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Abstract

Fabric-reinforced cementitious matrix (FRCM) technology has emerged as a promising solution for the reinforcement
of existing buildings, particularly in seismically active regions. This paper presents a comprehensive review of experi-
mental research methods focusing on the seismic performance of masonry-infilled reinforced concrete (RC) frames
retrofitted with FRCM. Drawing on a wealth of literature from various regions, this review synthesizes advancements
in FRCM technology, experimental techniques, and theoretical frameworks. Key aspects explored include material
properties testing, bond behaviour between fabric and matrix, and the seismic behaviour of masonry-infilled RC
frames. Additionally, the significance of in-plane and out-of-plane behaviours is discussed, highlighting the impor-
tance of comprehensive testing methodologies. This paper also examines advancements in experimental equipment,
such as shake tables, underscoring their pivotal role in simulating realistic seismic conditions. Overall, this review
provides a systematic foundation for further research on the efficacy and potential of FRCM technology in structural
reinforcement, contributing to the ongoing discourse in seismic engineering and retrofitting strategies.

Keywords Fabric-reinforced cementitious matrix, Masonry-infilled reinforced concrete frames, Experimental research
methods, Seismic performance, Structural reinforcement, Retrofit strategies

1 Introduction

In accordance with prior scholarship by Wang, (2023);
Wang et al., (2021), the core principle of fabric-reinforced
cementitious matrix (FRCM) composites lies in embed-
ding high-strength fabrics within a cement-based mortar,
resulting in a mineral-based composite (MBC) mate-
rial. When short polymeric fibres are incorporated into
the mortar matrix, the resulting material is commonly
referred to as an engineered cementitious composite
(ECC). FRCM systems, also known as textile-reinforced
mortars (TRM), have been widely applied to various
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substrates for structural strengthening purposes. These
include applications such as textile-reinforced concrete
(TRC) and TRC-strengthened masonry, particularly
in the retrofitting of existing reinforced concrete (RC)
structures.

Extensive experimental research has been conducted
in both Europe and the United States comparing fibre-
reinforced polymer (FRP) and FRCM reinforcement
techniques. Nearly all studies that have undertaken direct
comparisons have concluded that FRCM represents an
evolution and, in many cases, a replacement for FRP
technology. Compared to FRP sheets, FRCM stands out
as a more advanced solution for infill wall strengthen-
ing, offering improved fire resistance, lower added mass,
enhanced durability, and better compatibility with sub-
strate materials. The method typically involves applying
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fibre fabrics embedded in mortar to masonry or concrete
surfaces, using a variety of fibre types such as glass, car-
bon, aramid, basalt, and p-phenylene benzobisoxazole
(PBO).

A multitude of factors influence building energy per-
formance, including installed heating/cooling systems,
climatic conditions, and the architectural envelope.
Enhancing envelope insulation capacity serves to miti-
gate energy demand by improving thermal retention,
while the integration of energy-efficient operational sys-
tems further contributes to conservation efforts. Conse-
quently, energy-saving initiatives primarily target ageing
facilities characterized by inadequate insulation, which
results in elevated energy consumption rates.

Recent investigations underscore the necessity of inte-
grating independent retrofit measures to comprehen-
sively enhance overall performance. Efforts to merge
seismic resilience with the ecological benefits of mitigat-
ing seismic-induced damage and/or avoiding demolition
due to earthquakes have garnered considerable attention.
Consequently, a multidisciplinary approach has emerged,
emphasizing simultaneous enhancements in seismic and
energy efficiencies.

This paper systematically consolidates and evaluates
a substantial body of experimental inquiries concerning
the retrofit of masonry-infilled frames utilizing FRCM
systems. These collective endeavours establish a theoreti-
cal framework for experimental investigations into the
seismic performance of masonry-infilled RC frames.
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2 Test methods on material property
2.1 Matrix (Mortar)
The FRCM system relies on the reinforced mortar as an
essential component to bear flexural and compressive
loads and to provide bonding between the substrate and
the outer thermal insulation and enhance the cooperative
working mechanism with the fabric. To accomplish this,
specialized moulds are used to create prismatic mor-
tar matrix samples sized 160x40x40 mm. The flexural
and compressive strength of these samples are tested in
accordance with (EN1015-11, 2019), as shown in Fig. 1.
The longitudinal tensile test is significant as it closely
aligns with the stress distribution characteristics of the
mortar block within the FRCM system. However, previ-
ous testing methodologies have fallen short in adequately
mitigating the impact of fixture deadweight. A novel
approach is suggested wherein the sample is positioned
horizontally on a smooth surface, or on a specialized test
platform integrated with ball bearings to diminish fric-
tion resistance. Applying a horizontal load by affixing the
load at both ends presents an opportunity to enhance the
precision of tensile strength testing for the mortar block.

