Computing Deflections
Using ACI CODE-318-19 and

Beyond, Part 5

Proposed extension to prestressed concrete

by Peter H. Bischoff, Wassim Nasreddine, and Hani Nassif

arts 1 to 4 of this article series'* introduce and variable eccentricity is available in the Appendix, which
P evaluate the new expression for /, first adopted by can be accessed in the online version of this article at
ACI CODE-318-19° for calculating deflection of www.concreteinternational.com.
reinforced (nonprestressed) concrete. The revised expression
for I, is not applicable to cracked prestressed concrete I = jg and e, = e, for M <A M_

members, and ACI CODE-318-19 uses the approach
developed by Branson® for this type of member.

Work by Bischoff et al.” has proposed extending the ACI For M, >4 M,

CODE-318-19 approach for reinforced concrete to include ] = 1,
prestressed concrete. The proposed approach, summarized in - AM : i
Fig. 1, has been developed to compute immediate deflection 1- [ :w ] {| —- "-J
of Class T and Class C prestressed members, which are a x

cracked under service load (refer to ACI CODE-318, Section
24.5.2, for classification of prestressed members). In this A M i A M I
approach, deformation from the eccentric prestressing force e, = [T] !—" e+ [_(u] [—']ﬁ'rr
(computed using an effective eccentricity e. and effective Ha £
moment of inertia 7,) is subtracted from the deformation from

load (computed using /.). This is much like the procedure used M_= ( 1+ fm] I, 1y,

to compute deflection of an uncracked prestressed member, in
which e, (the eccentricity of the prestressing force relative to

the centroid of the gross [uncracked] section) and /, are used 1 = [E] +[ Py J(l)
to compute camber, and /, is used to compute deflection due - 3 PP, 3
to load (but with one difference for a cracked member, as

noted further on).

While the curvature of a cracked prestresse d member is Fig. 1: Proposed revision to ACI CODE-318-19, Section 24.2.3.9

obtained by subtracting the effective curvature caused by the
eccentric prestressing force from the curvature caused by load, Summary of Article Parts

direct calculation of deflection is conservatively based on net Part 1: Primer for Computing Deflections—Immediate
curvature’ as demonstrated with an example later in this and Time-Dependent

article. For a continuous member or members with variable Part 2: New Expression for 7, and Reasons for Change
eccentricity of the prestressing, it might be advantageous to Part 3: Impact of Changes Made

compute deflection by integrating curvature. Calculating Part 4: Deflection Example—Continuous Slab
deflection directly (Wlthout integration) is also affected by Part 5: Proposed Extension to Prestressed Concrete

the type of loading. A bonus example for a member with
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Prestressed Concrete Behavior

Figure 2 illustrates the effect of prestressing on the
moment-curvature relationship for concrete flexural members.
Eccentric prestressing increases the cracking moment and
causes an initial upwards deflection (camber) to give a stiffer
response at service loads. The axial prestress force also results
in a partially cracked section with a nonlinear E.//, response
that gradually converges (under increasing load) to the E./.,
response corresponding to a fully (nonprestressed) cracked
section. More importantly, the cracked E./.. response is offset
from the uncracked E.I,, response (where the moment M,
identifies the intersection point of the E./, response and
shifted E.I., response). The E.I., response is shown in Fig. 2
as lying below the cracking moment M., but can lie above M.,
for higher levels of prestressing.®

Calculation of deflection is simplified by using the E./.,
response instead of E.1/..” This avoids the difficulty of
locating the neutral axis and then the centroid location, which
is not coincident with the neutral axis for a partially cracked
section. Other simplifications include approximating the
uncracked moment of inertia /,, with the gross moment of
inertia /, and using the effective prestress force P. in place of
the fictitious decompression (prestress) force P, = f.A4ps
described by Nilson.!® The prestressing force is moved up to
the centroid for analysis, resulting in an eccentric prestress
moment P,e. = P.e., where e, is the eccentricity of the
prestressing steel relative to the centroid of the cracked
section (located at the neutral axis for a fully cracked section).

The decompression stress f. is defined as the stress in the
tendon corresponding to zero stress in the concrete at the level
of the prestressed tendons, and 4,, is the area of prestressed
longitudinal tension reinforcement. The effective prestress
force is P. = f;.A,,, where f,. is the effective stress in the
prestressed reinforcement after all losses, including shrinkage
and creep. The increased cracking moment associated with
prestressing is M., = (f; + fpe) L/y:, Where f,. is the
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Fig. 2: Comparative plots of moment-curvature relationships for
prestressed and reinforced (nonprestressed) flexural members
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compressive stress in concrete at the precompressed tensile
face resulting from the effective prestress force P, acting on
the deformed section and thus also accounts for losses from
creep and shrinkage.

Model Extension to Prestressed Concrete
Deformation of a cracked prestressed concrete member is
modeled by adding a tension stiffening moment
AM,; = fis AM.. < AM,, onto the cracked E.I., response, as
shown in Fig. 3.7 This is similar to the approach used for
reinforced (nonprestressed) concrete described in Part 2 of the
article series,? except the E.I., response has been shifted
upwards relative to the uncracked E. /I, response. Model
development for prestressed concrete mirrors the steps taken
in Part 2 of the article series® for reinforced concrete.
The moment M, for a corresponding curvature ¢, is defined as

Ma = EL‘Icr (¢a +¢p,cr)+ﬂtsAMcr (la)
Rearrangement of terms leads to
M AM
=—2|1-B | —=||-¢ (1b)
¢a Eclcr |: ﬁtb ( Ma j:| ¢p,cr

Substituting AM,, = M., (1-1,/1,)~E.L,(¢,. ~4,.,)
into Eq. (1b) gives

M M 1
— a 1— cr 1— =< _
¢“ Eclcr |: ﬁm [ Mﬂ j[ I“‘ J:|

(B4, +(1-8,)4,.. |

(Ic)

which leads to the curvature ¢, = M,/(E.l.) — ¢ for an
effective moment of inertia /., and effective curvature from

M
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Fig. 3: Model response of prestressed member with tension stiffening
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prestressing ¢,., defined as

1
1_ cr

o _ Mcr _ i (Za)
-2 5 -k
and
Ppe = Bupar + (1 = ) p.cr (2b)

The curvature from prestressing of an uncracked section,
@y, 1 given by ¢, = P.e,/(El,), and the curvature from
prestressing of a fully cracked section, ¢, is given by
Oper = Poe/(Ecl,). AM, decreases with increasing load after
cracking using an assumed tension stiffening factor
Bis = M../M, that is substituted into Eq. (2a) and (2b). Plus, the
terms for the uncracked transformed section (/,, ¢,., and e,)
are approximated with the terms for a gross (uncracked)
section (/,, ¢,,, and e,) to give simplified design expressions
for 7, and ¢,..

]G= Lzr
1_(% (Mnj (3a)
M, 1,
(ML), L] (M 3
by [ Mﬂjqﬁp,g_l [ " H«f (3)

One final step is taken by setting P,e. = (E.l.)¢,. to define
an effective eccentricity e.. Making another simplification by
approximating P, with P, (essentially estimating the
decompression stress f;- with the effective prestress f.), where
bpe = Pee(Ecl,) and ¢, = P.e./(El.), leads to

M, | 1, M, 1,
e, =|—= | % |e, +|1-| —* < le,
M, )\ 1, )¢ M, 1,
Curvature is then computed as ¢, = (M, — P.e.)/(E.L).
Figure 4 illustrates the member response calculated when the

E.I, response lies either below or above the cracking
moment.

(3¢)

Shrinkage Restraint from Nonprestressed
Reinforcement

The cracking moment M., = (f,+ f,.)I/y: is not reduced for
a fully prestressed (FP) member (where the section does not
include nonprestressed reinforcement). This is because
shrinkage and creep are already taken into account with the
effective stress f;. in the prestressing steel used to establish the
effective prestress force P. and subsequent compressive stress
Jre at the precompressed tensile face (that in turn is used to
compute M,,). However, a reduced cracking moment A.,M., is
needed for a prestressed member reinforced with additional

nonprestressed reinforcement (defined as partially prestressed
[PP] in this article) to account for tensile stresses that develop
in the concrete from restraint to shrinkage by the
nonprestressed reinforcement.!' The reduction factor

2 1
A, = () o L (j varies between 2/3 for a reinforced
3 ptp, N3

(nonprestressed) concrete member (identical to ACI-
CODE-318-19 for nonprestressed concrete) and 1 for an FP
member. Substitution of the reduced cracking moment into
Eq. (3) then gives

13 = I"’ 2
1 _ ﬂ’chcr 1 _ Iu (4a)
M, I,
A.M .M
¢pe :( c;w cr j¢p’g + [1 _( c}\4 cr j:| ¢p,cr (4b)
/Icr M cr I e ﬂ'c"” MC‘V [‘—’
e, =|— - eg + 1= == € (40)
Ma [g Ma Icr

Gross section properties (/,, @, €,) are used for an
uncracked member when M, < A.,M...

