model training and validation. To address potential 
inconsistencies, biases, and the data preprocessing steps 
applied to ensure dataset integrity, particular precautions 
are considered in the current study and summarized as 
follows:

•	 The compiled dataset consists of experimental data 
from 15 different laboratories (as indicated in Table 4), 
each contributing unique pozzolanic concrete mix 
compositions and test results. Recognizing the poten-
tial variability in measurement techniques, units, and 
mix design practices across these sources, a multi-
level consistency verification procedure was applied, 
including: standardizing units (e.g., kg/m3 for all mate-
rial quantities, cm2/g for fineness), harmonizing age 
categories for compressive strength (e.g., interpolating 
missing values to unify 28-day and 90-day datasets) 
and cross-validating outlier values against reported lit-
erature ranges to flag potential errors.

•	 Since the datasets sourced from different studies may 
be skewed toward specific pozzolan types, curing 
conditions, or strength classes, particular steps were 
implemented to mitigate these biases, including: aug-
mented the dataset with 3,000 synthetic samples gen-
erated using statistical distributions derived from the 
collected data, and applied data normalization and 
encoding techniques, especially for categorical varia-
bles like pozzolan type and grinding method, to ensure 
equitable representation during model training.

•	 Instances of missing or incomplete entries were care-
fully addressed: first, imposition using domain-spe-
cific heuristics (e.g., inferring water content based on 
known water–cement ratios). Second, the exclusion 
of records with critical missing or inconsistent fields 
that could not be reliably estimated. After cleaning, 
only records with complete and validated parameter 
sets were included in the modeling phase, ensuring the 
model was trained on high-quality, consistent data.

•	 The effectiveness of these cleaning and standardiza-
tion steps was validated through: goodness-of-fit 
evaluation of the DRNN model, which showed mini-
mal overfitting and balanced error distributions (see 

Fig.  10). Error independence and normality confir-
mation via line-of-equality (LOE) and residual plots. 
Reproduction of known experimental trends (e.g., the 
effect of pozzolan type and fineness on the strength) 
in the synthetic data analysis (Sect. 5.3), affirming the 
internal consistency of the dataset.

4 � Analysis Framework
The developed framework comprises four main steps: 
data preparation, modeling, testing, and post-processing 
analysis. In the first step, the data are prepared, and the 
relevant components and their respective domain areas 
are identified, as described in Sect.  3. The second step 
involves processing the literature data categories, after 
which the combined data are input into the DRNNs 
model, leaving out testing data used to assess the mod-
el’s transfer learning capability across different labs. The 
third step focuses on testing the model using various 
goodness-of-fit metrics to establish confidence in the 
GSA. In the final step, the model is used to forecast com-
pressive strength values for a broad range of synthetically 
generated input data based on the predefined factors 
domain (i.e., input data description). The post-processing 
tool, VBSA, generates sensitivity results/indices. These 
phases are illustrated in the general workflow presented 
in Fig. 7.

4.1 � Machine Learning Technology
ML emerged as a subfield of artificial intelligence in the 
1990s. Unlike symbolic approaches, it utilizes statistical 
and probabilistic models and tools (Langley, 2011; 
Rosental, 2003). In essence, ML enables computers 
to learn to perform specific tasks by analyzing large 
datasets (Dietterich, 2000; Müller & Guido, 2016). Before 
applying these methods, a step called feature extraction 
is necessary to identify the characteristics that provide 
the most relevant information. The sample data are then 
used to train the system to recognize features and discern 
patterns (Avci et  al., 2021; Haenlein & Kaplan, 2019; 
Marani & Nehdi, 2020). Deep Learning (DL) methods 
were introduced to overcome the limitations of manually 
designed features in complex ML applications (Avci 
et al., 2021; Owais, 2024b). DL is inspired by discoveries 
in neuroscience and mimics how the nervous system 
processes and communicates information. DL layers 
consist of hidden layers in an artificial neural network 
and involve advanced algorithms.

Furthermore, based on training data, ML can be clas-
sified as supervised, unsupervised, semi-supervised, 
or reinforcement learning (Alpaydin, 2020; Ivanovic & 
Radovanovic, 2015). Supervised and unsupervised learn-
ing are the most widely used types of machine learning, 
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especially in engineering (Almutairi & Owais, 2025; 
Taffese & Sistonen, 2017). In supervised learning, the sys-
tem learns from a dataset containing both input values 
and their corresponding outputs, allowing it to predict 
future outcomes based on this relationship. On the other 
hand, unsupervised learning involves datasets where only 
the inputs are known, and the system must find patterns 
or predict outputs without explicit guidance (Taffese 
et  al., 2015). The modeling conducted in this study falls 
under supervised learning.

DL techniques, specifically Deep Neural Networks, 
were developed to address the limitations of hand-crafted 
features in advanced ML systems (Avci et  al., 2021; 
Haenlein & Kaplan, 2019). DL models can automatically 
connect features to desired outputs and perform feature 
extraction (Schmidhuber, 2015). With adequate training, 
DL systems can directly map raw inputs to target outputs 
without needing explicit feature extraction, and they can 
identify hierarchical abstract features that explain simpler 
learned patterns (Owais & Sayed, 2025). This allows DL 
algorithms to break down complex tasks into manageable 
problems and solve them effectively (Owais, 2024a).

