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Computing Deflections 
Using ACI CODE-318-19 and 
Beyond, Part 5
Proposed extension to prestressed concrete

by Peter H. Bischoff, Wassim Nasreddine, and Hani Nassif

P arts 1 to 4 of this article series1-4 introduce and 
evaluate the new expression for Ie first adopted by 
ACI CODE-318-195 for calculating deflection of 

reinforced (nonprestressed) concrete. The revised expression 
for Ie is not applicable to cracked prestressed concrete 
members, and ACI CODE-318-19 uses the approach 
developed by Branson6 for this type of member.

Work by Bischoff et al.7 has proposed extending the ACI 
CODE-318-19 approach for reinforced concrete to include 
prestressed concrete. The proposed approach, summarized in 
Fig. 1, has been developed to compute immediate deflection 
of Class T and Class C prestressed members, which are 
cracked under service load (refer to ACI CODE-318, Section 
24.5.2, for classification of prestressed members). In this 
approach, deformation from the eccentric prestressing force 
(computed using an effective eccentricity ee and effective 
moment of inertia Ie) is subtracted from the deformation from 
load (computed using Ie). This is much like the procedure used 
to compute deflection of an uncracked prestressed member, in 
which eg (the eccentricity of the prestressing force relative to 
the centroid of the gross [uncracked] section) and Ig are used 
to compute camber, and Ig is used to compute deflection due 
to load (but with one difference for a cracked member, as 
noted further on). 

While the curvature of a cracked prestressed member is 
obtained by subtracting the effective curvature caused by the 
eccentric prestressing force from the curvature caused by load, 
direct calculation of deflection is conservatively based on net 
curvature7 as demonstrated with an example later in this 
article. For a continuous member or members with variable 
eccentricity of the prestressing, it might be advantageous to 
compute deflection by integrating curvature. Calculating 
deflection directly (without integration) is also affected by 
the type of loading. A bonus example for a member with 

Summary of Article Parts
Part 1: Primer for Computing Deflections—Immediate 

and Time-Dependent
Part 2: New Expression for Ie and Reasons for Change
Part 3: Impact of Changes Made
Part 4: Deflection Example—Continuous Slab
Part 5: Proposed Extension to Prestressed Concrete

variable eccentricity is available in the Appendix, which 
can be accessed in the online version of this article at  
www.concreteinternational.com.

Fig. 1: Proposed revision to ACI CODE-318-19, Section 24.2.3.9
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Prestressed Concrete Behavior
Figure 2 illustrates the effect of prestressing on the 

moment-curvature relationship for concrete flexural members. 
Eccentric prestressing increases the cracking moment and 
causes an initial upwards deflection (camber) to give a stiffer 
response at service loads. The axial prestress force also results 
in a partially cracked section with a nonlinear EcIcr′   response 
that gradually converges (under increasing load) to the EcIcr 
response corresponding to a fully (nonprestressed) cracked 
section. More importantly, the cracked EcIcr response is offset 
from the uncracked EcItr response (where the moment M1 
identifies the intersection point of the EcItr response and 
shifted EcIcr response). The EcIcr response is shown in Fig. 2 
as lying below the cracking moment Mcr but can lie above Mcr 
for higher levels of prestressing.8

Calculation of deflection is simplified by using the EcIcr 
response instead of EcIcr′ .7,9 This avoids the difficulty of 
locating the neutral axis and then the centroid location, which 
is not coincident with the neutral axis for a partially cracked 
section. Other simplifications include approximating the 
uncracked moment of inertia Itr with the gross moment of 
inertia Ig and using the effective prestress force Pe in place of 
the fictitious decompression (prestress) force Po = fdcAps 
described by Nilson.10 The prestressing force is moved up to 
the centroid for analysis, resulting in an eccentric prestress 
moment Poecr ≈ Peecr, where ecr is the eccentricity of the 
prestressing steel relative to the centroid of the cracked 
section (located at the neutral axis for a fully cracked section).

The decompression stress fdc is defined as the stress in the 
tendon corresponding to zero stress in the concrete at the level 
of the prestressed tendons, and Aps is the area of prestressed 
longitudinal tension reinforcement. The effective prestress 
force is Pe = fseAps, where fse is the effective stress in the 
prestressed reinforcement after all losses, including shrinkage 
and creep. The increased cracking moment associated with 
prestressing is Mcr = ( fr + fpe) Ig/yt, where fpe is the 

compressive stress in concrete at the precompressed tensile 
face resulting from the effective prestress force Pe acting on 
the deformed section and thus also accounts for losses from 
creep and shrinkage.

Model Extension to Prestressed Concrete
Deformation of a cracked prestressed concrete member is 

modeled by adding a tension stiffening moment 
∆Mts = βts ∆Mcr ≤ ∆Mcr onto the cracked EcIcr response, as 
shown in Fig. 3.7,9 This is similar to the approach used for 
reinforced (nonprestressed) concrete described in Part 2 of the 
article series,2 except the EcIcr response has been shifted 
upwards relative to the uncracked EcItr response. Model 
development for prestressed concrete mirrors the steps taken 
in Part 2 of the article series2 for reinforced concrete.

The moment Ma for a corresponding curvature ϕa is defined as

	 � �,      a c cr a p cr ts crM E I M� � � �� � � 	 (1a)

Rearrangement of terms leads to 
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Substituting � � � �, ,1 /cr cr cr tr c cr p cr p trM M I I E I � �� � � � �  
into Eq. (1b) gives

	 	 (1c)

which leads to the curvature ϕa = Ma/(EcIe) − ϕpe for an 
effective moment of inertia Ie and effective curvature from 

Fig. 2: Comparative plots of moment-curvature relationships for 
prestressed and reinforced (nonprestressed) flexural members Fig. 3: Model response of prestressed member with tension stiffening
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prestressing ϕpe, defined as 
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and

	 ϕpe = βtsϕp,tr + (1 − βts)ϕp,cr	 (2b)

The curvature from prestressing of an uncracked section, 
ϕp,tr, is given by ϕp,tr = Poetr/(EcItr), and the curvature from 
prestressing of a fully cracked section, ϕp,cr, is given by 
ϕp,cr = Poecr/(EcIcr). ∆Mts decreases with increasing load after 
cracking using an assumed tension stiffening factor  
βts = Mcr/Ma that is substituted into Eq. (2a) and (2b). Plus, the 
terms for the uncracked transformed section (Itr, ϕp,tr, and etr) 
are approximated with the terms for a gross (uncracked) 
section (Ig, ϕp,g, and eg) to give simplified design expressions 
for Ie and ϕpe.
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One final step is taken by setting Poee = (EcIe)ϕpe to define 
an effective eccentricity ee. Making another simplification by 
approximating Po with Pe (essentially estimating the 
decompression stress fdc with the effective prestress fse), where 
ϕp,g = Peeg/(EcIg) and ϕp,cr = Peecr/(EcIcr), leads to
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Curvature is then computed as ϕa = (Ma − Peee)/(EcIe). 
Figure 4 illustrates the member response calculated when the 
EcIcr response lies either below or above the cracking 
moment.