Evaluation

Full details on this approach’s level of accuracy based on
comparison with an extensive database of tests using the
results of 180 beams from 23 studies are provided elsewhere.’
These beams had either rectangular, single tee, or I shapes;
were simply supported; had a straight prestressed tendon
profile with constant eccentricity; and were subjected to two
symmetrically placed point loads." Figure 5 shows a wide
scatter of results from these tests as expected, where
experimental deflections A.,, (including camber and member
self-weight) are compared with calculated values A .. using

= . . o
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B with M>M, x“‘s g .-
E -
o
E -
— Response
for M=M
M -7 — Response
" for M <M
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/ M, with M, <M,
Deflection A

Fig. 4: Calculated prestressed response options
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Fig. 5: Calculated versus experimental deflections for fully
prestressed (FP) and partially prestressed (PP) beams (using
database compiled in Reference 11)

[*—12 in.—~
i
16in.
26 in,
J....9. | v
32in. 1
e, =10in
oy s 1 y=16in.
- & = L]
] N Fig. 6:
by Prestressed
x'x_ 12 =-1/2in. beam example
" strands details

the procedure described in the deflection example. Deflection
is overestimated by a moderate amount on average, with a
mean deflection prediction ratio (Acu/A.ypy) equal to 1.24 when
deflection values are computed directly (based on net
curvature calculations as shown in the example). Integrating
curvature (based on /. and e, calculated at each section along
the member span) decreases the mean A..../A.., ratio to a value
of 1.06. Using the decompression prestress force P, and
properties of the uncracked transformed section to determine
M., I., and e, further improves prediction of deflection.’

Prestressed Deflection Example

Example 5.2.2.5 taken from the 2010 PCI Design
Handbook'? and based on Example 1 from Mast’s PCI paper!?
is used to demonstrate the proposed approach for computing
immediate deflection of a simply supported prestressed beam
cracked under service load. The prestressed beam is
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rectangular, as shown in Fig. 6, and prestressed with twelve
1/2 in. diameter 270 K strands located at an effective depth d, =
26 in. The span ¢ =40 ft, f! = 6000 psi, and

E, =57,000,/f! = 4415 ksi to give n, = E/E. = 6.46
(assuming £, = 28,500 ksi).

Loads and midspan moments are as follows:

Self-weight = 150 1b/ft* x (12/12)ft x (32/12)ft ~ 1000 =
0.40 kip/ft

Superimposed dead load = 1.0 kip/ft

Total dead load = 1.4 kip/ft

Live load = 1.25 kip/ft

Mp=1.4 x 4048 = 280 kip-ft = 3360 kip-in.

M, =1.25 x 40%/8 = 250 kip-ft = 3000 kip-in.

M, = Mp+ M, =530 kip-ft = 6360 kip-in.

Prestress force details are as follows:

Aps =12 x0.153 =1.836 in.?

Py = Ap/(bd,) = 1.836/(12 x 26) = 0.0059

(plus p = 0 because there is no nonprestressed reinforcement)
S =270 ksi

Initial prestress level = 0.75f,., and estimated loss of 20%
gives fi. = (1 = 0.20)(0.75)(270) = 162.0 ksi

P.=1.836 x 162.0 =297.4 kip

Section properties are as follows:

A,=384in.? and I, = 32,768 in.*

y,=161n. and e, =26 — 16 = 10 in. (see Fig. 6)

Joe=PoJAg+ (P. % €,) v/, =297.4/384 + (297.4 x 10) x
16/32,768 = 2.227 ksi

£, =751 =7.5J6000 =581 psi

M= (fr + fre) L/y: = (0.581 + 2.227)32,768/16 = 5750 kip-in.

Aer=(2/3) +[0.0059/(0 + 0.0059)](1/3) = 1.0 and
AerM,, = 5750 kip-in.

n,p, = 6.46 x 0.0059 = 0.038

k., = (nppp)2 +2(”ppp) _(nppp):
\/(0.038)2 +2x0.038 —0.038 =0.240

Co=ke X d,=0.240 x 26 = 6.24 in. and e, =26 — 6.24 =
19.76 in.
(the centroid is located at the neutral axis because the section
is fully cracked)
L= b(ce)* /3 + npdys (d, — co)?=
12 x (6.24)*/3 + 6.46 x 1.836 x (26 — 6.24)* = 5603 in.*
Using the PCI'? approximation for
I,=nAd 2(1—1.64lnppp)gives

p“psp

I, =6.46x1.836x26" x(1-1.65/0.038 ) =5517 in.*

This approximation works reasonably well for p, up to about
0.5% but can underestimate /.. significantly at higher
reinforcement ratios."!

Deflection calculations are as follows:
The section is cracked under the full dead plus live service



load with

M, = 6360 > .M. = 5750 kip-in.

AaMo/M, = 0.904

1, = 5 2603 =17,373 in.*
1—(0.904) (1 —-5603/ 32,768)

¢, = 0.904x(M}qm(1—0.904)X(MJX19.76 =
32,768 5603
10.67
Curvature ¢, at M, is calculated as
o =MJ(EL) — P % e(El) = (M, — P. % e.)/(Ecl) =
(6360 —297.4 x 10.67)/(4415 x 17,373) =41.55 x 10°° 1/in.
Referring to Fig. 7, the net curvature ¢,.. = ¢, + ¢p~= ¢ + ¢
with ¢, = P. X e,/(Ecly) =297.4 x 10/(4415 x 32,768) =
20.56 x 10°° 1/in.
and ¢p = Mp/(E.l,) = 3360/(4415 x 32,768) =
23.22 x 10°° 1/in.
S = (41.55+20.56) x 10°=62.11 x 10 1/in.

and ¢; = @per — ¢p=(62.11 —23.22) x 10°=38.89 x 10°® 1/in.

Net deflection A,; = K @ €* (With Ky = 5/48 for an assumed
parabolic distribution of curvature as shown in Fig. 7).
Aver = (5/48) x 62.11 x (40 x 12)> x 10°=1.491 in.
Ag=Nper— Npg=1.491—-0.592 = 0.899 in.

with A, g = K,¢,.0> = (1/8) x 20.56 x (40 x 12)*x 10°°=
0.592 in. K, = 1/8 for a simply supported member with
straight tendons having constant eccentricity.

Live load deflection A;; = A,..— Aip with A; p = (5/48)ppl>.
Aip=(5/48) x (23.22 x 10°%) x (40 x 12)>*=0.557 in.

and A;;, = 1.491 — 0.557 = 0.934 in. Alternatively,

5 ]
A, =K 8,0 =(ij(38.89x10 °)x(40x12)" =

0.933~0.934 in.
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= .
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Fig. 7: Curvature distribution for beam example

The estimated value of A;;, = 0.934 in. overestimates live
load deflection by 36% compared to a value of 0.688 in.
obtained by integrating curvature, while the value for
A, =0.899 in. overestimates deflection by about the same
amount compared to the value of 0.653 in. when curvature is
integrated. The shaded area in Fig. 7 represents the error
when computing deflection with the net curvature
approximated by a parabolic curve (assuming the load is
uniformly distributed).

Approximating the net curvature with a linear distribution
response (triangular in shape with ¢,.. = 62.11 x 107 1/in. at
the apex located at midspan) gives values of A;;, = 0.635 in.
and A, = 0.600 in., which underestimate deflection by about
8% in each case compared to integrating curvature.

Comparison can also be made with the more exact
approach based on P, and the uncracked transformed section
properties (I, ¢,.», and e,) used to determine M,,, I., and e..

Masonry Building Code Requirements

ACI Offers All Recent Editions of Masonry Building Code Requirements

The American Concrete Institute
offers the 2016, 2013, and

2011 editions of Building Code
Requirements for Masonry
Structures. Available in both
print and digital formats.

Learn more at www.concrete.org (QCj® American Concrete Institute
S
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The decompression stress

2

Joe=Jetn, £+ i (eg) =172.9 ksi and the

Ag Ig
decompression prestress force P, = fa. X A, =317.4 kip to
give a higher cracking moment M., = 6065 kip-in. (acting on
the uncracked transformed section). The higher cracking
moment decreases the computed deflection from live load
considerably (from 0.934 in. to 0.690 in. using the parabolic
approximation for net curvature) because of the closer
proximity of the service load moment M, = 6360 kip-in. to the
increased value of the cracking moment (increasing from

5750 to 6065 kip-in.). Computed values of live load deflection

range between 48 and 70% of the ACI CODE-318 limit of
¢/360 = 1.33 in. for this example, depending of course on the
procedure used to calculate deflection.