The compressive strength of PzC concrete mixtures 
is a complex phenomenon influenced by numerous 
factors with highly correlated interactions. To model this 
complexity, convolution layers are utilized in this work. The 
developed framework aims to uncover latent connections 
between input and output variables while achieving 
optimal prediction accuracy. Reference Du et  al., (2016) 
introduced the Residual Network (ResNet) concept to the 

DL framework to improve gradient propagation in very 
deep networks and resolve associated challenges. ResNet 
uses shortcut connections that bypass several network 
layers, allowing high-accuracy training and enabling layers 
to learn residual functions from layer inputs rather than 
unrelated functions (Almutairi & Owais, 2024; Alshehri 
et al., 2023). This concept is applied in this work using Deep 
Residual Neural Networks (DRNNs).

The depth of the DRNNs used is set at 36 layers, 
divided into three main sections:

•	 The first section includes an input layer with a 
convolutional layer (CL), a rectified linear unit 
activation layer (ReLU), and a batch normalization 
layer (BNL).

•	 The second section consists of a stack of four 
Residual Building Units (ResBU), which form the 
core of the structure.

•	 The final section contains three layers: a fully con-
nected layer (FCL), a Softmax layer, and an output 
layer.

The first layer normalizes the input data before passing 
it into the network. This normalization process adjusts 
the incoming data by subtracting the mean values. 
Table 8 provides the mathematical notations used in the 
proposed DRNNs, highlighting their key functions. The 
controlling functions are as follows:

(1)Hl+1 = ReLU[f (Hl)+ id(Hl)],

Fig. 7  The framework of analyzing PzC concrete mixtures.
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Each Residual Building Unit (ResBU) in the proposed 
framework is composed of two parts: the main branch 
and the residual branch. The main branch contains six 
layers: two convolution layers (CL), two rectified linear 
unit (ReLU) activations, and two batch normalization 
layers (BNL). The BNL serves as an intermediary 
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between the CL and the ReLU, maintaining this structure 
consistently throughout the Deep Residual Neural 
Networks (DRNNs). The residual branch, functioning 
as a shortcut, bypasses the first five layers of the main 
branch (i.e., CL-BNL-ReLU-CL-BNL), connecting 
directly before the final ReLU. The main branch then 
incorporates the output of the residual branch through 
an elementwise addition before the final activation layer. 
The computations within each ResBU follow Eq.  (1). 
Interestingly, the identity function (id(H_l)) in the 
shortcut path does not add any computational burden 
but ensures a smoother gradient flow (Du et  al., 2016; 
Owais et al., 2020a).

As illustrated in Fig.  8a, each ResBU includes both 
a main and a residual branch. In the main branch, each 
convolutional layer is followed by a BNL and a ReLU acti-
vation. The shortcut in the residual branch allows input 
values to bypass the main branch’s layers and connect 
directly to the final ReLU layer, as shown in Fig. 8b. The 
residual output is combined with the main output before 
the final activation layer. This configuration ensures effi-
cient gradient propagation without increasing the com-
putational complexity (Du et al., 2016).

The convolution layers (CL) perform their task by 
applying filters over the input data, learning internal 
features through these filters, which extract local 
patterns. The CL generates feature maps using sliding 
filters that compute the dot product of their respective 
weights, inputs, and biases (Zang et al., 2018). Following 
this, the BNL regularizes the output to prevent overfitting 
(Ioffe & Szegedy, 1502). Additionally, the BNL accelerates 
the training process by normalizing and reorienting each 
input channel, improving the model’s robustness and 
reducing sensitivity to initialization (Goodfelow et  al., 
2016). Equation  (3) governs the mini-batch scaling and 
shifting process in the BNL, where learnable parameters 
(γ and β) adjust the scaling, and the epsilon value (ϵ) 
ensures numerical stability during training (Almutairi 
et al., 2024).

The output from the BNL is passed through the ReLU 
activation, which introduces non-linearity and enables 
the network to learn complex representations (Szegedy, 
et  al., 2015). Equation  (4) applies the ReLU function to 
each input element ( z̃

j
 ), preventing negative values while 

maintaining the input size. ReLU was chosen for its 
superior performance compared to other activation 
functions like hyperbolic tangent or sigmoid, allowing for 
faster training and more accurate generalization without 
requiring extensive deep-learning iterations (Owais et al., 
2020b; Ramachandran et al., 1710).

In the fully connected layer (FCL), all neurons are 
connected in an all-to-all manner with the preceding 
layer, allowing the network to utilize all previously 

Table 8  Nomenclature.