2.2 Fabric (Textile)

As the primary load-bearing element of the FRCM sys-
tem for tensile force, fabrics have been developed to
provide the required levels of tensile strength and elas-
ticity. Direct tensile tests can be used to evaluate the
tensile strength of dry fibres and/or a single bundle of
fibres. Previous research by Wang et al., (2020) provides

W

Fig. 1 Test method for compressive, flexural, and tensile strength of the mortar block. Reprinted from Wang et al,, (2021)
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valuable insights into these evaluations, as shown in
Fig. 2.

3 Bond Behaviour

To achieve an effective combination of materials in the
FRCM system, it is necessary to understand the bond-slip
behaviours between the different components. There are
two main test methods used to study the bonding mecha-
nisms: fabric-to-matrix and matrix-to-substrate.

3.1 Tensile Bond Behaviour

The fibre-to-mortar bond mechanism consists of
the chemical bond between the bare fibres and mor-
tar blocks. This is originally determined as a load-slip
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Fig. 2 Test method for tensile strength of single-bundle samples.
Reprinted from Wang et al., (2020)
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response curve obtained by pull-out tests. The test setup
is shown in Fig. 3, which is taken from the research of
Dalalbashi et al., (2021); Pei et al., (2021).

However, this method cannot measure finished fibre
fabrics with cords and may cause measurement errors
for coated fabrics. The fabric meshes are mechanically
interlocked by shearing the matrix when the main bun-
dle fibres are pulled out, which cannot be measured in
pull-out tests on a single bundle of fibres. Additionally,
the friction-increasing overcoat may cause debonding
to occur between the fibres and the coating, rather than
between the coating and the mortar, potentially hinder-
ing the accurate testing of the bond-slip behaviour of the
fabric-to-matrix mechanism. Consequently, direct tensile
tests on FRCM samples are now preferred for studying
the bond-slip behaviour of various fibre fabrics embed-
ded in different mortars.

The fabric-to-matrix bond mechanism is usually stud-
ied through the tensile bond behaviour of the FRCM
composites. This behaviour is typically presented as a
stress—strain response curve obtained by direct tensile
tests.

Guidelines for performing direct tensile tests on FRCM
composites in the United States are provided by (AC434,
2013) and (D3039/D3039M-17, 2017). While there are
currently no specific norms for FRCM materials used for
structural retrofitting in European countries, standardi-
zation committees are working to develop national and
European guidelines. The test setups, as summarized by
Caggegi et al.,, (2017), are shown in Fig. 4.

Resin block

Glass fiber

Mortar

Fig. 3 Pull-out test method for fibre-to-mortar bond behaviour. Reprinted from Dalalbashi et al,, (2021)
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A comprehensive review of previous experimental
studies by De Santis et al., (2017) has summarized the
testing methods with operational details that can be fully
emulated. It is noteworthy that test results from related
studies may differ significantly, not only due to material
properties but also because of specimen shapes and grip-
ping methods.

The idealized stress—strain curves of dry fabric,
clamped, and pinned FRCM composites, as drawn by
Arboleda et al., (2016), are depicted in Fig. 5. Tensile
specimens consist of one or more layers of fabric embed-
ded in a mortar matrix, and the FRCM samples are also
designed in different shapes. Such studies are summa-
rized by Truong and Kim, (2021) in Fig. 6.