Fully prestressed (FP): prestressed member with
prestressed reinforcement only

Partially prestressed (PP): prestressed member with
prestressed and nonprestressed reinforcement

Summary

The ACI CODE-318-19 approach for calculating
immediate deflection of reinforced (nonprestressed) concrete
is broadened to include prestressed concrete loaded above the
cracking moment (Class T and Class C prestressed members).
A rational mechanical model is used as the basis for adding a
tension stiffening component (in this case moment) onto the
cracked E.I., response that is shifted upwards relative to the

Deflection computed

directly based on M A
net curvature @y
Ma B I)eee
¢a - E(.‘IE
Pe
i = E 1
g
¢m’[ = ¢a + ¢p‘g
¢net = ¢D + ¢L ;
M
¢ = E ID
cs T T I >
b =00 — 9 - ﬁlrl._u "ﬁifr i) ﬁu
\‘:-.:_Ijﬁ '&f I >
(X
Anel = KM¢net{2 < ﬂ Fl

Ai,L :KM¢L€2

K, = % for simply supported beam

with uniformly distributed load

1 .
K = 3 for simply supported beam

P

using straight tendon with constant eccentricity

40
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uncracked E.J, response because of the eccentric prestressing
force. The proposed approach summarized in Fig. 1 for
prestressed concrete includes an effective moment of inertia 7,
and effective eccentricity e, of the prestressing force when the
member is cracked. /, and e, are used for an uncracked
member. The cracking moment is reduced with a reduction
factor /., to account for tensile stresses that develop in the
concrete from restraint to shrinkage by the nonprestressed
reinforcement when present. Procedures are presented for
computing deflection directly based on net curvature (using an
assumed uniform value of /, and e, at the critical section) and
compared with deflection computed by integrating curvature
(using /. and e, calculated at each section along the member
span). The PCI bilinear load-deflection response is also
considered in the bonus example.
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Appendix: Bonus Deflection Example

This bonus example is taken from Example 5.8.3.1 (based on details from Example 5.2.2.3) of the PCI Design Handbook,'
where immediate deflection from live load is calculated for a Class T double tee (8DT24)—that is prestressed with the strands
harped at midspan (single-point depressed strands). The beam is simply supported with a span £ = 70 ft.

Two alternative procedures are presented for direct calculation of immediate deflection based on either a parabolic or
trapezoidal approximation for the distribution of net curvature along the member span. Comparison is made with deflection
computed using integration of curvature based on the effective eccentricity e. and effective moment of inertia /. corresponding
to each section along the member span (with e, and /, used in the uncracked regions). Plus, results are presented for deflection
calculation using the PCI bilinear load-deflection response. Calculation in some parts is carried out with more precision than
needed (in terms of significant figures) to facilitate comparison of results.

Beam gross section properties

The cross section of the 24 in. deep PCI double tee shown in Fig. A1 has the following section properties for the gross
(uncracked) section.

A, =401 in.? and I, = 20,985 in.*

YViop = 6.85 in. and y,,, = 17.15 in.

Wae = 150 1b/f* X 401 in.2 + 12 + 12 = 418 Ib/ft (distributed line load for self-weight)

Prestressing details

The beam is prestressed with twelve 1/2 in. diameter, 270 ksi, low-relaxation strands. This gives 4,, =12 x 0.153 = 1.836 in.?

The strands have a single harping point at midspan, giving a straight tendon with variable eccentricity. Eccentricities are as
follows:

eqena = 5.48 in. (eccentricity of prestressing force at end of span)

€yc = 13.90 in. (eccentricity of prestressing force at midspan)

6= (13.90 — 5.48)/(70 x 12/2) =20.05 x 107 rads (angle of inclination for centroid of prestressing strands)

€4(x) = egena + Ox (eccentricity at distance x from end of span for x < £/2)

€,(0.40)=5.48 +20.05 x 10 x (0.4 x 70 x 12) = 12.216 in. (eccentricity at 0.4 ¢)

The effective depth d, of the prestressing steel and moment of inertia of the cracked section /.. vary along the member span
as the eccentricity changes.

d,=6.85+13.90=20.75in. at 0.5¢

d,=6.85+12.216=19.066 in. at 0.4¢

Initial prestress level = 0.75f,, and estimated loss equals 20%

Jfie=(1-0.20)(0.75)(270) = 162.0 ksi

P.=A4, % fi.=1.836 x 162.0 = 297.4 kip and is assumed constant along the beam span.

Concrete design properties

The concrete has a specified compressive strength £/ = 5000 psi, giving f, = 7-5\/70’ =7.54/5000 = 530 psi and
E, =33w,"\[f] =33(145) " 4/5000 /1000 = 4074 ksi. Using w, = 145 Ib/ft’ for normalweight concrete gives E, ~ 57,000,/
The modular ratio n, = E,/E. = 28,500/4074 = 7.0 (assuming E, = 28,500 ksi).

Member loads
Member self-weight wy, = 418 1b/ft (from beam gross section properties)
Superimposed dead load wy, = 10 Ib/ft?> x 8 ft = 80 Ib/ft
Total dead load wp =418 + 80 = 498 Ib/ft
Live load w, = 35 1b/ft*> x 8 ft =280 Ib/ft

- Bft=0in, _
Service load moments _ 2ft-0in. __ 41t =0n, . 2M-0in _

The critical moment occurs at midspan (0.5¢) for beams ~— = E%in. |
with straight strands of constant eccentricity and is assumed ' centroidal axis '
to occur at 0.4 £ for beams when the strands are depressed at EN N ofgrosssection | [T 2in.
midspan, as with this example.'? For the prestressed beam in 17.151n.| ° 24in
this example, the actual critical section occurs at 0.39 £ for the .
maximum value of total bottom stress f; in the concrete at the N Yoy :
precompressed tension face, and at 0.384 ¢ for the maximum ends midspan
value of M/M., (details are provided further on in Aside 1). Fig. A1: Cross section of PCI double tee (8DT24)
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Figure A2 plots the distribution of f;/f, and M/M., along the 1.463 —
member span. Negative values of the bottom stress for f, £
(indicating compression) that occur in the region near the end . S —, -
support are not plotted in this figure. 12 \\,/ f N
Service load moments at midspan (£/2) are as follows: o s -
Mp(£2) = wp (/8 = 498 = 12 + 1000 x (70 x 12)/8 = = MUV, () /
3660.3 kip-in. 0. R /
M, (2)=w, %8 =280+ 12 + 1000 x (70 x 12)%/8 = . /
2058.0 kip-in. 0.4 /
M, = Mp.(02) = Mp(£2) + M (£/2) = 5718.3 kip-in. /
Service load moments at the critical section (0.4 ¢) are ' /
equal to 0.96 times the moment at midspan based on a 0 T — T T T J
parabolic distribution of moment from the uniformly o 0.1 0.2 0.3 0.4 0.5
distributed loads. location along beam x/f
Mp(0.40) = 0.96Mp(0.50) = 0.96 x 3660.3 =3513.9 kip-in.  Fig, A2: Distribution of f, (x)/f, and M(x)/M., (x) along the beam span
M;(0.40) =0.96M(0.56) = 0.96 x 2058.0 = 1975.7 kip-in.
M(0.40) = Mp.1(0.40) =0.96M,=0.96 x 5718.3 =
5489.6 kip-in.
where M, is the total dead plus live load moment at midspan (0.5 ¢).

Critical section properties (at 0.4¢)
When deflection is computed directly, a constant value of member stiffness £/ and eccentricity e of the prestressing force is

assumed based on the effective moment of inertia /. and effective eccentricity e, at the critical section located at 0.4 £. The
section is cracked at 0.4, but barely cracked at midspan (0.5 ¢) as observed from Fig. A2.
The stress f,. at the bottom precompressed face from prestress only is used to calculate the cracking moment at 0.4 £.

Pe (0.4¢ (o, |
f(0a0)="Tey 22 ( )yh{,,:[297.4 297.4(12.216)(17.15)

+
1 401 20,985

g g

JXIOOO =3710.75 psi (C)

20,985
17.15

(530+3710.75)(

M, (040)=[ f,+ f,. (0.4¢) | == J =5189.0 kip-in.

bot

1000

M, (0.40) _5189.0
M(0.40)  5489.6

=0.9452

Hence, Ao-M.. /M = 0.9452 at the critical location (0.4 ). Recall that A.,=1 for a prestressed section with no nonprestressed
reinforcement.

The neutral axis of the fully cracked section extends into the web at 0.4¢, giving I, = 3993 in.* with a value of the neutral
axis depth ¢, = 2.13 in. and eccentricity e, = d, — ¢.» = 19.066 — 2.13 = 16.936 in. Compare this with the PCI approximation for
Ad? (1 ~1.6/n,p, ) = 4046 in.* (a little more than a 1% difference in this case) given n, = 7.0, A,, = 1.836 in2, d, =

ppsp

19.066 in. at 0.4 ¢, and p, = 1.836/(96 x 19.066) = 0.0010 at 0.4 (.
Effective section properties at the critical section (0.4 £) are as follows:

]Cl‘ =n

Ie (O4f): [L‘r (Oj.[) = 3993 3993 :14,436in.4
[ AeM(040)) [ 1, (040) ) 1-(0.9452)’ [1— j
M (0.40) 1, 20,985

o, (0:40) = {AM (0.45)}(16 (0.45)}g (040) J{l _[AE,M” (0.45)}}( 1,(0.4¢) je (040)=

M (0.4¢) i M(040) | 1, (0.4¢)

g c

(0.9452)(14’436]12.216+[l—(0.9452)](14’436)16.936:11.30 in.
20,985 3993

)
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Pe,(x) _Pe,(v)
B, M () e ¢pe (x) Ec]e('x) d ¢p,g( )_ E([g
M M -P
| ; . . . ¢p+D (x) ]ME[Z[(;)_%@ (x)
Gu0) 4,0 B,,,00) o) @
ole y N
o MY 5, (1) =2 )
i " p\X)=
g, ()=, (x)+6,(x)=(x) b, () Ed,
B ()= ¢(x)+¢p)g (x)=¢y (x)+4, (x)
M
)= () () =0(2) 4, () 22 )

Fig. A3: Moment-curvature response of prestressed beam with relevant equations

Curvatures at the critical section (0.4¢)

Corresponding curvatures at the critical section (0.4 ¢) are computed using guidance from Fig. A3 that summarizes the
relevant equations for curvature needed to calculate deflection. Values for the section properties and curvatures are summarized
in Table A1 for convenience.