Shrinkage Restraint from Nonprestressed 
Reinforcement

The cracking moment Mcr = (fr + fpe)Ig/yt is not reduced for 
a fully prestressed (FP) member (where the section does not 
include nonprestressed reinforcement). This is because 
shrinkage and creep are already taken into account with the 
effective stress fse in the prestressing steel used to establish the 
effective prestress force Pe and subsequent compressive stress 
fpe at the precompressed tensile face (that in turn is used to 
compute Mcr). However, a reduced cracking moment λcrMcr is 
needed for a prestressed member reinforced with additional 

nonprestressed reinforcement (defined as partially prestressed 
[PP] in this article) to account for tensile stresses that develop 
in the concrete from restraint to shrinkage by the 
nonprestressed reinforcement.11 The reduction factor
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 varies between 2/3 for a reinforced

(nonprestressed) concrete member (identical to ACI-
CODE-318-19 for nonprestressed concrete) and 1 for an FP 
member. Substitution of the reduced cracking moment into 
Eq. (3) then gives 
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Gross section properties (Ig, ϕp,g, eg) are used for an 
uncracked member when Ma ≤ λcrMcr.

Evaluation
Full details on this approach’s level of accuracy based on 

comparison with an extensive database of tests using the 
results of 180 beams from 23 studies are provided elsewhere.7 
These beams had either rectangular, single tee, or I shapes; 
were simply supported; had a straight prestressed tendon 
profile with constant eccentricity; and were subjected to two 
symmetrically placed point loads.11 Figure 5 shows a wide 
scatter of results from these tests as expected, where 
experimental deflections ∆exp (including camber and member 
self-weight) are compared with calculated values ∆calc using 

Fig. 4: Calculated prestressed response options



38     DECEMBER 2025  |  Ci  |  www.concreteinternational.com

the procedure described in the deflection example. Deflection 
is overestimated by a moderate amount on average, with a 
mean deflection prediction ratio (∆calc/∆exp) equal to 1.24 when 
deflection values are computed directly (based on net 
curvature calculations as shown in the example). Integrating 
curvature (based on Ie and ee calculated at each section along 
the member span) decreases the mean ∆calc/∆exp ratio to a value 
of 1.06. Using the decompression prestress force Po and 
properties of the uncracked transformed section to determine 
Mcr, Ie, and ee further improves prediction of deflection.7

Prestressed Deflection Example
Example 5.2.2.5 taken from the 2010 PCI Design 

Handbook12 and based on Example 1 from Mast’s PCI paper13 
is used to demonstrate the proposed approach for computing 
immediate deflection of a simply supported prestressed beam 
cracked under service load. The prestressed beam is 

rectangular, as shown in Fig. 6, and prestressed with twelve 
1/2 in. diameter 270 K strands located at an effective depth dp = 
26 in. The span ℓ = 40 ft, fc′ = 6000 psi, and 

57,000 4415c cfE ���  ksi to give np = Ep/Ec = 6.46 
(assuming Ep = 28,500 ksi). 

Loads and midspan moments are as follows:
Self-weight = 150 lb/ft3 × (12/12)ft × (32/12)ft ÷ 1000 =  
	 0.40 kip/ft 
Superimposed dead load = 1.0 kip/ft
Total dead load = 1.4 kip/ft
Live load = 1.25 kip/ft
MD = 1.4 × 402/8 = 280 kip-ft = 3360 kip-in.
ML = 1.25 × 402/8 = 250 kip-ft = 3000 kip-in.
Ma = MD + ML = 530 kip-ft = 6360 kip-in.

Prestress force details are as follows:
Aps = 12 × 0.153 = 1.836 in.2

ρp = Aps/(bdp) = 1.836/(12 × 26) = 0.0059
(plus ρ = 0 because there is no nonprestressed reinforcement) 
fpu = 270 ksi
Initial prestress level = 0.75fpu and estimated loss of 20% 
gives fse = (1 – 0.20)(0.75)(270) = 162.0 ksi
Pe = 1.836 × 162.0 = 297.4 kip

Section properties are as follows:
Ag = 384 in.2 and Ig = 32,768 in.4 
yt = 16 in. and eg = 26 − 16 = 10 in. (see Fig. 6)
fpe = Pe/Ag + (Pe × eg) yt/Ig = 297.4/384 + (297.4 × 10) × 	
	 16/32,768 = 2.227 ksi

7.5 7.5 6000 581r cf f =′= =  psi
Mcr = ( fr + fpe) Ig/yt = (0.581 + 2.227)32,768/16 = 5750 kip-in.
λcr = (2/3) + [0.0059/(0 + 0.0059)](1/3) = 1.0 and  
	 λcrMcr = 5750 kip-in.
npρp = 6.46 × 0.0059 = 0.038

ccr = kcr × dp = 0.240 × 26 = 6.24 in. and ecr = 26 − 6.24 = 	
	 19.76 in.
(the centroid is located at the neutral axis because the section 
is fully cracked)
Icr = b(ccr)3/3 + npAps (dp − ccr)2 =  
	 12 × (6.24)3/3 + 6.46 × 1.836 × (26 − 6.24)2 = 5603 in.4

Using the PCI12 approximation for 
� �2 1 1.6cr p ps p p pI n A d n �� �  gives

� �26.46 1.836 26 1 1.6 0.038 5517 in.4
crI � � � � � �

This approximation works reasonably well for ρp up to about 
0.5% but can underestimate Icr significantly at higher 
reinforcement ratios.11  

Deflection calculations are as follows:
The section is cracked under the full dead plus live service 

Fig. 6: 
Prestressed 
beam example 
details

Fig. 5: Calculated versus experimental deflections for fully 
prestressed (FP) and partially prestressed (PP) beams (using 
database compiled in Reference 11)
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load with
Ma = 6360 > λcrMcr = 5750 kip-in. 
λcrMcr/Ma = 0.904

� � � �2
5603 17,373

1 0.904 1 5603 / 32,768eI � �
� �

 in.4

� �17,373 17,3730.904 10 1 0.904 19.76
32,768 5603ee � � � �� � � � � � � �� �� � � �� �

10.67
Curvature ϕa at Ma is calculated as
ϕa = Ma/(EcIe) − Pe × ee/(EcIe) = (Ma − Pe × ee)/(EcIe) =  
	 (6360 − 297.4 × 10.67)/(4415 × 17,373) = 41.55 × 10⁻6 1/in. 