Rectangular-shaped specimens are long, flat prisms
with gripping areas fixed by clamps and their surfaces
treated to enhance friction, using materials such as alu-
minium plates, rubber plates, or sandpapers. Bone-
shaped and dumbbell-shaped specimens have larger
gripping areas with rounded or bevelled corners for
wedging, while waist-shaped specimens are made of
perforated steel plates embedded in the interior of two
gripping areas without other outer inlays. Additionally,
gripping regions in specimens can be reinforced with
additional fibre fabrics or fibre-reinforced polymer (FRP)
sheets, and their thickness may be increased as needed.

Direct tensile tests are used to determine the constitu-
tive relationship of FRCM composites, as described by de
Felice et al.,, (2020). The tensile bond behaviour typically
follows three stages of response, as described by De San-
tis et al,, (2017) and illustrated in Fig. 7.

Fig. 4 Direct tensile test method on fabric-to-matrix bond behaviour. Reprinted from Caggegi et al,, (2017)
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Fig. 5 Idealized stress—strain curves: a dry fabric; b clamped FRCM; ¢
pinned FRCM. Reprinted from Arboleda et al., (2016)

In some cases, FRCM composites exhibit a higher
Young’s modulus and lower peak strain compared to
dry textiles. This can be attributed to two main reasons.
Firstly, the mortar matrix between subsequent cracks can
contribute to the stiffness and allow for better stress dis-
tribution, increasing peak stress. Secondly, the uneven
stress distribution between yarns or wires, or local dam-
age in the clamping area during the test of dry textiles,
may lead to the premature fracture of some of the yarns,
resulting in an underestimation of the actual tensile
strength of the textiles. The mismatch between the tensile
behaviour of dry fabrics and FRCM composites depends
on the bond or interlocking between the fabric and the
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Fig. 6 Previous tensile specimens and direct tensile test setups. Reprinted from Truong and Kim, (2021)

matrix. This bond is higher for dry fabric made of several
filaments and lower for pre-impregnated or coated fabric
and steel fabric. Typically, there are four failure modes of
FRCM composites in tensile tests, as presented in Fig. 8
from the research of Caggegi et al., (2017).

After reviewing the theory of direct tensile test meth-
ods, it is worth discussing tests related to the flexural
bond behaviour of FRCM. The test method is shown
in Fig. 9. These studies primarily investigate FRCM for

reinforced concrete (RC) elements subjected to bending,
or for walls subjected to out-of-plane loads.

3.2 Shear Bond Behaviour

The matrix-to-substrate bond mechanism is investigated
through the shear bond behaviour between the FRCM
layer and substrate, generally expressed as a shear force
(or stress)—displacement response curve. This behaviour
is evaluated using single-lap or double-lap shear tests
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Fig. 7 Stages of tensile stress—strain response. Reprinted from De
Santis et al, (2017)

on one prism, as well as double-lap double-prism shear
tests. The setups of shear bond tests on masonry sub-
strates by tension are shown in Fig. 10, as selected by De
Santis et al., (2017).
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Additionally, a type of shear bond test conducted by
bending between two prisms is used to study the FRCM
as reinforcement for flexural RC members or walls sub-
jected to out-of-plane loads. An example of this test is
depicted in Fig. 11, presented in a study by Calabrese
et al., (2021). Likewise, the typical failure modes of the
specimens in shear bond tests are also categorized by De
Santis et al., (2017), as shown in Fig. 12.

Moreover, an insufficient embedded length of the fab-
ric may alter the failure modes of the test specimens,
resulting in a lower bond strength and different failure
mechanisms. The bond-slip law of the interface between
FRCM and RC substrate at various bond lengths was pre-
sented as response curves by Bencardino et al., (2017),
shown in Fig. 13.

To account for the exponential nature of bond force
along the bond length, it is crucial to place resistance
strain gauges at different locations for measurement.
The strain gauge configurations proposed by Napoli
et al., (2016) for experimental research on the shear bond
behaviour of the steel FRCM are particularly noteworthy.
In their study, detailed distances from the gauges to the
loaded end are marked, as shown in Fig. 14.