M (0.4¢)~Pe, (0.47) _5489.6-297.4x11.30

=36.20x107° 1/in.
E.1,(0.40) 4074x14,436

$(0.40)=

Pe,(040) 297.4x12.216

= =42.495x107° 1/in.
EI, 4074 x20,985

P, (0.4() =

B, (0.40)=$(0.40)+ ¢, , (0.40)=(36.20+42.495)x10"° =78.695x10°° 1/in.

g, (0.40)= M2 (047) _ 35139 _ 410010 1in.
El,  4074x20,985

$,(0.40)=g,, (0.40) ¢, (0.4£)=(78.695-41.10)x10"° =37.595x 10" 1/in.

Curvature plots

Plots of the distribution for curvature are shown in Fig. A4 for the prestressing force ¢, .(x), the dead load plus prestressing
force ¢,:p(x), the total (dead and live) load plus prestressing force ¢(x), and for ¢(x) assuming a parabolic distribution of the net
curvature ¢@,.(x) taken from Fig. AS. Notice the curious kink that occurs in the curves near midspan for ¢,.p(x) and ¢(x) as ¢,
increases towards midspan of the beam. Loss of prestress in the bond transfer length at the beam ends is neglected.

Plots of the curvature from dead load alone ¢p(x), the net curvature for dead plus live load, @,.{x) = ¢n(x) + @.(x), and an
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; x) from assumed 100 — -
40-{ Pusinal, parabolic curve $.(x)using [, — /— $..~81.87 x 10%in
Pryusing [ —, .- ¥ for ) assumed
£ R %) ;?E 80 - ¢ {x)using I parabolic
S 20— = | error with . . / curve for g,
o | - parabalic —_ - N (AP
» = ﬁﬂ _ ammptm;\(‘-r L= -\.._‘\ -_L. jﬁﬁ\‘
® 0- e P 3016 10%in 4\ -
= = 1 i gy lx} _l "-._‘
= o 1] e —_— i
[ E 4{} - ’ [ ol a —— - -.__.
£ _og - S - ~ X
5 -20 O 4 / - T ‘-.
© 5 4y 42,81 x 10%in N
1 o 4 i - ~ N
40 = 20 __.--/,f lx) N
% \
T T ] T T T | T 0 ; | . | |
ﬂ n.z 0-4 0.6 0-3 1 U 012 014 U.ﬁ OIB 1

location along beam x/{

Fig. A4: Curvature distribution for beam example

location along beam x/f

Fig. A5: Net curvature distribution for beam example (approximated
with parabolic curve)

assumed parabolic distribution for the net curvature ¢,.(x) are shown in Fig. A5. Once again, the increase in ¢,, toward
midspan causes a kink in the net curvature ¢,.(x) near midspan (as the effective moment of inertia increases near midspan
because of a localized increase in A..M.(x)/M(x) as observed from the values in Table A1).

Parabolic approximation for net curvature
Assuming a parabolic curve for the net curvature ¢, running through the value at 0.4 £ and having a maximum value at

midspan (0.5¢) as shown in Fig. A5 gives

B, (0.50) =g, (0.40)/0.96=(78.695/0.96)x10"° =81.97x10° I/in.

In a similar fashion, a parabolic curve fitted to the curvature value from live load at 0.4 £ gives

0.50)=¢, (0.4£)/0.96=37.595x10"°/0.96=39.16x10°1/in.
L L

Deflections based on net curvature using parabolic approximation
Knowing that K, = 5/48 when the distribution of curvature is parabolic, gives

5

B = Ko (050) 17 =—-x39.16x10° x(70x12) =2.88 in.

and is about 20% greater than the value of A;; = 2.39 in. when curvature is integrated. Integration takes account of the
uncracked regions of the beam (using e,(x) and ;) as well as for changes in e.(x) and Z(x) in the cracked regions. Figures A2
and A4 indicate the beam is cracked near the midspan region for 0.277 <x/£< 0.723. Alternatively,

x12)" = 6.025 in.

}(70><12)2 =3.15 in.

5 , 5 P
=24 (0.50)0> ==x81.97x10"° x(70
net 48¢net( ) 48 (
5 My (050)) . 5[ 36603
48| Ed, 48| 4074x 20,985
A=A, A, =6.025-3.15=2.875~2.88 in. as before.

For the total deflection (that includes the camber from prestress)

A=A, —A,, =6025-3.40=2.625in.
where

A4
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=3.40 in.

e 13.90

&.c

A =2+ =
Pg { 24E1,

2 2
Coon | Flecl” [, 548 2974x13.90x(70x12)
24x4074x 20,985

The PCI Design Handbook'? provides camber equations needed to compute A, for different prestressing strand profiles.
The estimated value of 2.625 in. for A, is 23% greater that the value of 2.14 in. obtained by integrating curvature. These
calculations are idealized in part, as the deformations due to prestress (aside from using P,) and dead load do not account for the

effects of creep from sustained loading.

Table A1:
Summary of section properties and curvature values

Ends* 0.4¢ 0.5¢
A in2 401 401 401
I, in 20,985 20,985 20,985
Voor, IN. 1715 1715 1715
e (x), in. 5.48 12.216 13.90
d, (x), in. 12.33 19.066 20.75
2 () 0.00155 0.00100 0.00092
Mp (x), Kip-in. 0 3513.9 3660.3
M, (x), kip-in. 0 1975.7 2058.0
M (x), kip-in. 0 5489.6 5718.3
£ (), psi 2073.6 (C) 775.6 (T) 553.2 (T)
@1 -3.912 1.463 1.044
fre @), psi 2073.6 (C) 3710.75 (C) 4120.0 (C)
M, (x), Kip-in. 3185.8 5189.0 5689.9
or 1.0 1.0 1.0
Ao (x) | M (x) 0.9452 0.9950
Loper (%), in 4046 4822
L (x),in? 3993 4760
Cer (¥), . 213 2.24
e (), in. 16.936 18.51
1. (x), in* 20,985 14,436 20,299
e. (x), in. 5.48 11.30 13.77
#(x) x 1075, Vin. -19.06 36.20 19.62
B () X 1075, Vin. 19.06 42.495 4835
Buer (x) % 1076, 1/in. 0 78.695 67.98
ép (x) x 105, 1/in. 0 4110 42.81
b1 () % 1075, 1/in. 0 37.595 25.17¢

“Loss of prestress in bond transfer length not accounted for
Class T prestressed member since f, < f, < 12\/7;' =848.5 psi
" (0.5[ ) ~81.97x10™° 1/in. with parabolic approximation
8¢, (0.5£ ) ~39.16x10™ 1/in. with parabolic approximation

Alternative trapezoidal approximation for net
curvature and deflection calculations

Estimating deflection by approximating the distribution of
net curvature with a trapezoidal curve as shown in Fig. A6
(corresponding to the shape for an elastic beam under
two-point loading, assuming the loading points are located at
0.4 ¢ from each support), gives

Aver = Kyr e (0.40) 2 = 0.0983 x 78.695 x 1076x (70 x 12)? =
5.46 in.

where

2
K, = {3—4(‘2) }/24 =[3-4(04)"[/24=4.72/48=0.0983

A=A, —A,,=546-3.15=231in.
A, =A,, ~A,, =546-3.40=2.06in.

These estimated values of 2.31 in. for A;; and 2.06 in. for
A, are closer to the integrated values of deflection (2.39 in. for
A;; and 2.14 in. for A,) but now underestimate deflection by 3
to 4%. Compare this with the estimate using a parabolic
distribution of curvature, where deflections are overestimated
by about 20 to 23%.

Further investigation with this type of tendon profile is
needed for different ratios of service load to cracking load
before definite recommendations can be made regarding the
merits of each approximation.

10
° . Ax)using [, . =T8.605 % 10%in
! \ ' assumed

£ go{ PIrIusing N § ~ trapezoidal
S & ~ curve for g,
- L.V SN =472
* en— __.-"r_,}”" | EH“{‘- A= Ly
g 35,685 10%in =
= . (¥ '
o 1 .
E 40 1 = - r e -
= =R
3 | |
o ']
il: 20— Bol) 42.81 x 10%in

o R T

0 0.2 0.4 0.6 0.8 1
location along beam x/f

Fig. A6: Beam example for distribution of net curvature
approximated with a trapezoidal curve
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Aside 1: Location of Critical Section for Deflection Calculation

Determine the location for the maximum value of total stress £, at the bottom (precompressed) tensile face of the prestressed
beam (refer to Fig. A2).

The angle of inclination & of the prestressing force given by

0=2(e,, ~,)/!
is used to obtain the eccentricity e,(x) along the beam span

e, (x)=e,,q +Oxforx< {2

For the bottom stress f; in the section for the prestress force plus dead and live load (where compression is negative and
tension is positive)

P Fe,(x)y,, M(x)yy,
fb(x):_T_ g(]) b + (1) b

g 4 4

where M (x)=4M, [(x /0)—(x/ E)ZJ and M, = w?*/8 at midspan
Setting di 1 (x) =0 identifies the location of maximum stress for f, giving
X

x/0=05-P0L/(8M,)=0.5-P (e, —e,..)/(4M,)
x/€=0.39 for P, =297.4 kip, €= 0.02005 rads, £= 70 ft, and M, = 5718.3 kip-in.