Referring to Fig. 7, the net curvature ϕnet = ϕa + ϕp,g= ϕD + ϕL

with ϕp,g = Pe × eg/(EcIg) = 297.4 × 10/(4415 × 32,768) =  
	 20.56 × 10⁻6 1/in.
and ϕD = MD/(EcIg) = 3360/(4415 × 32,768) =  
	 23.22 × 10⁻6 1/in.
∴ϕnet = (41.55 + 20.56) × 10⁻6 = 62.11 × 10⁻6 1/in.
and ϕL = ϕnet  − ϕD = (62.11 − 23.22) × 10⁻6 = 38.89 × 10⁻6 1/in.
Net deflection ∆net = KM ϕnet ℓ2 (with KM = 5/48 for an assumed 
parabolic distribution of curvature as shown in Fig. 7). 
∆net = (5/48) × 62.11 × (40 × 12)2 × 10⁻6 = 1.491 in.
∆a = ∆net − ∆p,g = 1.491 − 0.592 = 0.899 in.
with ∆p,g = Kpϕp,gℓ2 = (1/8) × 20.56 × (40 × 12)2 × 10⁻6 =  
0.592 in. Kp = 1/8 for a simply supported member with 
straight tendons having constant eccentricity.
Live load deflection ∆i,L = ∆net − ∆i,D with ∆i,D = (5/48)ϕDℓ2.
∆i,D = (5/48) × (23.22 × 10⁻6) × (40 × 12)2 = 0.557 in.
and ∆i,L = 1.491 − 0.557 = 0.934 in. Alternatively,

ℓ

in.

Fig. 7: Curvature distribution for beam example

The estimated value of ∆i,L = 0.934 in. overestimates live 
load deflection by 36% compared to a value of 0.688 in. 
obtained by integrating curvature, while the value for  
∆a = 0.899 in. overestimates deflection by about the same 
amount compared to the value of 0.653 in. when curvature is 
integrated. The shaded area in Fig. 7 represents the error 
when computing deflection with the net curvature 
approximated by a parabolic curve (assuming the load is 
uniformly distributed).

Approximating the net curvature with a linear distribution 
response (triangular in shape with ϕnet = 62.11 × 10⁻6 1/in. at 
the apex located at midspan) gives values of ∆i,L = 0.635 in. 
and ∆a = 0.600 in., which underestimate deflection by about 
8% in each case compared to integrating curvature.

Comparison can also be made with the more exact 
approach based on Po and the uncracked transformed section 
properties (Itr, ϕp,tr, and etr) used to determine Mcr, Ie, and ee. 

The American Concrete Institute  
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2011 editions of Building Code  
Requirements for Masonry  
Structures. Available in both 
print and digital formats.  

Learn more at www.concrete.org

Masonry Building Code Requirements 
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The decompression stress
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 ksi and the

decompression prestress force Po = fdc × Aps = 317.4 kip to 
give a higher cracking moment Mcr = 6065 kip-in. (acting on 
the uncracked transformed section). The higher cracking 
moment decreases the computed deflection from live load 
considerably (from 0.934 in. to 0.690 in. using the parabolic 
approximation for net curvature) because of the closer 
proximity of the service load moment Ma = 6360 kip-in. to the 
increased value of the cracking moment (increasing from 
5750 to 6065 kip-in.). Computed values of live load deflection 
range between 48 and 70% of the ACI CODE-318 limit of 
ℓ/360 = 1.33 in. for this example, depending of course on the 
procedure used to calculate deflection.

Deflection computed
directly based on 
net curvature ϕnet: 
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48
a net p g MK� � �

2

,    with uniformly distributed load i D M DK �� ℓ∆

, ,   i L net i D� �∆         ∆        ∆
1or                                                              for simply supported beam
8pK =

2
,∆     using straight tendon with constant eccentricityi L M LK �� ℓ

Fully prestressed (FP): prestressed member with 
prestressed reinforcement only

Partially prestressed (PP): prestressed member with 
prestressed and nonprestressed reinforcement

Summary
The ACI CODE-318-19 approach for calculating 

immediate deflection of reinforced (nonprestressed) concrete 
is broadened to include prestressed concrete loaded above the 
cracking moment (Class T and Class C prestressed members). 
A rational mechanical model is used as the basis for adding a 
tension stiffening component (in this case moment) onto the 
cracked EcIcr response that is shifted upwards relative to the 
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uncracked EcIg response because of the eccentric prestressing 
force. The proposed approach summarized in Fig. 1 for 
prestressed concrete includes an effective moment of inertia Ie 
and effective eccentricity ee of the prestressing force when the 
member is cracked. Ig and eg are used for an uncracked 
member. The cracking moment is reduced with a reduction 
factor λcr to account for tensile stresses that develop in the 
concrete from restraint to shrinkage by the nonprestressed 
reinforcement when present. Procedures are presented for 
computing deflection directly based on net curvature (using an 
assumed uniform value of Ie and ee at the critical section) and 
compared with deflection computed by integrating curvature 
(using Ie and ee calculated at each section along the member 
span). The PCI bilinear load-deflection response is also 
considered in the bonus example.
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Appendix: Bonus Deflection Example
This bonus example is taken from Example 5.8.3.1 (based on details from Example 5.2.2.3) of the PCI Design Handbook,12 

where immediate deflection from live load is calculated for a Class T double tee (8DT24)—that is prestressed with the strands 
harped at midspan (single-point depressed strands). The beam is simply supported with a span ℓ = 70 ft.

Two alternative procedures are presented for direct calculation of immediate deflection based on either a parabolic or 
trapezoidal approximation for the distribution of net curvature along the member span. Comparison is made with deflection 
computed using integration of curvature based on the effective eccentricity ee and effective moment of inertia Ie corresponding 
to each section along the member span (with eg and Ig used in the uncracked regions). Plus, results are presented for deflection 
calculation using the PCI bilinear load-deflection response. Calculation in some parts is carried out with more precision than 
needed (in terms of significant figures) to facilitate comparison of results.

Beam gross section properties
The cross section of the 24 in. deep PCI double tee shown in Fig. A1 has the following section properties for the gross 

(uncracked) section.
Ag = 401 in.2 and Ig = 20,985 in.4

ytop = 6.85 in. and ybot = 17.15 in.
wsw = 150 lb/ft3 × 401 in.2 ÷ 12 ÷ 12 = 418 lb/ft (distributed line load for self-weight)

Prestressing details
The beam is prestressed with twelve 1/2 in. diameter, 270 ksi, low-relaxation strands. This gives Aps = 12 × 0.153 = 1.836 in.2 
The strands have a single harping point at midspan, giving a straight tendon with variable eccentricity. Eccentricities are as 

follows:
eg,end = 5.48 in. (eccentricity of prestressing force at end of span)
eg,c = 13.90 in. (eccentricity of prestressing force at midspan) 
q = (13.90 – 5.48)/(70 × 12/2) = 20.05 × 10–3 rads (angle of inclination for centroid of prestressing strands)
eg(x) = eg,end + q x (eccentricity at distance x from end of span for x ≤ ℓ/2)
eg(0.4ℓ) = 5.48 + 20.05 × 10–3 × (0.4 × 70 × 12) = 12.216 in. (eccentricity at 0.4ℓ)
The effective depth dp of the prestressing steel and moment of inertia of the cracked section Icr vary along the member span 

as the eccentricity changes.
dp = 6.85 + 13.90 = 20.75 in. at 0.5ℓ 
dp = 6.85 + 12.216 = 19.066 in. at 0.4ℓ 
Initial prestress level = 0.75fpu and estimated loss equals 20%
fse = (1 – 0.20)(0.75)(270) = 162.0 ksi
Pe = Aps × fse = 1.836 × 162.0 = 297.4 kip and is assumed constant along the beam span.