Symbol Definition

Hl+1 Is the output of the lth resbu

id(Hl) Is the identity function

Hl Is the input of the lth resbu

f (Hl) Is the residual function

cj Is the batch input value

ĉi Is the normalized activation value

yp Is the mean of the predicted compressive strength values

ym Is the mean of the measured compressive strength values

y Is compressive strength after 28 days

ϵ Is an Epsilon attribute

β Is a learnable offset

µB Is the mini-batch mean

σ 2
B  Is the mini-batch variance

n Is the number of total data points

p Is a subscript that denotes predicted values

m Is a subscript that denotes measured values

zj Is the input values of the Softmax layer

γ Is a learnable scale factor

r Is the sequence length

t  Is the number of testing data points
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learned features for the most accurate predictions 
(Goodfelow et  al., 2016; Owais et  al., 2019). The FCL 
is linked to the Softmax layer, which calculates the 
probability distribution of the predicted compressive 
strength values. The Softmax function, described by 
Eq.  (5), is a normalized exponential function used for 
multi-class classification. It generalizes the logistic 
sigmoid function for this purpose (Bishop, 2006).

Finally, at the output layer, the model’s performance 
is measured using the loss function and mean-squared 
error (MSE), calculated by Eqs. (6) and (7). These metrics 
help adjust the difference between predicted and actual 
compressive strength values. During the training process, 
36 filters of size four are applied in each CL, generating 36 
feature maps. A mini-batch size of 256 is used, employing 
the stochastic gradient descent algorithm, which is 
optimal for weight initialization, particularly in networks 
using ReLU layers (He et al., 2015; Owais, 2024c).

4.2 � Goodness‑of‑Fit Statistics
The DRNNs model employed in this study is 
considered valuable as it offers an alternative to the 

physical laboratory processes for conducting various 
experiments using the GSA procedure. Replacing 
these experimental setups with a numerical model for 
predicting the compressive strength of PzC concrete 
mixtures can be especially useful, given that the VBSA 
approach requires numerous samples to achieve 
convergence (as shown in the results section). The 
importance of goodness-of-fit metrics is emphasized 
since the reliability of VBSA conclusions is contingent 
upon these values. The literature presents many such 
metrics, each assessing model accuracy differently 
(Owais & Alshehri, 2020).

Coefficient of determination (R2), root mean square 
error (RMSE), mean absolute percentage error (MAPE), 
and residual plots are some of the well-established 
performance measures utilized to assess the model’s 
predictions in this study (Pellinen, 2002). For every 
model, these metrics may be computed separately. 
The correlation between anticipated and observed 
values, denoted by R2, is calculated using the following 
equation:

Fig. 8  The employed DRNNs structure.
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Relying on a single accuracy metric (e.g., R2) may be 
misleading, as it does not comprehensively assess model 
performance. Therefore, using a combination of accuracy 
metrics is crucial for drawing reliable conclusions about 
model behavior. Additional global bias indicators should 
be examined to assess model bias. The line-of-equality 
(LOE) plot, which displays the difference between the 
observed and predicted values, is handy for this purpose. 
Ideally, this plot shows a random distribution of points 
with constant width around the LOE. This tool helps 
check whether the model meets assumptions of constant 
variance, normality, and independence of errors (Hussain 
& Akbar, 2022; Tsai et al., 1998).

The root mean square error (RMSE) is a quadratic 
scoring method that reflects the average magnitude of 
prediction errors, while MAPE is a linear metric that 
assigns equal importance to all individual deviations 
from the mean error (Owais et  al., 2021). Both RMSE 
and MAPE are used in this study to assess the deviations 
between predicted and actual values, with their 
calculations shown below:

These collective metrics provide a thorough evaluation 
of model performance, enabling more accurate 
predictions and reliable conclusions regarding the 
behavior of PzC concrete mixtures.

4.3 � Variance‑Based GSA
While DL methods are powerful tools for making pre-
dictions, they often lack transparency when understand-
ing the underlying relationships in their models, making 
interpretation difficult (Jiang et al., 2020). To address this 
issue, sensitivity analysis (SA) can be employed to clarify 
the cause-and-effect dynamics between inputs and out-
puts of a trained DRNNs model. This section introduces 
the VBSA for predicting the compressive strength of 
PzC concrete mixtures. Integrating VBSA into the analy-
sis enables a more comprehensive understanding of the 
relationships between the input factors and the predicted 
compressive strength. Additionally, it allows for the 

(8)R2 = 1−

∑n
i=1

(
ypi − ymi

)2
∑n

i=1

(
ymi − ym

)2 .

(9)
RMSE =

√√√√
∑n

i=1 (
ymi−ypi
ymi

)
2

n
× 100,

(10)MAPE =

∑n
i=1⌈

ymi−ypi
ymi

⌉

n
× 100.

quantitative evaluation of how much each input variable 
contributes to the final prediction.

To reduce the need for extensive experimental test-
ing, a model-based approach is proposed, which 
involves calculating the partial derivatives as follows: 

In this equation, Si represents the sensitivity index, 
which indicates the significance of the input variable xi. 
in determining the value of y. However, the local sensi-
tivity analysis (LSA) approach has two key limitations: 
some models may not be differentiable, and the sensi-
tivity index can give misleading results when the input 
variables are highly correlated. This method also relies 
on strong assumptions regarding model normality, lin-
earity, and monotonicity, making it unsuitable for more 
complex models.