However, special considerations are necessary when
conducting shear bond tests between FRCM and
masonry substrates due to the surface characteristics
and chemical bond strength differences between mortar

— Textile Matrix
— [ -
—— e
Mode A
——
@) -
—_—
- —
ModeB Fibers failure
—_—
) — ——
- | S
=
MedeiC Fibers slippage
\P _—
(c) 1 I\ 1( 1 A\
) [ 1 J1 ]
- =
Mode D Fibers slippage J
< —
(d) | TE:I::\ ————
— ) 1
— | —— | S | S—— ]

Fig. 8 Classification of failure modes of FRCM composites in tensile tests. Reprinted from Caggegi et al., (2017)
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Fig. 9 Flexural test method for fabric-to-matrix bond behaviour.
Reprinted from Kim et al,, (2020)

joints and bricks. The anisotropy of bricks and the inter-
locking effect provided by the mortar joints create dis-
continuities in the stress distribution. This phenomenon
was observed in shear bond tests between basalt FRP and
masonry by de Felice et al., (2015), illustrated in Fig. 15.

Based on these results, it can be inferred that the distri-
bution of bonding is discontinuous due to the influence
of mortar joints in the masonry substrate, which may also
affect the bond-slip law between FRCM and masonry.
Furthermore, since there has been no separate investiga-
tion on the matrix-to-substrate bond when the FRCM
is combined with a thermal insulation layer, specialized
research on the fabric-to-matrix and matrix-to-substrate
bond behaviour was conducted by Wang et al., (2021).
Different arrangements of extruded polystyrene (XPS)
plates were applied to the FRCM to test the shear bond
capacity of this insulation system when used on a large-
scale wall.
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4 Seismic Behaviour
Masonry elements, including modern RC infill walls
and unreinforced masonry (URM), are prone to collapse
under bending or damage under shear forces. The defor-
mation of the RC frame can also lead to the crushing of
infill walls. To enhance seismic performance, numerous
studies have investigated the use of FRCM strengthen-
ing, often utilizing wallettes or small-scale models for
ornamental or experimental purposes. Test methods for
different types of representative wall specimens typically
include vertical compression (Fig. 16), diagonal compres-
sion (Fig. 17), and flexural bending (Fig. 18).
Conventionally, the seismic behaviour of planar ele-
ments is divided into out-of-plane (OOP) and in-plane
(IP) behaviour, depending on the earthquake’s direction.
The load state of the masonry infill is illustrated in Fig. 19
by Gkournelos et al., (2020), showing that the infill wall
is primarily subjected to flexure under out-of-plane loads
and to diagonal compression under in-plane loads.
Although diagonal compression and flexural bend-
ing tests on wallettes are widely conducted to study
masonry-infilled RC frames retrofitted with FRCM sys-
tems, it is still necessary to test the seismic performance
of full-scale walls and infilled RC frames. The stress state
of the masonry within the frame is more complex, and
multiple failure modes often occur in different parts of
the masonry. Relying solely on calculations of crushing,
shearing, or flexural strength based on specifications is
insufficiently accurate.
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Fig. 10 Shear bond test methods for matrix-to-substrate bond behaviour by tension: a single-lap, b double-lap single-prism, ¢ double-lap

double-prism. Reprinted from De Santis et al,, (2017)
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4.1 Out-Of-Plane Behaviour

The out-of-plane behaviour of masonry-infilled RC
frames is typically studied through force—displace-
ment response curves obtained from OOP performance
tests, where the infill wall is pushed out of the RC frame.
Recent tests on masonry-infilled RC frames retrofit-
ted with FRCM systems are grouped in several studies,
including Akhoundi et al., (2021); De Risi et al., (2020);
De Risi et al., (2022); Furtado et al., (2021); Ismail et al.,
(2020); Koutas et al., (2015); Koutas and Bournas, (2019);
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Minotto et al., (2020); Sagar et al., (2019); Verderame
et al,, (2019).

To conduct OOP performance testing on masonry-
infilled RC frames, the RC members are fixed with stiff
steel frames, and a fluctuating incremental load is applied
horizontally to the masonry wall until the surround-
ing interfaces of masonry debond from the concrete or
the wall collapses. The common test setup is shown in
Fig. 20, developed by Koutas and Bournas, (2019).