Concrete design properties
The concrete has a specified compressive strength f c′ = 5000 psi, giving 7.5 7.5 5000 530r cf f =′= = psi and 

( )1.51.533 33 145 5000 /1000 4074c ccE fw= =′ =  ksi. Using wc = 145 lb/ft3 for normalweight concrete gives 57,000 cc fE ≈ ′. 
The modular ratio np = Ep/Ec = 28,500/4074 = 7.0 (assuming Ep = 28,500 ksi).

Member loads
Member self-weight wsw = 418 lb/ft (from beam gross section properties)
Superimposed dead load wsd = 10 lb/ft2 × 8 ft = 80 lb/ft
Total dead load wD = 418 + 80 = 498 lb/ft
Live load wL = 35 lb/ft2 × 8 ft = 280 lb/ft

Service load moments
The critical moment occurs at midspan (0.5ℓ) for beams 

with straight strands of constant eccentricity and is assumed 
to occur at 0.4ℓ for beams when the strands are depressed at 
midspan, as with this example.12 For the prestressed beam in 
this example, the actual critical section occurs at 0.39ℓ for the 
maximum value of total bottom stress fb in the concrete at the 
precompressed tension face, and at 0.384ℓ for the maximum 
value of M/Mcr (details are provided further on in Aside 1). Fig. A1: Cross section of PCI double tee (8DT24)
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Figure A2 plots the distribution of fb /fr and M/Mcr along the 
member span. Negative values of the bottom stress for fb 
(indicating compression) that occur in the region near the end 
support are not plotted in this figure. 

Service load moments at midspan (ℓ/2) are as follows:
MD(ℓ/2) = wDℓ 2/8 = 498 ÷ 12 ÷ 1000 × (70 × 12)2/8 = 

3660.3 kip-in.
ML(ℓ/2) = wLℓ2/8 = 280 ÷ 12 ÷ 1000 × (70 × 12)2/8 = 

2058.0 kip-in.
Ma = MD+L(ℓ/2) = MD(ℓ/2) + ML(ℓ/2) = 5718.3 kip-in.
Service load moments at the critical section (0.4ℓ) are 

equal to 0.96 times the moment at midspan based on a 
parabolic distribution of moment from the uniformly 
distributed loads.

MD(0.4ℓ) = 0.96MD(0.5ℓ) = 0.96 × 3660.3 = 3513.9 kip-in.
ML(0.4ℓ) = 0.96ML(0.5ℓ) = 0.96 × 2058.0 = 1975.7 kip-in.
M(0.4ℓ) = MD+L(0.4ℓ) = 0.96Ma = 0.96 × 5718.3 = 

5489.6 kip-in.
where Ma is the total dead plus live load moment at midspan (0.5ℓ).

Critical section properties (at 0.4ℓ )
When deflection is computed directly, a constant value of member stiffness EI and eccentricity e of the prestressing force is 

assumed based on the effective moment of inertia Ie and effective eccentricity ee at the critical section located at 0.4ℓ. The 
section is cracked at 0.4ℓ, but barely cracked at midspan (0.5ℓ) as observed from Fig. A2.

The stress fpe at the bottom precompressed face from prestress only is used to calculate the cracking moment at 0.4ℓ.

� � � � � �� � � �
0.4 297.4 12.216 17.15297.40.4 1000 3710.75 psi C

401 20,985
e g bote

pe
g g

Pe yPf
A I

� �
� � � � � �� �

� �

ℓ
ℓ

( )
( )

0.4 5189.0 0.9452
0.4 5489.6

crM
M

= =




Hence, λcrMcr /M = 0.9452 at the critical location (0.4ℓ). Recall that λcr =1 for a prestressed section with no nonprestressed 
reinforcement.

The neutral axis of the fully cracked section extends into the web at 0.4ℓ, giving Icr = 3993 in.4 with a value of the neutral 
axis depth ccr = 2.13 in. and eccentricity ecr = dp – ccr = 19.066 – 2.13 = 16.936 in. Compare this with the PCI approximation for

( )2 1 1.6 4046cr p ps p p pI n A d n ρ= − =  in.4 (a little more than a 1% difference in this case) given np = 7.0, Aps = 1.836 in.2, dp = 

19.066 in. at 0.4ℓ, and ρp = 1.836/(96 × 19.066) = 0.0010 at 0.4ℓ.
Effective section properties at the critical section (0.4ℓ ) are as follows: 

( ) ( )
( )

( )
( ) ( )

4
2

2

0.4 39930.4 14,436 in.
39930.4 0.4 1 0.9452 11 1 20,9850.4

cr
e

cr cr cr

g

I
I

M I
M I

λ
= = =

    − − − −          





 



Fig. A2: Distribution of fb (x)/fr and M(x)/Mcr (x) along the beam span
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Curvatures at the critical section (0.4ℓ )
Corresponding curvatures at the critical section (0.4ℓ ) are computed using guidance from Fig. A3 that summarizes the 

relevant equations for curvature needed to calculate deflection. Values for the section properties and curvatures are summarized 
in Table A1 for convenience. 

( ) ( ) ( )
( )

60.4  0.4  5489.6 297.4 11.300.4  36.20 10
0.4  4074 14,436

e e

c e

M P e
E I

φ −− − ×
= = = ×

×
 





 1/in.

( ) ( ) 6
,

0.4 297.4 12.2160.4  42.495 10
4074 20,985

e g
p g

c g

P e
E I

φ −×
= = = ×

×




 1/in.

( ) ( ) ( ) ( ) 6 6
,0.4  0.4 0.4 36.20 42.495 10 78.695 10net p gφ φ φ − −= + = + × = ×    1/in.

( ) ( ) 60.4  3513.90.4  41.10 10
4074 20,985

D
D

c g

M
E I

φ −= = = ×
×



  1/in.

( ) ( ) ( ) ( ) 6 60.4 0.4  0.4  78.695 41.10 10 37.595 10  L net Dφ φ φ − −= − = − × = ×    1/in.

Curvature plots
Plots of the distribution for curvature are shown in Fig. A4 for the prestressing force ϕp,g(x), the dead load plus prestressing 

force ϕp+D(x), the total (dead and live) load plus prestressing force ϕ(x), and for ϕ(x) assuming a parabolic distribution of the net 
curvature ϕnet(x) taken from Fig. A5. Notice the curious kink that occurs in the curves near midspan for ϕp+D(x) and ϕ(x) as ϕp,g 
increases towards midspan of the beam. Loss of prestress in the bond transfer length at the beam ends is neglected.