To overcome these challenges, VBSA was developed. 
Unlike LSA, VBSA analyzes a global set of samples, 
accounting for variable interactions (joint effects) 
among the input variables. Its variance-based form 
produces robust sensitivity indices across the entire 
input domain, capturing the influence of each input 
factor while allowing all others to vary (Owais & 
Matouk, 2021; Saisana et  al., 2005). In the context 
of the complex DRNN model used in this study, 
VBSA provides a deep insight into how multiple 
intercorrelated variables interact with the output. 
Two primary indices are used in VBSA to evaluate the 
importance of the input factors (Saltelli et al., 2006):

In these equations, xi is the input variable under 
analysis, and X∼i refers to all other variables except xi . 
Equation  (12) defines the first-order sensitivity index 
( Sfi  ), which measures the contribution of xi to the total 
variance of y without accounting for interactions with 
other variables. Meanwhile, Eq.  (13) calculates the total 
sensitivity index ( STi  ), which includes both the direct and 
interactive effects of xi on y. Both indices range from 0 
to 1, where 1 indicates that the variable fully explains the 
variation in y, and 0 implies no influence on the outcome. 
The first-order index ( Sfi  ) helps rank the significance of 
input variables, but a low value should not automatically 
dismiss the variable as unimportant. Instead, the total 

(11)

Compressivestrengthafter28/90days → y

= f (x1, x2, . . . , xi . . . ., xk) : Rk → RSi =
∂y

∂xi
, ∀X .

(12)S
f
i =

Vxi [EX∼i
(y/xi)]

V [y]
, ∀xi,

(13)STi =
EX∼i(V xi [y/X∼i])

V [y]
, ∀xi.
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effect index ( Sfi  ) is a more reliable indicator of whether a 
variable impacts the output (Owais et al., 2013).

In practice, probability density functions are assigned 
to each variable to calculate these indices. Fortunately, 
the precise representation provided by the DRNNs 
enables high-confidence sensitivity analysis using Latin 
hypercube sampling (LHS), which explores the entire 
input space (Saltelli et al., 2006). The VBSA-LHS process 
can be summarized as follows:

Generate a sample matrix T:

•	 Here, k is the number of input variables, and μ is the 
sample size. Each row represents an experiment from 
the LHS trials.

•	 Divide the sample matrix T into two equal parts: A 
and B.

•	 Create a new matrix B by replacing the xi column in 
B with the corresponding column from A.

•	 Compute the output vectors Y using the DRNN 
model:

Finally, calculate the first-order ( Sfi  ) and total ( STi  ) 
sensitivity indices for each variable as follows:

The purpose of Eqs. (14–17) is to average the effects 
of all input variables to determine their global impact on 
the response variable. It’s important to note that the first-
order sensitivity ( Sfi  ) represents the effect of a variable 
when all others are held constant (OAT). Conversely, the 
total sensitivity ( STi  ) captures the variable’s impact when 
others are allowed to vary (AAT). If the relationships 
between the variables are linear and independent, the 
two indices will yield similar values. However, this 
averaging method is crucial because the model does not 
guarantee linearity, monotonicity, or independence. It 

(14)T =




x11 x12 . . . x1i x1k
x21 x22 x2i k
...

...
. . .

...
...
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
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2

Var(YA)
,

(17)STi = 1−

2
µ
YB.YB + E(YA)

2

Var
(
YA

) .

is also essential to select an adequate sample size μ to 
ensure that the variance and covariance are properly 
represented, and adjustments to this value will be 
discussed in the subsequent section.

5 � Numerical Study
5.1 � Evaluation of DRNNS
The methods developed in this study were implemented 
using MATLAB 2021a on a personal computer equipped 
with a 2.6 GHz Intel® Xeon® CPU, 64 GB of RAM, and a 
GeForce GTX 1050 graphics card. The input and output 
data from the literature database were normalized for use 
in the proposed DRNNs architecture.

The model validation procedures were carefully 
designed to ensure the robustness, accuracy, and 
generalizability of the Deep Recurrent Neural 
Network (DRNN) model. These procedures included 
a combination of train–test splitting, cross-validation, 
overfitting prevention techniques, and tests for model 
generalizability, including transfer learning capabilities.

To begin, the dataset was divided using a standard 
80/20 train–test split. In this setup, 80% of the data 
was allocated for training the DRNN model, while the 
remaining 20% was set aside for independent testing. 
This division was performed randomly to minimize any 
selection bias and to ensure that the test subset accurately 
represented the full distribution of the input parameters. 
Such a random partitioning helps in producing more 
realistic and reliable estimates of model performance on 
unseen data.

In addition to the initial train–test split, a fivefold 
cross-validation strategy was employed during the 
hyperparameter tuning phase to enhance the evaluation 
rigor. This approach involved dividing the training 
data into five equal folds, iteratively using four folds for 
training and one for validation. This method ensured 
that the model’s performance was not dependent on 
any single data partition and allowed for the assessment 
of consistency across multiple data subsets. The results 
showed a stable performance, with R2 values consistently 
ranging from 0.91 to 0.94 and RMSE variations within 
acceptable limits, highlighting the model’s robustness 
and reliability.