Similarly, the location for the maximum value of M(x)/M..(x) occurs at

x/{=v&* +® -, with

w= Cqend +Ig /<Agyb0f)+f’]g /(Rzybo’) =0.6361
2(@

g.c - eg,end )

to give x/£ = 0.384, which is only a few percent different than the location for the maximum stress value f;.

Aside 2: PCI Bilinear Load-Deflection Response Revisited
Example 5.8.3.1 from the PCI Design Handbook'? computes deflection using a bilinear moment-deflection relationship as
shown in Fig. A7. The PCI solution starts off by comparing the rupture modulus f; with the computed stress at the bottom face f;
for the moment at 0.4 £ (where tensile stresses for f;, are assumed to be greatest as discussed earlier). However, deflection is

calculated at midspan (equivalent to using an approximation for the cracking moment at 0.5 £ as shown in Fig. A7).

Stresses are computed at the bottom face for x = 0.4 £. For
the prestress load only: N
fpe(0.46)=3710.75 psi (C) from before. M

For prestress plus the dead and live loads (total stress): M; =M, D :_\

M_(0. jf] = %{:h s

My (040) 3, My (040) 3, _

S0t (0.48) ==/ (0.45)—1—

g Ig
3513.9(17.15) 1975.7(17.15)
-3710.75+ + x1000 =
20,985 20,985

—3710.75+2871.744+1614.64 = 775.63 psi (T) > f. =530 psi

This beam is a Class T component since the total tensile
stress f.o = 775.63 psi (T) at the bottom face (for the prestress
plus dead and live loads) is greater than £, and less than 12
\/75’ = 848.5 psi. The stress f;,+p from prestress plus dead

load, which is equal to —3710.75 + 2871.74 = —839.01 = A >
839.01psi (C), indicates the beam is uncracked for dead load

only. The tensile stress f, from the live load alone equals J"}l,-. I

1614.64 PSi (T) Fig. A7: Calculation of immediate deflection from live load using the

That part of the live load w;; needed to cause cracking at PClI bilinear load-deflection response

A6 DECEMBER 2025 | €i | www.concreteinternational.com



0.4 ¢ (for a bottom tensile stress of 530 psi) corresponds to a computed bottom stress from live load f; ;1 = 839.01 + 530.0 =
1369.01 psi (T). This stress results from a portion of the total live load (280 Ib/ft) as follows.

Jonn 1369.01
= WL =
Jos 1614.64
with a corresponding part of the live load moment A/;, at midspan.
2 237.40(70)°
M, (0.50) =" _ (0 121244 okip-in
8 8 1000

The stress f5.1> = fo1 — fo.01 from that part of the live load wy, after cracking equals 1614.64 — 1369.01 = 245.63 psi (or foo — f; =
775.63 — 530 =245.63 psi). Similarly

foio 245.63
= w, =

x 280 =237.40 1b/ft

WL]

W, = x 280 = 42.601b/ft
foo " 1614.64
2 42.60(70)"
M“(o.sz):WLgf = 8( ) xl(l)(z)0=3l3.1kip—in.

Deflection is computed using the midspan (0.5 ¢) value of d, = 20.75 in. for p, = 1.836/(96 x 20.75) = 0.00092, to give
I,=n,4,d}(1-16\[n p, ) =4822 in?

ppsp

The deflection from live load up to cracking A, (corresponding to deflection from the gross (uncracked) response)
2
A _SIME S (1744.9)(70x12)
¢ 48 EJ, 48 (4074)(20,985)
and the deflection from live load after cracking A.. (corresponding to deflection of the cracked response)
5 M, 5 (313.1)(70x12)’
T48 EJQ, 48 (4074)(4822)
Total live load deflection A;;, =A, + A, = 1.50 + 1.17 =2.67 in.
The procedure followed above for computing deflection from live load is equivalent to using a fictitious cracking moment at
midspan based on the cracking moment computed at 0.4 ¢ divided by 0.96 (assuming a parabolic curve for distribution of the

moment along the span) as shown in Fig. A7.
M, (0.40)=5189.0 k-in. from before, and

M, (040) 5189.0
0.96 0.96

=1.50in.

=1.171n.

M, (0.50)~ =5405.2 kip-in.

to give
M, =M, (0.5()-M, (0.56) =5405.2-3660.3 =1744.9 kip-in. as before, and

M,, =M, (0.5¢)=M, (0.5/)=5718.3-5405.2 = 313.1 kip-in. as before.

Computed values of deflection are slightly different from those in the PCI example!? because of differences in the value used
for E. and roundoff error.

Table A2 provides a summary of calculated deflection values using the different procedures evaluated in this bonus example
(with the values in brackets giving the percent difference compared to deflection computed by integrating curvature). Computed
values of immediate deflection from live load range from 99 to 124% of the ACI CODE-318 deflection limit of £/360 = 2.33 in.
depending on the procedure used. Comparison of results are specific to this example and can differ for other examples such as
the rectangular beam example from this article.
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Table A2:

Summary of calculated deflection values

Deflection A, in. AL, in. Ai/Au
Direct calculation using parabolic approximation for net curvature (3'2632;) (+22(')8.58%) 1.24
Direct calculation using trapezoidal approximation for net 2.06 2.31 0.99
curvature (—4%) (—3%)
Bilinear load-deflection response (51'5;)) 115
Integration of curvature 214 2.39 1.03
Au = /360 =2.33 in. for immediate deflection from live load
Notation for Parts 1to 5 of this article (including bonus deflection example)
A, = area of reinforcing bar
A, =area of gross (uncracked) concrete section
A,s = area of prestressed longitudinal tension reinforcement
A, = area of nonprestressed longitudinal tension reinforcement
A; = area of compression reinforcement
b = width of compression face of member
¢ = distance from compression face to neutral axis of a fully cracked cross section
d = effective depth of tension reinforcement (distance from compression face to centroid of nonprestressed tension
reinforcement)
d, = effective depth of prestressed tension reinforcement
e = eccentricity of prestressing force relative to centroid of section
e, = eccentricity of prestressed reinforcement relative to centroid of fully cracked section (= d, — c.,)
e. = effective eccentricity of prestressed reinforcement
e, = eccentricity of prestressed reinforcement relative to centroid of gross (uncracked) concrete section
e, = eccentricity of prestressing force (for gross section) at center of span (midspan)
eqena = eccentricity of prestressing force (for gross section) at end of span
e, = eccentricity of prestressed reinforcement relative to centroid of uncracked transformed section
E  =elastic modulus
E. =elastic modulus of concrete
E, =-elastic modulus of prestressing reinforcement
E, =-elastic modulus of nonprestressed reinforcing steel
fo = calculated stress in bottom fiber of cross section (assuming uncracked)
fo = stress from service live load in bottom fiber of cross section
fo1 = stress from that part of the service live load to cause cracking in bottom fiber of cross section
fr2  =remaining part of stress from service live load after cracking in bottom fiber of cross section
Jopip = stress from prestress plus service dead load in bottom fiber of cross section
i = total stress (from prestress plus service dead and live load) in bottom fiber of cross section
f! = specified compressive strength of concrete
for =reduced cracking strength equal to (2/3)f:
fae = decompression stress (stress in prestressed reinforcement corresponding to zero stress in the concrete at the prestress
level)
fre = compressive stress in concrete from effective prestress force at precompressed tensile face
fou = specified tensile strength of prestressing reinforcement
I = modulus of rupture of concrete
fie = effective stress in prestressed reinforcement after allowance for all prestress losses
5 = specified yield strength of nonprestressed reinforcing steel

h = member thickness or height
hwin = minimum member thickness or height
1 = moment of inertia
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1, =moment of inertia of cracked transformed section (fully cracked section for a prestressed member)

I, =moment of inertia of partially cracked transformed section

L = effective moment of inertia

1., =average or weighted average of effective moment of inertia for the member

I.p = effective moment of inertia for the service dead load

1. pu. = effective moment of inertia for the full (dead plus live) service load

1.,, = effective moment of inertia at midspan

1.,  =effective moment of inertia at end support 1 of continuous member (corresponding to moment M)
1,  =effective moment of inertia at end support 2 of continuous member (corresponding to moment M,)
I, =moment of inertia of the gross (uncracked) concrete section (neglecting reinforcement)

I, =moment of inertia of the uncracked transformed section

k., =ratio of neutral axis depth of elastic cracked section to the effective depth

K =deflection coefficient for calculating deflection (K), for load, K, for prestressing)

4 = span length of member

¢, = clear span of member

M  =moment

M, = maximum moment in member for service load stage at which deflection is calculated

M., = cracking moment

AM., = tension stiffening moment at cracking

M. = decompression moment (corresponding to zero stress at tension face of prestressed member)
Mp = dead load service moment

Mp., = full (dead plus live load) service moment

M; =live load service moment

M., =that part of the live load moment needed to cause cracking
M, =remaining part of live load moment after cracking (M, - My,)
M, ,.s = sustained part of live load moment

M,, =moment at midspan

M, =nominal flexural strength

M, = static moment

M,,s = sustained moment

AM,; = tension stiffening moment

M, = ultimate (factored) moment

M, = intercept moment of shifted E /., response with uncracked E./, response (for prestressed member)
M, =moment at end support 1 of continuous member

M, =moment at end support 2 of continuous member

n,  =modular ratio (ratio of E, to E.)