Plots of the curvature from dead load alone ϕD(x), the net curvature for dead plus live load, ϕnet(x) = ϕD(x) + ϕL(x), and an 
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( )
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Fig. A3: Moment-curvature response of prestressed beam with relevant equations
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Fig. A5: Net curvature distribution for beam example (approximated 
with parabolic curve)

Fig. A4: Curvature distribution for beam example

assumed parabolic distribution for the net curvature ϕnet(x) are shown in Fig. A5. Once again, the increase in ϕp,g toward 
midspan causes a kink in the net curvature ϕnet(x) near midspan (as the effective moment of inertia increases near midspan 
because of a localized increase in λcrMcr(x)/M(x) as observed from the values in Table A1). 

Parabolic approximation for net curvature
Assuming a parabolic curve for the net curvature ϕnet running through the value at 0.4ℓ and having a maximum value at 

midspan (0.5ℓ) as shown in Fig. A5 gives

( ) ( ) ( ) 6 60.5  0.4  / 0.96 78.695 / 0.96 10 81.97 10net netφ φ − −≈ = × = ×  1/in.

In a similar fashion, a parabolic curve fitted to the curvature value from live load at 0.4ℓ gives 

( ) ( ) 6 60.5  0.4  / 0.96 37.595 10 / 0.96 39.16 10L Lφ φ − −≈ = × = ×  1/in.

Deflections based on net curvature using parabolic approximation
Knowing that KM = 5/48 when the distribution of curvature is parabolic, gives 

( ) ( )22 6
,

50.5  39.16 10 70 12 2.88
48i L M LK φ −∆ = = × × × × =   in.

and is about 20% greater than the value of ∆i,L = 2.39 in. when curvature is integrated. Integration takes account of the 
uncracked regions of the beam (using eg(x) and Ig) as well as for changes in ee(x) and Ie(x) in the cracked regions. Figures A2 
and A4 indicate the beam is cracked near the midspan region for 0.277 < x/ℓ < 0.723. Alternatively,

( ) ( )22 65 50.5  81.97 10 70 12 6.025
48 48net netφ −= = × × × × =∆    in.

( ) ( )22
,

0.55 5 3660.3 70 12 3.15
48 48 4074 20,985

D
i D

c g

M
E I

∆
   

= = × =   ×   



  in.

, , 6.025 3.15 2.875 2.88 in.i L net i D= ∆ − ∆ = − = ≈∆ as before.

For the total deflection (that includes the camber from prestress)

, 6.025 3.40 2.625 in.a net p g� � � �� � � �

where
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( )22
, ,

,
,

297.4 13.90 70 125.482 2 3.40
24 13.90 24 4074 20,985

g end e g c
p g

g c c g

e P e
e E I


∆

 × × × = + × = + × =    × ×   



in.

The PCI Design Handbook12 provides camber equations needed to compute ∆p,g for different prestressing strand profiles. 
The estimated value of 2.625 in. for ∆a is 23% greater that the value of 2.14 in. obtained by integrating curvature. These 

calculations are idealized in part, as the deformations due to prestress (aside from using Pe) and dead load do not account for the 
effects of creep from sustained loading.

Alternative trapezoidal approximation for net 
curvature and deflection calculations

Estimating deflection by approximating the distribution of 
net curvature with a trapezoidal curve as shown in Fig. A6 
(corresponding to the shape for an elastic beam under 
two-point loading, assuming the loading points are located at 
0.4ℓ from each support), gives 

∆net = KM ϕnet (0.4ℓ)ℓ2 = 0.0983 × 78.695 × 10⁻6 × (70 × 12)2 = 
5.46 in.

where 

( )
2

23 4 / 24 3 4 0.4 / 24 4.72 / 48 0.0983M
aK

    = − = − = =       

, , 5.46 3.15 2.31i L net i D= ∆ − ∆ = − =∆ in.

, 5.46 3.40 2.06a net p g∆ = ∆ − ∆ = − = in.

These estimated values of 2.31 in. for ∆i,L and 2.06 in. for 
∆a are closer to the integrated values of deflection (2.39 in. for 
∆i,L and 2.14 in. for ∆a) but now underestimate deflection by 3 
to 4%. Compare this with the estimate using a parabolic 
distribution of curvature, where deflections are overestimated 
by about 20 to 23%.

Further investigation with this type of tendon profile is 
needed for different ratios of service load to cracking load 
before definite recommendations can be made regarding the 
merits of each approximation.

Fig. A6: Beam example for distribution of net curvature 
approximated with a trapezoidal curve

Table A1: 
Summary of section properties and curvature values

Ends* 0.4ℓ 0.5ℓ

Ag, in.2 401 401 401

Ig, in.4 20,985 20,985 20,985

ybot, in. 17.15 17.15 17.15

eg (x), in. 5.48 12.216 13.90

dp (x), in. 12.33 19.066 20.75

ρp (x) 0.00155 0.00100 0.00092

MD (x), kip-in. 0 3513.9 3660.3

ML (x), kip-in. 0 1975.7 2058.0

M (x), kip-in. 0 5489.6 5718.3

fb (x), psi 2073.6 (C) 775.6 (T)† 553.2 (T)

fb (x) / fr −3.912 1.463 1.044

fpe (x), psi 2073.6 (C) 3710.75 (C) 4120.0 (C)

Mcr (x), kip-in. 3185.8 5189.0 5689.9

λcr 1.0 1.0 1.0

λcrMcr (x) / M (x) --- 0.9452 0.9950

Icr,PCI (x), in.4 --- 4046 4822

Icr (x), in.4 --- 3993 4760

ccr (x), in. --- 2.13 2.24

ecr (x), in. --- 16.936 18.51

Ie (x), in.4 20,985 14,436 20,299

ee (x), in. 5.48 11.30 13.77

ϕ(x) × 10⁻6, 1/in. −19.06 36.20 19.62

ϕp,g (x) × 10⁻6, 1/in. 19.06 42.495 48.35

ϕnet (x) × 10⁻6, 1/in. 0 78.695 67.98‡

ϕD (x) × 10⁻6, 1/in. 0 41.10 42.81

ϕL (x) × 10⁻6, 1/in. 0 37.595 25.17§

*Loss of prestress in bond transfer length not accounted for
†Class T prestressed member since 12 848.5b crf f f< < =′  psi
‡ ( ) 60.5 81.97 10netφ −≈ ×  1/in. with parabolic approximation 
§ ( ) 60.5 39.16 10Lφ −≈ ×  1/in. with parabolic approximation
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Aside 1: Location of Critical Section for Deflection Calculation
Determine the location for the maximum value of total stress fb at the bottom (precompressed) tensile face of the prestressed 

beam (refer to Fig. A2).
The angle of inclination q of the prestressing force given by

( ), ,2 /g c g ende eq = − 

is used to obtain the eccentricity eg(x) along the beam span
( ) ,g g ende x e xq= +  for x ≤ ℓ/2 

For the bottom stress fb in the section for the prestress force plus dead and live load (where compression is negative and 
tension is positive)

( ) ( ) ( )e g bot bote
b

g g g

P e x y M x yPf x
A I I

= − − +

where ( ) ( ) ( )24 / /aM x M x x = −    and Ma = wℓ2/8 at midspan

Setting ( ) 0b
d f x
dx

=  identifies the location of maximum stress for fb, giving

( ) ( ) ( ), ,/ 0.5 / 8 0.5 / 4e a e g c g end ax P M P e e Mq= − = − − 
x/ℓ = 0.39 for Pe = 297.4 kip, q = 0.02005 rads, ℓ = 70 ft, and Ma = 5718.3 kip-in.
Similarly, the location for the maximum value of M(x)/Mcr(x) occurs at 

2/x ω ω ω= + − , with

( ) ( )
( )

,

, ,

/ /
0.6361

2
g end g g bot r g e bot

g c g end

e I A y f I P y

e e
ω

+ +
= =

−

to give x/ℓ = 0.384, which is only a few percent different than the location for the maximum stress value fb.