To guard against overfitting—a common issue in deep 
learning models—several strategies were implemented. 
First, residual analysis was conducted, and as illustrated 
in Fig.  10, the residual plots showed normally distrib-
uted and independent errors for both training and test-
ing data, with no noticeable trends or clustering. This 
suggested a well-fitted model without signs of overfit-
ting. Furthermore, batch normalization layers were inte-
grated throughout the DRNN architecture to regularize 
the training process, reduce variance, and improve model 



Page 19 of 30Abdelsattar et al. Int J Concr Struct Mater           (2025) 19:77 	

generalization. Finally, the close alignment of perfor-
mance metrics such as R2, RMSE, and MAPE across 
both training and testing sets indicated that the model 
successfully captured generalizable patterns rather than 
overfitting to the training data.

Lastly, the model’s generalizability and transfer learning 
capabilities were critically evaluated. One of the major 
strengths of the proposed framework lies in its capacity 
to generalize across a broad range of experimental con-
ditions, supported by the diverse data collected from 

15 different laboratories. To rigorously test this capabil-
ity, the testing phase was designed to include scenarios 
where lab-specific data were withheld from training and 
later used to evaluate transfer learning performance. The 
results, summarized in Table  9, demonstrated that the 
model maintained high predictive accuracy even on pre-
viously unseen data, thereby confirming its strong gener-
alization and transfer learning potential.

During the parameter tuning and training process 
for the DRNNs model, each convolutional layer (Conv) 

Table 9  Goodness-of-fit statistics of average DRNNs predictions compared with different ML tools.

Model Training data Testing data

R2 RMSE% MAPE% R2 RMSE% MAPE%

MLR 0.75 13.34 10.56 0.72 17 12.22

ANN 0.86 6.87 5.43 0.84 8.45 5.73

SVM 0.88 4.45 3.68 0.88 5.67 3.88

REPtree 0.92 3.33 2.42 0.90 3.98 3.20

CNNs 0.93 3.12 2.34 0.92 3.89 3.11

LSTMs 0.93 3.13 2.35 0.90 3.99 3.22

DRNNs 0.95 3.02 2.76 0.94 3.26 2.96

Fig. 9  Optimizing process of DRNNs hyperparameters.
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generated 30 feature maps using kernels of size four. The 
stochastic gradient descent algorithm was employed with 
a mini-batch size of 128. The initial learning rate was set 
to 0.02 for weight initialization and decayed exponen-
tially to 0.005 after 30 epochs. As illustrated in Fig.  9, 
these parameters were optimized during early hyperpa-
rameter tuning. Figure 10 demonstrates the accuracy of 
the DRNNs predictions when compared to the actual 
data, showcasing the model’s ability to capture the high 
variance in compressive strength as the target output.

A multi-criteria evaluation was conducted, 
comparing the DRNNs with other ML methods. 
However, a direct comparison to reported accuracies 
in the literature is considered unfair due to the 
uniqueness of the collected data. Table  9 highlights 
the strong performance of the DRNNs across 
various metrics, as discussed in the goodness-of-fit 
section when compared to the best-performing ML 
methods applied to the same data set. Although models 
such as Convolutional Neural Networks (CNNs), Long 
Short-Term Memory networks (LSTMs), and Deep 
Residual Neural Networks (DRNNs) fall under the 
broader category of deep neural networks, DRNNs are 
uniquely suited for modeling problems with complex, 
nonlinear dependencies and a relatively structured 
but static input space such as ours. CNNs are highly 
effective in spatial feature extraction (e.g., images), and 
LSTMs excel in temporal sequence modeling. However, 
the compressive strength prediction task addressed in 
this study involves neither image data nor time-series 
patterns but rather tabular multivariate inputs with 

high-dimensional interactions between physical and 
chemical features of concrete mix components.

DRNNs offer a distinct advantage due to their 
ability to mitigate the vanishing gradient problem in 
deep networks using shortcut (residual) connections. 
This enables deeper architectures to learn complex 
relationships without degradation in performance. The 
residual units allowed the network to retain important 
low-level features while capturing deeper nonlinear 
patterns, which are essential for modeling material 
behavior.

To validate this, a benchmarking study was included in 
Table 9, where the performance of DRNNs is compared 
to CNNs and LSTMs on the same dataset. The results 
showed that DRNNs achieved a higher R2 value, lower 
RMSE, and more stable residual error distribution 
compared to both CNNs and LSTMs. These outcomes 
confirm that DRNNs are better suited for this type of 
material-property prediction problem.

The similar accuracy between the training and testing 
phases confirms that the model learned the underlying 
patterns without overfitting the data. Model bias was 
further evaluated using data distribution around the LOE 
in Fig.  10, which indicated a normal error distribution 
and evidence of error independence. These validation 
steps are crucial for ensuring that the DRNNs effectively 
capture the relationships between the input parameters 
and the output. If the model accurately learns the latent 
features of PzC concrete mixture components and their 
role in determining compressive strength, the VBSA 
could reliably identify the most important input factors.