Apart from the commonly known FRCM system used
to enhance the flexural strength of masonry, De Risi
et al., (2020) attempted to use connectors to improve the
connection between masonry and the concrete frame, as
illustrated in Fig. 21. This local reinforcement method
compensates for the insufficient bond strength between
the FRCM and the masonry, preventing premature col-
lapse due to debonding around the masonry and RC
frame. Therefore, the OOP strengthening system for
masonry infills should focus on the FRCM-to-frame con-
nection system.

Koutas and Bournas, (2019) also performed inte-
gral retrofitting of masonry-infilled RC frames using
FRCM sheathing overlays. The OOP force—displacement
response curves of the wall at the centre are grouped in
Fig. 22. By reinforcing the masonry and the frame hori-
zontally with an outer layer of FRCM, the connection
between them is strengthened, and the concrete mem-
bers are partially reinforced into TRC, improving the
overall seismic performance of the structure long-term.

Finally, Furtado et al., (2022) categorized existing tech-
niques to combine seismic efficiency with environmental
benefits of mitigating damage and/or demolition caused
by earthquakes. The results are presented in a graph with
two tables, as shown in Fig. 23. It is evident that exter-
nal thermal insulation reinforcement measures cannot
be entirely replaced. The composite system of FRCM,
which combines textile-reinforced mortar and exter-
nal thermal insulation, exhibits greater compatibility. A
multidisciplinary approach has been adopted to enhance
building performance, with equal emphasis on seismic
and energy efficiencies, as demonstrated by Triantafil-
lou et al., (2017). The system combines FRCM overlayers
with traditional XPS sheets, tested on brick masonry wal-
lettes under OOP cyclic bending. Some wallettes under-
went fire testing before mechanical testing to evaluate
the effectiveness of the new system under realistic fire
conditions.

4.2 In-Plane Behaviour

The in-plane behaviour of masonry-infilled RC frames is
generally investigated through pull-push reciprocating
cyclic loading on concrete frames by actuators, primarily
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Fig. 16 Vertical compression test method of wallette. Reprinted
from Minotto et al., (2020)

expressed as a force—displacement hysteresis curve
obtained by the IP performance test.

For IP performance testing of masonry-infilled RC
frames, the frame must remain untwisted along the hori-
zontal direction, allowing the infill wall to bear loads until

Fig. 17 Diagonal compression test method of wallette. Reprinted
from Gkournelos et al., (2020)

crushed without collapsing. Static or quasi-static loads
are then applied axially to the concrete beam until the
masonry is thoroughly damaged or the RC frame deforms
to failure. The typical test setup is shown in Fig. 24, based
on the research conducted by Ismail et al., (2018).
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Fig. 18 Flexural bending test method of wallette. Reprinted
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The infill wall is easily damaged by diagonal extrusion
due to the deformation of the frame. The local retrofit
method of FRCM composites on masonry-infilled RC
frames involves targeted reinforcement in the diagonal
bands. The force—displacement hysteresis curves tested
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by Ismail et al., (2018) are shown in Fig. 25. The study
tested nine single-storey, one-bay test frames subjected
to quasi-static cyclic in-plane loading while maintain-
ing a constant axial load of 120 kN over each column.
Three types of reinforcement fabrics were used to ret-
rofit the test frames. The RC frame filled with masonry
requires a larger load than the bare frame to deform to
the same lateral displacement, while the specimen rein-
forced with FRCM displaces less under the same load.
The hysteretic behaviour of the whole wall reinforcement
method is superior to the local method, indicating that
FRCM retrofitting techniques can be tailored to specific
needs, with local and global methods offering different
approaches to improving the structure’s performance.

Additionally, Sagar et al.,, (2019) attempted to enhance
the in-plane performance of masonry infill frames by
fixing the fabric onto the RC frame at a 45-degree angle
using mechanical anchors, assembled with bolts, nuts,
and washers. The layout used in the study is shown in
Fig. 26. The paper evaluated three parameters: fabric
application mode, mechanical anchor presence, and fab-
ric orientation. The direct application produced better
results than the sandwich application due to its higher
bond strength and ability to reinforce the masonry wall
rather than merely reinforcing the mortar coating.

Finally, the seismic behaviour of an RC frame can be
evaluated based on three important factors: ductility,
stiffness, and energy dissipation capacity. A damping
coefficient for analysing the force—displacement hyster-
esis curve is detailed by Su et al., (2017) in Fig. 27.