Aside 2: PCI Bilinear Load-Deflection Response Revisited
Example 5.8.3.1 from the PCI Design Handbook12 computes deflection using a bilinear moment-deflection relationship as 

shown in Fig. A7. The PCI solution starts off by comparing the rupture modulus fr with the computed stress at the bottom face fb 
for the moment at 0.4ℓ (where tensile stresses for fb are assumed to be greatest as discussed earlier). However, deflection is 
calculated at midspan (equivalent to using an approximation for the cracking moment at 0.5ℓ as shown in Fig. A7).

Stresses are computed at the bottom face for x = 0.4ℓ. For 
the prestress load only:
fpe(0.4ℓ ) = 3710.75 psi (C) from before.

For prestress plus the dead and live loads (total stress):

This beam is a Class T component since the total tensile 
stress fb,tot = 775.63 psi (T) at the bottom face (for the prestress 
plus dead and live loads) is greater than fr and less than 12

cf ′ = 848.5 psi. The stress fb,p+D from prestress plus dead 
load, which is equal to −3710.75 + 2871.74 = −839.01 = 
839.01psi (C), indicates the beam is uncracked for dead load 
only. The tensile stress fb,L from the live load alone equals 
1614.64 psi (T).

That part of the live load wL1 needed to cause cracking at 
Fig. A7: Calculation of immediate deflection from live load using the 
PCI bilinear load-deflection response
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0.4ℓ (for a bottom tensile stress of 530 psi) corresponds to a computed bottom stress from live load fb,L1 = 839.01 + 530.0 = 
1369.01 psi (T). This stress results from a portion of the total live load (280 lb/ft) as follows. 

, 1
1

,

1369.01 280 237.40
1614.64

b L
L L

b L

f
w w

f
= = × = lb/ft

with a corresponding part of the live load moment ML1 at midspan.

( ) ( )22
1

1

237.40 70 120.5 1744.9
8 8 1000
L

L
wM = = × =



kip-in.

The stress fb,L2 = fb,L − fb,L1 from that part of the live load wL2 after cracking equals 1614.64 − 1369.01 = 245.63 psi (or fb,tot − fr = 
775.63 – 530 = 245.63 psi). Similarly

, 2
2

,

245.63 280 42.60
1614.64

b L
L L

b L

f
w w

f
= = × = lb/ft

( ) ( )22
2

2

42.60 70 120.5 313.1
8 8 1000

L
L

wM = = × =



kip-in.

Deflection is computed using the midspan (0.5ℓ) value of dp = 20.75 in. for ρp = 1.836/(96 × 20.75) = 0.00092, to give 
( )2 1 1.6 4822cr p ps p p pI n A d n ρ= − = in.4

The deflection from live load up to cracking ∆g (corresponding to deflection from the gross (uncracked) response)

( )( )
( )( )

22
1 1744.9 70 125 5 1.50 

48 48 4074 20,985
L

g
c g

M
E I

∆
×

= = =
 in.

and the deflection from live load after cracking ∆cr (corresponding to deflection of the cracked response)

( )( )
( )( )

22
2 313.1 70 125 5 1.17

48 48 4074 4822
L

cr
c cr

M
E I

∆
×

= = =


in.

Total live load deflection Δi,L = Δg + Δcr = 1.50 + 1.17 = 2.67 in.
The procedure followed above for computing deflection from live load is equivalent to using a fictitious cracking moment at 

midspan based on the cracking moment computed at 0.4ℓ divided by 0.96 (assuming a parabolic curve for distribution of the 
moment along the span) as shown in Fig. A7.

( )0.4 5189.0crM =  k-in. from before, and 

( ) ( )0.4 5189.00.5 5405.2
0.96 0.96

cr
cr

M
M ≈ = =



 kip-in.

to give

( ) ( )1 0.5 0.5 5405.2 3660.3 1744.9L cr DM M M= − = − = 
 kip-in. as before, and

( ) ( )2 0.5 0.5 5718.3 5405.2 313.1L D L crM M M+= − = − =  kip-in. as before. 

Computed values of deflection are slightly different from those in the PCI example12 because of differences in the value used 
for Ec and roundoff error.

Table A2 provides a summary of calculated deflection values using the different procedures evaluated in this bonus example 
(with the values in brackets giving the percent difference compared to deflection computed by integrating curvature). Computed 
values of immediate deflection from live load range from 99 to 124% of the ACI CODE-318 deflection limit of ℓ/360 = 2.33 in. 
depending on the procedure used. Comparison of results are specific to this example and can differ for other examples such as 
the rectangular beam example from this article. 



A8     DECEMBER 2025  |  Ci  |  www.concreteinternational.com

Notation for Parts 1 to 5 of this article (including bonus deflection example)
Ab 	 = area of reinforcing bar
Ag 	 = area of gross (uncracked) concrete section
Aps 	 = area of prestressed longitudinal tension reinforcement
As 	 = area of nonprestressed longitudinal tension reinforcement 
As′ 	 = area of compression reinforcement 
b 	 = width of compression face of member
ccr 	 = distance from compression face to neutral axis of a fully cracked cross section
d 	 = effective depth of tension reinforcement (distance from compression face to centroid of nonprestressed tension
	 reinforcement)
dp 	 = effective depth of prestressed tension reinforcement
e	 = eccentricity of prestressing force relative to centroid of section
ecr 	 = eccentricity of prestressed reinforcement relative to centroid of fully cracked section (= dp − ccr)
ee 	 = effective eccentricity of prestressed reinforcement
eg 	 = eccentricity of prestressed reinforcement relative to centroid of gross (uncracked) concrete section
eg,c	 = eccentricity of prestressing force (for gross section) at center of span (midspan)
eg,end	 = eccentricity of prestressing force (for gross section) at end of span
etr 	 = eccentricity of prestressed reinforcement relative to centroid of uncracked transformed section
E 	 = elastic modulus
Ec 	 = elastic modulus of concrete
Ep 	 = elastic modulus of prestressing reinforcement
Es 	 = elastic modulus of nonprestressed reinforcing steel
fb 	 = calculated stress in bottom fiber of cross section (assuming uncracked)
fb,L 	 = stress from service live load in bottom fiber of cross section
fb,L1 	 = stress from that part of the service live load to cause cracking in bottom fiber of cross section
fb,L2 	 = remaining part of stress from service live load after cracking in bottom fiber of cross section
fb,p+D 	 = stress from prestress plus service dead load in bottom fiber of cross section
fb,tot 	 = total stress (from prestress plus service dead and live load) in bottom fiber of cross section
f c′ 	 = specified compressive strength of concrete
fcr 	 = reduced cracking strength equal to (2/3) fr