5.2 � VBSA Results
After validating the DRNNs model, it is now ready for the 
VBSA analysis. The model examines k input components, 
each divided into φ levels, creating a grid of φk-by-
φk prediction points. In this case, with up to eleven 
input components and ten values each, around eleven 
trillion points are evaluated. To determine the number 
of samples required, two approaches can be used: 
deterministic and stochastic. Deterministic sampling 
systematically selects μ samples to uniformly cover the 
entire domain, ensuring all areas are represented. On 
the other hand, stochastic methods treat input data 
as random variables with defined probability density 
functions (PDFs) and generate μ samples accordingly. 
In this study, Latin Hypercube Sampling (LHS) with a 
deterministic approach was applied to align with the 
fixed mixing design and environmental conditions of PzC 
concrete mixtures.

LHS is a statistical method used to generate samples 
from a quasi-random multivariate distribution, ensuring 
each sample appears uniquely positioned across all 

Fig. 10  True values vs. DRNNS prediction values.
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axes. When sampling a function with n variables, each 
variable’s range is divided into φ intervals with equal 
probability, meeting the requirements of the LHS 
method. One key advantage of this approach is the 
independence of the sampling process, allowing random 
samples to be collected sequentially without overlap. 
Another benefit is the ability to track which samples have 
already been used, ensuring efficient sample collection.

The accuracy of VBSA indices increases with the sam-
ple size μ, though available computational resources 

limit it. The challenge lies in determining the appropriate 
number of evaluations necessary for reliable sensitivity 
indices. As shown in Fig. 11, sensitivity indices stabilize 
as the sample size increases, and a sample size of 51,000 
was sufficient for the main and total effect indices to 
converge.

The VBSA plays a crucial role in ranking the parame-
ters based on their impact on compressive strength, both 
independently and in combination with other variables. 
The VBSA clearly highlights each parameter’s impact on 

Fig. 11  Total order and main effect indices convergence diagrams.

Fig. 12  Prioritization of parameters by main and total effects after 28 days.
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the compressive strength of concrete, both as an inde-
pendent (main effect) and in combination with other 
factors (total effect), measured after 28 and 90 days. The 
model generated numerous hypothetical records to iden-
tify the general behavior of each parameter, as shown in 
Fig. 11. Figure 12 indicates that cement content emerged 
as the most influential factor in compressive strength 
after 28 days, whether or not other parameters were con-
sidered. The significance of other factors, such as gravel 
and water content, the presence of admixtures, and 
the use of an additional pozzolan, became more appar-
ent when considering their interactions. These factors 
showed promising effects when evaluated together. Also, 
Fig.  12 shows that the ranking of parameters based on 
their main effect differs from their ranking based on total 
effect, except for cement and water content, which con-
sistently showed the most significant influence on com-
pressive strength. Even with extensive sampling, gravel 
content, additional pozzolan, and two types of admix-
tures had notable effects when accounting for interac-
tions with other parameters.

Over time, in concrete curing, the prioritization of 
these parameters shifted. As depicted in Fig. 13, cement 
content remained the most significant factor when its 
main effect was isolated, while using additional admix-
tures showed the most substantial impact when con-
sidering other variables. Though pozzolan content had 
minimal main effect, it exhibited a robust total effect 
when used in combination with other parameters, espe-
cially when two types of pozzolan were used. Similarly, 
the fineness of cement and pozzolan, along with the 
grinding type, had significant total effects.

Comparing the total effects after 28 and 90  days 
revealed that factors such as grinding type, fineness, 
pozzolan type, pozzolan content, and the use of admix-
tures—particularly when two types were used—became 
more pronounced over time. Figure 14 demonstrates the 
contributions of each parameter to the increase in com-
pressive strength from 28 to 90 days. Cement and gravel 
content, combined with using two admixtures, were key 
contributors to this increase. The effect of cement fine-
ness also became evident over time.

As can be interpreted, VBSA calculates both main 
effect indices (first-order sensitivity) that reflect the 
isolated contribution of each input factor to output 
variance, and the total effect indices, which include 
interaction effects, i.e., how a variable contributes in 
combination with others. By comparing the differences 
between these two, we identified variables with strong 
synergistic behavior, even if their main effects were 
moderate or low. For instance, the second pozzolan 
type showed a low main effect but a high total effect, 
indicating that its influence is primarily through 
interactions with other mix components (e.g., cement 
content, pozzolan fineness). Admixtures, especially 
when combined (superplasticizer + secondary 
admixture), display enhanced interaction effects 
with water content and cement fineness. The cement 
and water contents clearly influence workability and 
strength balance, with total effects higher than the 
sum of their individual main effects. Finer pozzolans, 
particularly when used in combination (e.g., silica 
fume + metakaolin), showed enhanced strength 
outcomes, suggesting synergistic reactivity. Although 
grinding type had limited impact in isolation, its 

Fig. 13  Main and total effects on compressive strength after 90 days.
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interaction with pozzolan fineness and cement content 
had notable effects on early strength development.

5.3 � Synthetic Data Analysis
As mentioned before, an additional 3,000 synthetic 
data records are generated to allow for a more in-depth 
exploration of how the main program categories impact 
compressive strength. Each mix component exhibited 
an optimal weight range that contributed to higher com-
pressive strength values. Figure  15 presents the optimal 
weight range for each component as determined by the 
model.