P.  =effective prestress force

P, =fictitious decompression (prestress) force

q = uniformly distributed area load (load per unit area)

q.  =uniformly distributed (dead plus live) service load (load per unit area)
Gequv = fictitious (equivalent) uniformly distributed area load (for beams)

gp = uniformly distributed dead load (load per unit area)

q. = uniformly distributed live load (load per unit area)

qws = uniformly distributed sustained load (load per unit area)

w  =uniformly distributed line load (load per unit length)

wp = uniformly distributed dead load per unit length (wy. + wyq)

wy = uniformly distributed live load per unit length

wyr = that part of the live load needed to cause cracking

wp, = remaining part of the live load after cracking (w;, - wy)

wy = superimposed dead load per unit length

wee = load from member self-weight (load per unit length)

v, =distance from centroidal axis of gross (uncracked) section to tension face
Ve = distance from bottom fiber to center of gravity of uncracked (gross) section
Vip = distance from top fiber to center of gravity of uncracked (gross) section
pis = tension stiffening factor
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% = angle of draped prestressing tendon

A = deflection

A, = deflection at M,

A = allowable deflection limit

Acae = calculated deflection

A, =deflection at cracking

A, =deflection from live load after cracking (for cracked prestressed member)
A.,, = experimental deflection (including camber and member self-weight)

A, = deflection from live load up to cracking (for cracked prestressed member)

A;  =immediate deflection

A;p = immediate deflection from dead service load

A;p. = immediate deflection from full (dead plus live) service load

A;; = immediate deflection from live service load

Ai1ouy = immediate deflection from sustained part of the live load

A = immediate deflection from sustained load (dead plus sustained part of live load)
Ay = incremental deflection (occurring after attachment of nonstructural elements)

A.. = net deflection (dead plus live load deflection)
A,, = deflection (camber) from eccentric prestressing of gross (uncracked) member

A = modification factor for lightweight concrete

A =reduction factor applied to cracking moment

A =long-term deflection multiplier

é = time-dependent factor for sustained load

p = reinforcement ratio of tension reinforcement [= A,/(bd)]

p,  =reinforcement ratio of prestressed reinforcement [= 4,/(bd,)]

p’  =reinforcement ratio of compression reinforcement [= A,/(bd)]

p» = balanced reinforcement ratio

@ = strength reduction factor (for strength design)

@ = curvature (M/EI)

¢. = curvature at full (dead plus live) service load moment M, (including curvature from prestressing when applicable)
#p = curvature from dead load

¢ = curvature from live load

¢» = curvature at midspan of simply supported and continuous members

d. = net curvature relative to uncracked curvature from prestressing (= ¢p + ¢.)

¢,p = curvature of gross (uncracked) section from prestressing force plus service dead load
¢, = curvature of cracked section from prestressing force

#,e = effective curvature from prestressing force

¢, = curvature of gross (uncracked) section from prestressing force

é»» = curvature of uncracked transformed section from prestressing force
¢ = curvature at end support 1 of continuous member

¢>» = curvature at end support 2 of continuous member
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Calculo de Deflexiones Utilizando
el CODIGO-318-19 de ACl y Otros
Mas, Parte 5

Extension propuesta para el concreto presforzado.

Por Peter H. Bischoff, Wassim Nasreddine y Hani Nassif

Partes 1a 4 de esta serie de articulos™ introducen
y evallan la nueva expresion para /e adoptada
primero por el CODIGO ACI-318-19° para calcular la
deflexion del concreto reforzado (no presforzado).
La expresion revisada para le no corresponde a
miembros de concreto presforzados agrietados vy el
CODIGO ACI-318-19 utiliza el enfoque desarrollado
por Branson® para este tipo de miembros.

El trabajo de Bischoff et al.” propone extender el
enfoque del CODIGO ACI-318-19 para el concreto
reforzado, de manera que incluya concreto
presforzado. El planteamiento propuesto resumido
en la Fig. 1, se desarroll6 para calcular la deflexion
inmediata de miembros presforzados Clase T y
Clase C que se agrietan bajo carga de servicio
(consulte el CODIGO-318 de ACI, Seccién 2452,
para la clasificacion de miembros presforzados).
En este enfoque, la deformacién por la fuerza de
presfuerzo excéntrica (calculada mediante el uso de
una excentricidad efectiva e. y momento de inercia
efectivo [e) se resta de la deformacion por la carga
(calculada utilizando [e). Esto se parece mucho al
procedimiento utilizado para calcular la deflexion de
un miembro presforzado no agrietado, en el que eg
(la excentricidad de la fuerza de presfuerzo relativa
al centroide de la seccién bruta [no agrietada]) e /g
se utilizan para calcular la contraflecha, ademas /g
se utiliza para calcular la deflexion debida a la carga
(pero con una diferencia para un miembro agrietado,
tal como se observa adelante).

Si bien la curvatura de un miembro presforzado
agrietado se obtiene al restar la curvatura efectiva
provocada por la fuerza de presfuerzo excéntrica
de la curvatura causada por la carga, el calculo
directo de la deflexion se basa conservadoramente
en la curvatura neta’, tal como se demuestra con un
ejemplo posterior en este articulo. Para un miembro
o miembros continuos con excentricidad variable del
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presfuerzo, podria ser favorable calcular la deflexion
integrando la curvatura. Calcular la deflexion de forma
directa (sin integracion) también se ve afectada por
el tipo de carga. En el Apéndice esta disponible un
ejemplo extra para un miembro con excentricidad
variable, al que se puede acceder en la version en linea
de este articulo en www.concreteinternational.com.

I,=1, v e =eparaM <A M,

Para Ma > ACVMCV
I

cr

2
1_ /?’chcr 1_&
M 1

a g

Y AM (1
ee — Ccr cr _e e + 1_ _c¢cr "~ cr e ecr
M, )1, )* M, J|\L,

M, =(f.+f )1/,

B
3 p+p, )\3

Fig. 1: Revision propuesta para el Cédigo ACI-318-19,

Seccion 24.2.3.9

Resumen de las Partes del Articulo

Introduccidn al célculo de deflexiones inmediatas y
Parte 1 dependientes del tiempo
Parte 2 Nueva Expresidn para /, y Razones del Cambio
Parte 3 Impacto de los Cambios Realizados
Parte 4 Ejemplo de Deflexién — Losa Continua
Parte 5 Extension Propuesta para Concreto Presforzado
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Comportamiento del Concreto Presforzado

La Figura 2 ilustra el efecto del presforzado en
la relacion momento-curvatura para los miembros
a flexion de concreto. El presforzado excéntrico
incrementa el momento de agrietamiento y causa una
deflexion ascendente inicial (contraflecha) para dar una
respuesta mas rigida en cargas de servicio. La fuerza de
presfuerzo axial también da por resultado una seccion
parcialmente agrietada con una respuesta Ec/er no lineal
que converge gradualmente (bajo carga en incremento)
con la respuesta Eolor que corresponde a una seccion
completamente agrietada (no presforzada). Mas
importante adn, la respuesta Eclr agrietada se compensa
por la respuesta Eolor N0 agrietada (donde el momento
M identifica el punto de interseccion de la respuesta
Eclr y cambia la respuesta Eckr). La respuesta Edlor S
muestra en la Fig. 2 como justo debajo del momento
de agrietamiento Mer, pero puede encontrarse sobre Mer
para niveles mas altos de presfuerzo®

El calculo de la deflexion se simplifica utilizando
la respuesta Eckr en lugar de Ede."® Esto evita la
dificultad de localizar el eje neutro y después la
ubicacion del centroide que no coincide con el eje
neutro para una seccion parcialmente agrietada.
Otras simplificaciones incluyen aproximar el
momento de inercia /+ no agrietado con un momento
de inercia bruto /gy y utilizar la fuerza de presfuerzo
efectiva Pe en lugar de la fuerza de descompresion
ficticia (presfuerzo) Po = facAps descrita por Nilson.©
La fuerza de presfuerzo se mueve hasta el centroide
para analisis, lo que da por resultado un momento
de presfuerzo excéntrico Poecor = Peecr, donde ecr €S
la excentricidad del acero de presfuerzo relativo al
centroide de la seccion agrietada (ubicada en el eje
neutro para la seccion completamente agrietada).