fdc 	 = decompression stress (stress in prestressed reinforcement corresponding to zero stress in the concrete at the prestress
	 level)
fpe 	 = compressive stress in concrete from effective prestress force at precompressed tensile face
fpu 	 = specified tensile strength of prestressing reinforcement
fr 	 = modulus of rupture of concrete
fse 	 = effective stress in prestressed reinforcement after allowance for all prestress losses
fy 	 = specified yield strength of nonprestressed reinforcing steel
h 	 = member thickness or height
hmin 	 = minimum member thickness or height
I	 = moment of inertia

Table A2: 
Summary of calculated deflection values

Deflection Δa, in. Δi,L, in. Δi,L/Δall

Direct calculation using parabolic approximation for net curvature 2.625
(+23%)

2.88
(+20.5%) 1.24

Direct calculation using trapezoidal approximation for net 
curvature

2.06
(–4%)

2.31
(–3%) 0.99

Bilinear load-deflection response --- 2.67
(+12%) 1.15

Integration of curvature 2.14 2.39 1.03

Δall = ℓ/360 = 2.33 in. for immediate deflection from live load
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Icr 	 = moment of inertia of cracked transformed section (fully cracked section for a prestressed member)
Icr′ 	 = moment of inertia of partially cracked transformed section
Ie 	 = effective moment of inertia
Ie,avg 	 = average or weighted average of effective moment of inertia for the member
Ie,D 	 = effective moment of inertia for the service dead load
Ie,D+L 	= effective moment of inertia for the full (dead plus live) service load
Ie,m 	 = effective moment of inertia at midspan
Ie1 	 = effective moment of inertia at end support 1 of continuous member (corresponding to moment M1)
Ie2 	 = effective moment of inertia at end support 2 of continuous member (corresponding to moment M2)
Ig 	 = moment of inertia of the gross (uncracked) concrete section (neglecting reinforcement)
Itr 	 = moment of inertia of the uncracked transformed section
kcr 	 = ratio of neutral axis depth of elastic cracked section to the effective depth 
K 	 = deflection coefficient for calculating deflection (KM for load, Kp for prestressing) 
ℓ	 = span length of member
ℓn	 = clear span of member
M 	 = moment 
Ma 	 = maximum moment in member for service load stage at which deflection is calculated
Mcr 	 = cracking moment
ΔMcr	 = tension stiffening moment at cracking
Mdec 	 = decompression moment (corresponding to zero stress at tension face of prestressed member)
MD 	 = dead load service moment
MD+L 	= full (dead plus live load) service moment 
ML 	 = live load service moment
ML1 	 = that part of the live load moment needed to cause cracking
ML2 	 = remaining part of live load moment after cracking (ML ˗ ML1)  
ML,sus 	= sustained part of live load moment
Mm 	 = moment at midspan
Mn 	 = nominal flexural strength
Mo 	 = static moment 
Msus 	 = sustained moment
ΔMts 	= tension stiffening moment
Mu 	 = ultimate (factored) moment
M1 	 = intercept moment of shifted EcIcr response with uncracked EcItr response (for prestressed member)
M1 	 = moment at end support 1 of continuous member
M2 	 = moment at end support 2 of continuous member
np 	 = modular ratio (ratio of Ep to Ec)
Pe 	 = effective prestress force
Po 	 = fictitious decompression (prestress) force
q 	 = uniformly distributed area load (load per unit area)
qa 	 = uniformly distributed (dead plus live) service load (load per unit area)
qequiv 	 = fictitious (equivalent) uniformly distributed area load (for beams)
qD 	 = uniformly distributed dead load (load per unit area)
qL 	 = uniformly distributed live load (load per unit area)
qsus 	 = uniformly distributed sustained load (load per unit area)
w 	 = uniformly distributed line load (load per unit length)
wD 	 = uniformly distributed dead load per unit length (wsw + wsd) 
wL 	 = uniformly distributed live load per unit length
wL1 	 = that part of the live load needed to cause cracking
wL2 	 = remaining part of the live load after cracking (wL ˗ wL1)
wsd 	 = superimposed dead load per unit length
wsw 	 = load from member self-weight (load per unit length)
yt 	 = distance from centroidal axis of gross (uncracked) section to tension face
ybot 	 = distance from bottom fiber to center of gravity of uncracked (gross) section
ytop 	 = distance from top fiber to center of gravity of uncracked (gross) section
βts 	 = tension stiffening factor
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θ 	 = angle of draped prestressing tendon 
Δ 	 = deflection
Δa	 = deflection at Ma 
Δall 	 = allowable deflection limit
Δcalc 	 = calculated deflection
Δcr 	 = deflection at cracking
Δcr 	 = deflection from live load after cracking (for cracked prestressed member) 
Δexp 	 = experimental deflection (including camber and member self-weight)
Δg 	 = deflection from live load up to cracking (for cracked prestressed member)
Δi 	 = immediate deflection
Δi,D 	 = immediate deflection from dead service load
Δi,D+L 	= immediate deflection from full (dead plus live) service load
Δi,L 	 = immediate deflection from live service load
Δi,L(sus) = immediate deflection from sustained part of the live load
Δi,sus 	 = immediate deflection from sustained load (dead plus sustained part of live load)
Δinc 	 = incremental deflection (occurring after attachment of nonstructural elements)
Δnet 	 = net deflection (dead plus live load deflection)
Δp,g 	 = deflection (camber) from eccentric prestressing of gross (uncracked) member
λ 	 = modification factor for lightweight concrete
λcr 	 = reduction factor applied to cracking moment
λ∆ 	 = long-term deflection multiplier
ξ 	 = time-dependent factor for sustained load
ρ 	 = reinforcement ratio of tension reinforcement [= As/(bd)]
ρp 	 = reinforcement ratio of prestressed reinforcement [= Aps/(bdp)]
ρ′ 	 = reinforcement ratio of compression reinforcement [= As′/(bd)]
ρb 	 = balanced reinforcement ratio
ϕ 	 = strength reduction factor (for strength design)
ϕ 	 = curvature (M/EI)
ϕa 	 = curvature at full (dead plus live) service load moment Ma (including curvature from prestressing when applicable)
ϕD 	 = curvature from dead load
ϕL 	 = curvature from live load
ϕm 	 = curvature at midspan of simply supported and continuous members
ϕnet 	 = net curvature relative to uncracked curvature from prestressing (= ϕD + ϕL)
ϕp+D 	 = curvature of gross (uncracked) section from prestressing force plus service dead load
ϕp,cr 	 = curvature of cracked section from prestressing force
ϕpe 	 = effective curvature from prestressing force
ϕp,g 	 = curvature of gross (uncracked) section from prestressing force
ϕp,tr 	 = curvature of uncracked transformed section from prestressing force
ϕ1 	 = curvature at end support 1 of continuous member
ϕ2 	 = curvature at end support 2 of continuous member
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Cálculo de Deflexiones Utilizando 
el CÓDIGO-318-19 de ACI y Otros 
Más, Parte 5

Por Peter H. Bischoff, Wassim Nasreddine y Hani Nassif

04

Extensión propuesta para el concreto presforzado.