In summary, developing an FRCM system combined
with PCMs and XPS plates aims to achieve adequate
physical, mechanical, and thermal properties for rein-
forced concrete and masonry buildings. Based on a

Fig. 19 Experimental representation of a masonry infill behaviour. Reprinted from Gkournelos et al., (2020)
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Fig. 20 Test method for out-of-plane behaviour. Reprinted from Koutas and Bournas, (2019)

comparison of the three retrofitting methods, the FRCM
sheathing overlay, used as a global method, appears to
be the better choice for retrofitting masonry-infilled
RC frames. This method can improve both out-of-plane
and in-plane performance with a single setting, address-
ing the needs of both the RC members and the infill wall
simultaneously. Therefore, experimental research was
carried out by Wang, (2023) focused on evaluating this
new system comprehensively by calculating hysteresis
curves, comparing lateral stiffness, ductility, and energy
dissipation capacity, measuring specimen deformations,
and analysing failure modes mechanically.

Additionally, shake table testing has gained more atten-
tion in the field of structural seismic research because it

can simultaneously study the in-plane and out-of-plane
behaviours of a single-storey RC frame in one test setup,
as shown in Fig. 28 from Sagar et al., (2019). It can also
be used for 3D buildings, as demonstrated by Maddaloni
et al., (2018). The load form that the shaking table sim-
ulates is more accurate to the real situation, especially
when the structural frame absorbs the out-of-plane
loading. As the structure shakes excessively, the infill
masonry is loaded in-plane due to the lateral deformation
of the RC frame, and the displacement range amplitude
increases from bottom to top.

Seismic energy is transmitted in waves from the man-
tle and surface of the earth, causing mechanical vibra-
tions from the bottom to the top of buildings. However,
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hydraulic actuators apply load to the frame beams to
transfer the lateral displacement from the frame node
to the base. Therefore, if the cost of the experimental
equipment is not considered, the 8-direction 6-degree
of freedom shaking table is indeed the most advanced
experimental method for structural seismic research.
This sophisticated equipment allows for a comprehensive
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Fig. 22 Out-of-plane force-displacement response curves. Reprinted
from Koutas and Bournas, (2019)

simulation of seismic activity, providing valuable data on
the complex interactions and failure mechanisms within
the structure under realistic earthquake conditions.

5 Conclusions
Recent years have seen significant advancements and
widespread applications of Fabric-Reinforced Cementi-
tious Matrix (FRCM) technology in reinforcing existing
buildings. Originating in the Americas and gaining trac-
tion among European scholars over the past decade, this
technology is now attracting attention from research-
ers worldwide, including in Asia, Africa, Oceania, and
beyond. There is a unanimous consensus among scholars
that FRCM presents a viable alternative to FRP materials.
The benefits of FRCM technology are diverse. These
include the conservation of fibre materials and the
enhancement of bonding between the fabric mesh and
the cementitious matrix. The grid structure of the fab-
ric facilitates better integration with the cement matrix,
while the use of multiple fabric layers improves the over-
all stiffness of the FRCM system.
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Furthermore, continuous advancements in experimen-
tal methods and equipment aim to enhance the effective-
ness and accuracy of tests. Researchers worldwide have
refined specimen preparation techniques, improved load-
ing and measurement devices, and developed more stable

testing platforms. These improvements aim to enhance
the validity of experiments and the precision of results.
By integrating existing theoretical frameworks with
structural testing data, this paper has outlined main-
stream experimental research methods and synthesized
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Fig. 24 Test method for in-plane behaviour. Reprinted from Ismail

etal, (2018)
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them into a comprehensive theoretical framework for
studying the seismic performance of masonry-infilled
RC frames strengthened with FRCM. This framework
serves as a valuable reference for related research
endeavours, providing a systematic groundwork for
further exploration of the potential and efficacy of
FRCM technology in structural reinforcement, as illus-
trated in Fig. 29.

This theoretical framework offers a structured
approach to investigating the seismic performance of
masonry-infilled RC frames, laying the groundwork
for future research to expand upon and refine our
understanding of FRCM technology’s role in structural
reinforcement.
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