El esfuerzo de descompresion foc se define
como el esfuerzo en el tendén correspondiente a
esfuerzo cero en el concreto a nivel de los tendones
presforzados y Aps es el area de refuerzo de tension
longitudinal. La fuerza de presfuerzo efectivo
es Pe = fseAps, donde fse es el esfuerzo efectivo
en el refuerzo presforzado después de todas las
pérdidas, incluyendo contraccion y el flujo plastico.
El momento de mas agrietamiento relacionado con
el presfuerzo es Mo = (fr + foe) lg/yr, donde fre €5 €l
esfuerzo de compresiéon en el concreto en la cara
a tension precomprimida que es el resultado de la
fuerza de presfuerzo efectivo Pe que actua sobre la
seccion deforme y por tanto, también responde por
las pérdidas de flujo plastico y contraccién.
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E I~ -

ctmr

-¢p,tr 0

AR Curvatura Inicial (Contraflecha)
del Presfuerzo

Curvatura ¢

Fig. 2: Graficas comparativas de relaciones momento-curvatura para

miembros a flexion presforzados y reforzados (no presforzados)

Extension del Modelo a Concreto Presforzado

La deformacion de un miembro de concreto
presforzado agrietado se modela agregando un momento
de endurecimiento por tension AM:s = gsAMe<AMoren la
respuesta Edlor agrietada, tal como se ilustra en la Fig. 3.7
Esto es similar al planteamiento utilizado para concreto
reforzado (no presforzado) descrito en la Parte 2 de la
serie de articulos,? a excepcion de que la respuesta Ecler
se cambid hacia arriba en relacion con la respuesta Eclir
no agrietada. El desarrollo del modelo para concreto
presforzado replioazlos pasos tomados en la Parte 2 de
la serie de articulos para concreto reforzado.

El momento M, para la curvatura correspondiente a
#a Se define como

Ma = EcIcr (¢a + ¢p,cr ) + ﬂtSAMcr
El reordenamiento de los términos conduce a
M, | o (AM, )|
bopr [1 ﬂ,.\[ ¥ ﬂ by

Sustituyendo
AMcr = Mcr (1_]cr /Ilr)_Ec[cr (¢p,ar _¢p,lr)

(Ta)

(1b)

en la ecuacion (1b) da

M M I
M, o |1 te ||
g a1

(880 +(1=5.)9,.. ]

(o)

lo que conduce a la curvatura ga = Ma /(Ecle) - ¢pe para
un momento de inercia ls efectivo y una curvatura efectiva

de presfuerzo gre, se define como

1
I = cr

¢ M I
17 ] cr 17 cr
)B'A(Ma][ I!"\J

¢pf = ﬁ:s¢p,!r + (1 - ﬁ!s)¢p,cr

(22)

(2b)
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respuesta del
concreto

presforzado T

Alcr_ Md

lec

Ma_ Mdec

MC

T

M,

T T f

-¢p,cr _¢pe -¢p, o ¢|a Curvatura ¢)

Fig. 3 Respuesta del modelo del miembro presforzado con
endurecimiento por tensién

La curvatura del presfuerzo de una seccién no
agrietada ¢p1, se da por ¢gptr = Poet(Eoltr), y la curvatura
del presfuerzo de una seccion completamente
agrietada se da por gper = Poeer/(Ecler)- AM:s disminuye
con la carga mayor después del agrietamiento,
utilizando un factor de endurecimiento por
tension asumido fs = Me/Ma. que se sustituye en
la ecuacion (2a) y (2b). Mas, los términos para la
seccion transformada no agrietada (It @ot, y ex) se
transforman con los términos para una seccion bruta
(no agrietada) (ls, ¢ng y €g) para dar expresiones de
disefio simplificadas para /e y dpe.

[e — Icr

l[Mj (l_fa}
M, 1,
Mcr _ MCV
¢pe :( Ma J¢p’g +|:1 LM‘I }j|¢p,cr

Se toma un paso final al establecer Poge =
(Ecle)ppe para definir una excentricidad efectiva
ee. Haciendo otra simplificacion aproximando Po
con Pe (basicamente calculando el esfuerzo de
descompresion fa con el presfuerzo efectivo fse),
donde dpg = Peeg(Ec/g) Y ¢peor = Peeor/(Eo/cr), conduce a

(i o5 (2 )

Entonces la curvatura se calcula como ¢ = (Ma -
Peee)/(Ecle). LaFigura 4ilustra la respuesta del miembro
calculada cuando la respuesta Eclor Se encuentra ya sea
debajo o sobre el momento de agrietamiento.

(3a)

(3b)
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Restriccion de la Contraccion por
Refuerzo no Presforzado

Elmomento de agrietamiento M, =(f:+fe)l,/y:no se
reduce para un miembro completamente presforzado
(FP[por susiniciales eninglés]) (donde la seccion no
incluye refuerzo no presforzado). Esto se debe a que
la contraccion vy el flujo plastico ya se tomaron en
consideracion con el esfuerzo efectivo fse en el acero
de presfuerzo utilizado para establecer la fuerza de
presfuerzo efectiva Pe y el esfuerzo de compresiéon
subsecuente fpe en la cara a tension precomprimida
(que a su vez se utiliza para calcular Meor). No obstante,
se necesita un momento de agrietamiento reducido
JorMer para un miembro presforzado reforzado con
refuerzo adicional no presforzado (definido como
parcialmente presforzado [PP] en este articulo)
para responder por los esfuerzos de tension que
se desarrollan en el concreto por la restriccion a la
contraccion mediante el refuerzo no presforzado." El
factor de reduccion

B
3 ptp, \3

varia entre 2/3 para un miembro de concreto
reforzado (no presofrzado) (idéntico al Cédigo ACI 318-
19 para concreto no presforzado) y 1 para un miembro

FP. La substitucion del momento de agrietamiento
reducido en la ecuacion (3) entonces da

I e = N 2
1 ACV MCV 1 ICV
- M - 7 (4a)
a g
2(Cl‘ MC?‘ /lcr Mcr
¢pe = ( Ma j¢p,g + |:1 - ( Ma :| ¢p,cr (4b)

e — A‘CV MCV L e + 1 _ ZIC)” MCV ]f.’ e
UM, )1, ) M, L) (4c)

Las propiedades de la seccion bruta (s, ¢og €g)
se utilizan para un miembro no agrietado cuando
MQSACI’MCI'.
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Evaluacion

Los detalles completos sobre el nivel de precision
de este planteamiento basados en la comparacion
con una extensa base de datos de pruebas que
utiliza los resultados de 180 vigas de 23 estudios
se proporcionan en otra parte.” Estas vigas tenian
formasrectangulares, de unasola t o tenian formade
l; estaban soportadas de manera sencilla; tenian un
perfil de tendon recto presforzado con excentricidad
constante y estaban sujetas a dos cargas de puntos
colocados simétricamente.” La Figura 5 muestra
una amplia variabilidad de resultados de estas
pruebas, tal como se espera, donde las deflexiones
experimentales Aexp (incluyendo peralte y peso propio
delmiembro) se comparan con los valores calculados
Acale Utilizando el procedimiento descrito en el
ejemplo de deflexion. La deflexion se sobreestima
por una cantidad moderada en promedio, con una
relacion de prediccion de deflexion media (Acac/Aexp)
igual a 124 cuando los valores de deflexion se
calculan directamente (basandose en los célculos
de curvatura neta, tal como se muestran en el
ejemplo). La curvatura de integracion (basada en /e
y en ee calculada en cada seccidn junto con el tramo
del miembro) disminuye la relacién media Acaic/Aexp @
un valor de 1.06. Al utilizar la fuerza de presfuerzo de
descompresion Po y las propiedades de la seccion
transformada no agrietada para determinar M, le, y
ee se mejora alin mas la prediccién de deflexion.”

A

Momento M

Eclcr (cambiado) con 4\ _-
M>M, > -
- - -

respuesta para
M>M,
M

cr

P respuesta para

c Icr (cambiado) con

M1<A4cr

Deflexiéon A

Fig. 4: Opciones de respuesta presforzada calculada.
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: e 40
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©
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<

A (pulg)
exp

Fig. 5: Calculado versus deflexiones experimentales para vigas

completamente presforzadas (FP) y parcialmente presforzadas (PP)
(utilizando la base de datos compilada en la Referencia 11)

-12 png.;»‘

'
16 pulg.
26
pulg.
1....69.
32 T
pulg.
- 10
€= pulg.
v ::_:_:__l y;=1epulg
[ [ ] [ ] [
,, N\ l

12 — 1/2 pulg.

Fibras

Fig. 6: Detalles del ejemplo de viga presforzada.
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Ejemplo de Deflexion Presforzada

El ejemplo 5.2.2.5 tomado del PCI Design Handbook
20207 y basado en el Ejemplo 1 del documento PCI
de Mast® se utiliza para demostrar el planteamiento
propuesto para calcular la deflexion inmediata de una
viga presforzada soportada de forma sencilla agrietada
bajo carga de servicio. La viga presforzada es rectangular,
tal como se ilustra en la Fig. 6 y presforzada con doce
fibras 270K de % pulgada de diametro colocadas a una
profundidad efectiva dp» = 26 pulgadas. El tramo / = 40
pies fo=6 000 psi,y £o =57 000 fs = 4 415 ksi para dar

= Ep/Ec = 6.46 (asumiendo E 28 500 ksi).

Las cargas y los momentos a mitad de vano
son los siguientes:

Peso propio = 150 Ib/pies® x (12/12) pies x (32/12)pies
0

0.40 kip/pies
Carga muerta superimpuesta = 1.0 kp/pies
Carga muerta total = 1.4 kp/pies
Carga viva = 1.25 kip/pies
Mb = 1.4 x 40?/8 = 280 kip-pies = 3360 kip-pulg.
M. =1.25 x 402/8 = 250 kip-pies = 3000 kip-pulg.
Ms = Mp + M. = 530 kip-pies = 6360 kip-pulg.