The analysis revealed the expected optimal absolute 
weights for the components of pozzolanic concrete mix-
tures: sand (400–650  kg/m3), gravel (900–1011  kg/m3), 
superplasticizer (13 kg/m3), additional admixture (if pre-
sent, 10 kg/m3), water/cement ratio (0.5–0.6 for normal 
concrete and less than 0.4 for high-strength concrete), 
and pozzolan content (100–150  kg/m3). These values 
were found to be optimal for achieving high compres-
sive strength. Some high-strength predictions at elevated 
w/c ratios reflect model-inferred outcomes based on 
multi-factor interactions in the synthetic dataset and 
should be interpreted cautiously, considering potential 
extrapolation effects beyond the range of typical experi-
mental observations. Figure  16 demonstrates that the 
higher the cement content, the higher the compressive 
strength. Based on the input data, most studies indicated 
that compressive strength often surpassed the speci-
fied design strength. Consequently, reducing the cement 
content might be advisable to meet the required strength 
more precisely. Only about 15% of the input records met 

the specified design strength without significant excess. 
For instance, the lowest pozzolanic cement content 
required to achieve 25 MPa after 28 days was 259 kg/m3 
if 30% of cement was replaced by scoria (Rosental, 2003) 
and 272  kg/m3 if 15% of cement was replaced by basalt 
(Moawad et al., 2021).

The type and content of pozzolan also significantly 
influenced compressive strength, as shown in Fig.  17. 
The analysis reveals that mixtures including silica fume 
and volcanic ash consistently produced higher predicted 
compressive strength values across different optimal 
ranges (i.e., 100–150  kg/m3 substitution levels) (Eldah-
roty et al., 2023). Some natural pozzolans demonstrated 
compressive strength values close to those achieved by 
artificial pozzolans, making local availability a key factor 
in pozzolan selection.

The model found that a pozzolan content of 
approximately 150 kg/m3 was optimal. While the model 
treated pozzolan content in absolute terms, determining 
the optimal pozzolan-to-cement ratio can improve 
the overall mix design and contribute to reducing CO₂ 
emissions. Table  10 outlines the optimal substitution 
ratios of various pozzolan types, based on the collected 
data.

Most natural pozzolans were effective at substitution 
ratios between 10 and 15%, with metakaolin and scoria 
reaching up to 20% and pumicite allowing up to 30% 
substitution for normal concrete. Depending on their 
pozzolanic properties, industrial and agricultural 
byproducts could support higher substitution ratios.

Fineness, both of cement and pozzolan, was also stud-
ied, as shown in Fig.  18. The results showed that the 

Fig. 14  Main and total effects on compressive strength increase from 28 to 90 days.
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compressive strength of pozzolanic concrete increased 
as the fineness of pozzolan increased. Finer pozzolans 
react more readily with calcium hydroxide (Ca(OH)₂), 
produced during cement hydration, forming more cal-
cium silicate hydrate (C–S–H), which is responsible for 
strength development. However, increased cement fine-
ness led to a reduction in compressive strength, likely 
due to a larger surface area that may cause incomplete 
hydration. Over time, this effect may stabilize, suggest-
ing that using finer pozzolan with coarser cement could 
be advantageous.

Regarding grinding methods, both inter-grinding and 
separate grinding had a similar effect on compressive 
strength, with separate grinding yielding slightly higher 
values. The presence of admixtures, particularly when 
used alongside superplasticizers, further enhanced 
compressive strength.

In conclusion, the synthetic data and model results 
highlighted the importance of optimizing cement and 
pozzolan content, considering local pozzolan availabil-
ity, fineness of materials, and the use of admixtures to 
achieve the desired compressive strength while reduc-
ing resource use and emissions. The proposed model 

Fig. 15  Effect of component weights on compressive strength.
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results underscore the critical role of cement content in 
achieving the desired compressive strength. Optimizing 
the minimum cement content necessary for the specific 
design strength is essential. Selection of pozzolan type 
depends on its pozzolanic activity, availability, ease of 
preparation, and cost. NPz substitution typically ranges 
from 10 to 15%, except for metakaolin and scoria, which 
can reach 20%, and pumicite, which may increase to 
30%. APz can achieve even higher substitution ratios. 

Finer pozzolans generally lead to higher compressive 
strength, and it is recommended to use separate grind-
ing for slightly better results when replacing cement with 
pozzolan. However, this recommendation differs from 
Ghiasvand et al. (2014), who advocated for inter-grinding 
pozzolan with clinker as a more energy-efficient tech-
nique while enhancing compressive strength.

With the aid of the VBSA, the trained model could con-
sider the absolute effect of each parameter, which clarifies 

Fig. 16  Effect of cement content on compressive strength.

Fig. 17  Effect of pozzolan type on compressive strength.
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the total effect of each parameter over time. Upon the 
VBSA results, it was noticed that the total effect of using 
an additional type of pozzolan was high, although its 
main effect was not noticeable. Then, the model’s recom-
mendations include using two types of pozzolan, incor-
porating admixtures, paying attention to the fineness of 
cement and pozzolan, and favoring separate grinding for 
optimal compressive strength.

Finally, the proposed framework—combining DRNNs 
with VBSA—is designed to assist engineers and 
material designers in selecting and optimizing concrete 
mix designs without requiring extensive lab trials. 
Specifically, industry professionals can use the model to 
predict compressive strength for various combinations of 
pozzolan types, proportions, admixtures, and mix ratios 
before physical testing. Also, the proposed framework 

can be used to evaluate trade-offs between performance 
and sustainability (e.g., maximizing strength while 
minimizing cement content) and to explore optimal 
substitution ratios for available local pozzolans, as shown 
in Table  10, helping reduce costs and environmental 
impact. This predictive capability is especially beneficial 
in projects with tight timelines, budgets, or sustainability 
goals.

6 � Conclusions
This research advances the field of sustainable concrete 
production by optimizing pozzolanic cement mixtures, 
contributing to the global effort to reduce CO₂ emis-
sions in the cement industry. Using a hybrid framework 
that combines machine learning and sensitivity analysis, 
the study leverages both experimental and synthetic data 
to model concrete compressive strength with high preci-
sion. The proposed model, based on DRNNs, achieved 
a coefficient of determination (R2) of 0.94 and RMSE 
within ± 3  MPa, confirming its accuracy in predicting 
compressive strength across a diverse dataset. By apply-
ing VBSA, the model quantitatively identified the most 
influential parameters affecting compressive strength. 
Cement content ranked as the most critical factor (total 
sensitivity index ≈ 0.65), followed by water content, 
pozzolan type, and admixture dosage. The model also 
revealed strong interaction effects—especially for sec-
ondary pozzolan types and fineness—where their total 
effects were substantial ( STi  > 0.20) despite low direct 
contributions. These findings provide measurable insight 
into the complex behavior of pozzolanic systems.

The DRNN-VBSA framework is designed to be 
scalable and modular. It can be retrained using 
local data, deployed in user-friendly tools, and 
integrated into existing design workflows. The model 

Table 10  Optimal substitution ratios for different pozzolan 
types.

Type of pozzolan Optimum substitution 
ratio (range)

Substitute for

Dealuminated Kaolin DK 25% Cement

Calcined clay 20% Cement

Metakaolin (7.5–20)% Cement

Scoria 20% Cement

Trass 20–25% Clinker/cement

Volcanic Tuffs 10% Cement

Basalt 7.5–15% Cement

Trachyte Not more than 25% Cement

Zeolite 3% Clinker

Pumicite 20–30% Cement

Fly ash FA 15–35% Cement

Silica fume SF 10% Cement

Blast furnace slag BFS 20% Cement

Fig. 18  Effect of fineness on compressive strength after 28 days.
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demonstrated strong generalization capability with 
its foundation in a broad input domain, spanning 15 
laboratory datasets and 3,000 augmented samples. This 
allows engineers to generate rapid strength predictions 
and optimize mix designs based on measurable targets, 
such as achieving 28-day strengths of ≥ 40  MPa while 
minimizing cement use. The study’s findings are 
consistent with prior literature and refine it through 
quantitative thresholds. For example, optimal pozzolan 
substitution ratios were found to be 10–15% for natural 
pozzolans like volcanic ash, and up to 20–30% for 
metakaolin and pumicite. Finer pozzolans (≥ 8000 
cm2/g) enhanced strength by 6–10  MPa compared to 
coarser ones. Superplasticizer dosages around 13  kg/
m3 and cement contents ≥ 300  kg/m3 were associated 
with the highest compressive strength. Separate 
grinding marginally outperformed inter-grinding in 
terms of strength (+ 1–2 MPa), while the latter remains 
preferable for energy efficiency. Combinations of two 
pozzolan types outperformed single-pozzolan mixes, 
highlighting synergistic effects that were evident in 
the total sensitivity indices. Cement content remained 
the dominant driver of compressive strength across 
all curing stages, with other factors—such as gravel 
content, water-to-cement ratio, admixture use, 
and grinding method—becoming more influential 
when evaluated for their interactive contributions. 
Between 28 and 90  days of curing, pozzolan-related 
parameters (type, content, and grinding method) 
became increasingly significant. Synthetic data further 
pinpointed optimal weight ranges: 100–150  kg/
m3 for pozzolan, 13  kg/m3 for superplasticizer, and 
water-to-cement ratios of 0.35–0.45 for high-strength 
applications. These ranges serve as precise benchmarks 
for performance-based mix optimization.

This study also opens measurable avenues for future 
research. Promising directions include testing hybrid 
natural-synthetic pozzolan blends, refining multi-
admixture strategies, and expanding the framework 
to predict durability indicators such as sulfate resist-
ance and chloride permeability, once reliable long-term 
datasets are available. Integrating life cycle assessment 
(LCA) tools is also recommended to evaluate envi-
ronmental trade-offs in pozzolan sourcing, grinding 
energy, and admixture production, particularly in vary-
ing geographic contexts. The proposed DRNN-VBSA 
model ultimately forms a foundation for data-driven, 
sustainable, and high-performance concrete mix 
design.
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