Los detalles de la fuerza de presfuerzo son
los siguientes:

Aps =12 x 01563 =1.836 pulg.?

Pr = Aps(bdp) =1.836/(12 x 26) = 0.0059

(mas p = O porque no hay refuerzo presforzado)
fou =270 ksi

Nivel de presfuerzo inicial = O.757w y pérdida calculada
de 20% da fse = (1 - 0.20)(0.75)(270) = 162.0 ksi

Pe =1.836 x162.0 = 297.4 kip

Las propiedades de la seccion son las
siguientes:

Ag=384pulg?ely=32768 pulg’

y:=10pulg.y eg =26 —16 =10 pulg. (ver Fig. ©)

Toe = Pe/Ag + (Pe X €0)y/ly =2974/384 + (2974 x10) x
16/32768=2227 ksi

f:=75~fs=756000 = 58] psi

Mer = (i + foe) ly/yr = (0581 + 2227) 32 768/16 = 5 750 kip-pullg.
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Aer = (2/3) *

[0.0059/(0 + 0.0059)](1/3) =10y
JorMer = 5750 kip-pulg.

npPe = 6.46 x 0.0059 = 0.038

ko =y(n,0,) +2(1,0,)~(1,0,)=

\/(0038) +2x0.038 —0.038 = 0.240

€=k xd,=0240 x 26 =6.24 in.
19.76 in.

y €r= 260-624=

(el centroide estéa ubicado en el eje neutral porque
la seccion esta completamente agrietada.

b(Ccr)3/3 + npAps‘ (dp Cu) -

12 (6. 24)3/3 +6.46 x 1.836 x (26 — 6.24) = 5 603 pulg.*

Utilizando la aproximacion PCI? para

I, =n,d,d*(1-16n,p,)

I, =6.46x1.836x26* x(1-1.65/0.038 ) = 5517 in.*

Esta aproximacion funciona razonablemente
bien para pp hasta mas o menos 0.5% pero puede
subestimar /or significativamente a relaciones de
refuerzo més altas.”

Los calculos de deflexion son de la siguiente
forma:

La seccion esta agrietada bajo carga muerta
completa mas carga de servicio viva con

M, = 6360 >2_M = 5750 kip-in.
A MM, =0.904

I,= 3603 =17,373
1-(0.904) (1-5603/32,768)
e, =0.904x| L7373 )10.4 (1-0.904) [ 373 ) 19,76 =
32,768 5603

10.67

La curvatura ¢a en Ma se calcula como

¢ = MNEI) — P, x e/(EI) = (M, — P, x e)/(EI) =
(6360 —297.4 x 10.67)/(4415 x 17,373) =41.55 x 10 1/
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Al referirnos a la Fig. 7, la curvatura neta gneta = ¢a +
$pg = ¢t 4L

CON ¢pg = Pe x €g/(Ecly) = 2974 x10/(4 415 x 32 768) =
20.56 x 10°1/pulg.

Y go = Mo(E-ly) = 3 360/(4 415 x 32 768) =23.22 x 10¢ 1/
pulg.

neta = (4165 + 20.56) x 10°° = 62.11x 10° 1/pulg.

Y g = goea g0 = (6211 - 23.22) x 106 = 38.89 x 10° 1/
pulg.

Deflexion neta Aneta = Kugnetat? (con Km = 5/48 para
una distribucién parabdlica asumida de curvatura tal
como se ilustra en la Figura 7.

Aveta = 5/48 x 6211 x (40 x 12)2x 10 ° = 1.491 pulg.
Aa = Aneta = Apg = 1.491 - 05692 = 0.899 pUlg
CON Apg = Kogool? = (1/8) x 20.56 x (40 x 12)° x 107 =

0592 pulg. Ko = 1/8 para un miembro con
soporte sencillo con tendones rectos que tengan
excentricidad constante.

Deflexion de carga viva AiL = Aneta = Aip con Aip = (5/48) ¢of?.
Aip = (5/48) x (23.22 x107°) x (40 x12)? = 0.557 in.
y Air = 1.491 - 0.557 = 0.934 pulg. Alternativamente,

5 ]
A, =K, 8,0 :(%jx(38.89x10 “)x(40x12)" =

0.933~0.934 in.

[o2}
o
o
o

. $,=41.55 x 10%/in.
e 0 \ / (,,=62.11 x 10%/in) s
- D) zando 1, =
[ &N\, v :

;’; 40— garagc'lica 60 ‘DO
(’3 error asumida para(lJ ~
- —] con sqposicién i nez1 L ;Y
x parablica O . " (B 75 bl ) s
£ 20+ S = 40 &
& e
g ¢,=38.89 x 10%/in. 2
3 .
© R S
07 s R S 20 3
IS =2322x10%n. >~ -~

¢mf\‘ g P Z ¢D l X n ~. 8 \ L

i N
-20 T T T T T I T T T 0
0 0.2 0.4 0.6 0.8 1

Ubicacion a lo largo de la viga x/f

Fig. 7: Distribucién de curvatura para ejemplo de viga.
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Elvalor estimado de Air = 0.934 pulg. sobreestima
la deflexion de carga viva en 36% en comparacion
con un valor de 0.688 pulg. obtenido al integrar la
curvatura, mientras que el valor para A- = 0899 pulg.
sobreestima la deflexion en aproximadamente la
misma cantidad en comparacion con el valor de
0.653 pulg. cuando la curvatura esta integrada. El
area sombreada en la Fig. 7 representa el error al
calcularladeflexion conla curvaturaneta aproximada
por una curva parabdlica (asumiendo que la carga se
distribuye de manera uniforme).

Aproximar la curvatura neta con una respuesta de
distribucion lineal (de forma triangular con gneta = 62.11
x10-61/pulg. en el dpice ubicado a la mitad del vano)
davalores de Air = 0.635 pulg.y A= = 0.600 pulg., que
subestima la deflexion en aproximadamente 8% en
cada caso, en comparacion con integrar la curvatura.

La comparacion también puede hacerse con
el planteamiento mas exacto basandose en Po vy
las propiedades de la seccion transformada no
agrietada (It, Apt, y err) utilizadas para determinar Mer,
/e,yee.

El esfuerzo de descompresion

2
Ple
Lo —]ﬂe+np[%+¥}—l72.9

g 4

y la fuerza de presfuerzo de descompresion
Po = fae x Aps = 317.4 kip para dar un momento de
agrietamiento mas alto Msr = 6 065 kip-pulg. (que
actla sobre la sesion transformada no agrietada).
El momento de agrietamiento mas alto disminuye
considerablemente la deflexion calculada de la
carga viva (de 0.934 pulg. a 0.690 pulg. utilizando
la aproximacion parabdlica para la curvatura neta)
debido a la proximidad mas cercana del momento de
carga de servicio M, = 6 360 kip-pulg. al valor mayor
del momento de agrietamiento (incrementando de
5 750 a 6 065 kip-pulg.). Los valores calculados de
deflexion de carga viva varian entre 48 y 70% del
limite del Cdodigo-318 de ACI de ¢/360 = 1.33 pulg.
para este ejemplo, dependiendo del curso en el
procedimiento utilizado para calcular la deflexion.

Completamente  presforzado (FP):  miembro
presforzado Unicamente con refuerzo presforzado

Parcialmente presforzado (PP):miembro presforzado
con refuerzo presforzado y no presforzado
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Resumen

El planeamiento del Coddigo-318-19 de ACI
para calcular la deflexion inmediata del concreto
reforzado (no presforzado) se amplia para incluir
concreto presforzado cargado sobre el momento de
agrietamiento (miembros presforzados Clase Ty Clase
C). Se utiliza un modelo mecénico racional como la
base para agregar un componente de endurecimiento
por tension (en este momento de caso) en la respuesta
Eeler agrietada que se cambia hacia arriba en relacion
con la respuesta Eoly no agrietada debido a la fuerza
de presfuerzo excéntrica. El enfoque propuesto
resumido en la Fig. 1 para concreto presforzado incluye
un momento efectivo de inercia le y excentricidad
efectiva e. de la fuerza de presfuerzo cuando el
miembro se agrieta. Iy y eg se utilizan para un miembro
no agrietado. El momento de agrietamiento se reduce
con un factor de reduccion /e para responder por los
esfuerzos de tensién que se desarrollan en el concreto
por la restriccion a la contraccion por el refuerzo no
presforzado cuando esté presente. Los procedimientos
estan presentes para calcular la deflexién directamente
basandose en la curvatura neta (utilizando un valor
uniforme asumido de /e y ee en la seccion critica) y
comparado con la deflexion calculada al integrar la
curvatura (utilizando le y e calculados en cada seccion
a lo largo del vano del miembro). La respuesta de
carga-deflexion bilineal PCl también se considera en el
ejemplo extra.

Deflexion calculada
directamente baséndose MA

en la curvatura gneta:

crer

Sy = Kyt

A, =Kg¢. 0 - Ap.z A/ﬂl) A A

v

5 . .
para viga con soporte sencillo

A=A -A L Ky =
0= Bar =8,y ‘=48

Ap = Kyl con carga distribuida de manera uniforme

Ay = B =B
of K, = 1I| para viga con soporte sencillo

utilizando tendén recto con excentricidad

A =Kt
et constante.
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