Partes 1 a 4 de esta serie de artículos1-4 introducen 
y evalúan la nueva expresión para Ie adoptada 
primero por el CÓDIGO ACI-318-195 para calcular la 
deflexión del concreto reforzado (no presforzado). 
La expresión revisada para Ie no corresponde a 
miembros de concreto presforzados agrietados y el 
CÓDIGO ACI-318-19 utiliza el enfoque desarrollado 
por Branson6 para este tipo de miembros.

El trabajo de Bischoff et al.7 propone extender el 
enfoque del CÓDIGO ACI-318-19 para el concreto 
reforzado, de manera que incluya concreto 
presforzado. El planteamiento propuesto resumido 
en la Fig. 1, se desarrolló para calcular la deflexión 
inmediata de miembros presforzados Clase T y 
Clase C que se agrietan bajo carga de servicio 
(consulte el CÓDIGO-318 de ACI, Sección 24.5.2, 
para la clasificación de miembros presforzados). 
En este enfoque, la deformación por la fuerza de 
presfuerzo excéntrica (calculada mediante el uso de 
una excentricidad efectiva ee y momento de inercia 
efectivo Ie) se resta de la deformación por la carga 
(calculada utilizando Ie). Esto se parece mucho al 
procedimiento utilizado para calcular la deflexión de 
un miembro presforzado no agrietado, en el que eg 
(la excentricidad de la fuerza de presfuerzo relativa 
al centroide de la sección bruta [no agrietada]) e Ig 
se utilizan para calcular la contraflecha, además Ig 

se utiliza para calcular la deflexión debida a la carga 
(pero con una diferencia para un miembro agrietado, 
tal como se observa adelante).

Si bien la curvatura de un miembro presforzado 
agrietado se obtiene al restar la curvatura efectiva 
provocada por la fuerza de presfuerzo excéntrica 
de la curvatura causada por la carga, el cálculo 
directo de la deflexión se basa conservadoramente 
en la curvatura neta7, tal como se demuestra con un 
ejemplo posterior en este artículo. Para un miembro 
o miembros continuos con excentricidad variable del 

presfuerzo, podría ser favorable calcular la deflexión 
integrando la curvatura. Calcular la deflexión de forma 
directa (sin integración) también se ve afectada por 
el tipo de carga. En el Apéndice está disponible un 
ejemplo extra para un miembro con excentricidad 
variable, al que se puede acceder en la versión en línea 
de este artículo en www.concreteinternational.com.

Fig. 1: Revisión propuesta para el Código ACI-318-19, 
Sección 24.2.3.9

Resumen de las Partes del Artículo

Parte 1
Introducción al cálculo de deflexiones inmediatas y 
dependientes del tiempo

Parte 2 Nueva Expresión para Ie y Razones del Cambio

Parte 3 Impacto de los Cambios Realizados

Parte 4 Ejemplo de Deflexión – Losa Continua

Parte 5 Extensión Propuesta para Concreto Presforzado

y para

Para
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Curvatura Inicial (Contraflecha)
del Presfuerzo

Comportamiento del Concreto Presforzado

La Figura 2 ilustra el efecto del presforzado en 
la relación momento-curvatura para los miembros 
a flexión de concreto. El presforzado excéntrico 
incrementa el momento de agrietamiento y causa una 
deflexión ascendente inicial (contraflecha) para dar una 
respuesta más rígida en cargas de servicio. La fuerza de 
presfuerzo axial también da por resultado una sección 
parcialmente agrietada con una respuesta EcI’cr no lineal 
que converge gradualmente (bajo carga en incremento) 
con la respuesta EcIcr que corresponde a una sección 
completamente agrietada (no presforzada). Más 
importante aún, la respuesta EcIcr agrietada se compensa 
por la respuesta EcIcr no agrietada (donde el momento 
M1 identifica el punto de intersección de la respuesta 
EcItr y cambia la respuesta EcIcr). La respuesta EcIcr se 
muestra en la Fig. 2 como justo debajo del momento 
de agrietamiento Mcr, pero puede encontrarse sobre Mcr 
para niveles más altos de presfuerzo.8

El cálculo de la deflexión se simplifica utilizando 
la respuesta EcIcr en lugar de EcI’cr.7,9 Esto evita la 
dificultad de localizar el eje neutro y después la 
ubicación del centroide que no coincide con el eje 
neutro para una sección parcialmente agrietada. 
Otras simplificaciones incluyen aproximar el 
momento de inercia Itr no agrietado con un momento 
de inercia bruto Ig y utilizar la fuerza de presfuerzo 
efectiva Pe en lugar de la fuerza de descompresión 
ficticia (presfuerzo) Po = fdcAps descrita por Nilson.10 
La fuerza de presfuerzo se mueve hasta el centroide 
para análisis, lo que da por resultado un momento 
de presfuerzo excéntrico Poecr ≈ Peecr, donde ecr es 
la excentricidad del acero de presfuerzo relativo al 
centroide de la sección agrietada (ubicada en el eje 
neutro para la sección completamente agrietada). 

El esfuerzo de descompresión fdc se define 
como el esfuerzo en el tendón correspondiente a 
esfuerzo cero en el concreto a nivel de los tendones 
presforzados y Aps es el área de refuerzo de tensión 
longitudinal. La fuerza de presfuerzo efectivo 
es Pe = fseAps, donde fse es el esfuerzo efectivo 
en el refuerzo presforzado después de todas las 
pérdidas, incluyendo contracción y el flujo plastico. 
El momento de más agrietamiento relacionado con 
el presfuerzo es Mcr = (fr + fpe) Ig/yt, donde fpe es el 
esfuerzo de compresión en el concreto en la cara 
a tensión precomprimida que es el resultado de la 
fuerza de presfuerzo efectivo Pe que actúa sobre la 
sección deforme y por tanto, también responde por 
las pérdidas de flujo plastico y contracción. 

 Fig. 2: Gráficas comparativas de relaciones momento-curvatura para 
miembros a flexión presforzados y reforzados (no presforzados)

Presforzado

No presforzado
(no lineal)

(lineal)

Curvatura

Extensión del Modelo a Concreto Presforzado

La deformación de un miembro de concreto 
presforzado agrietado se modela agregando un momento 
de endurecimiento por tensión ∆Mts = βts∆Mcr≤∆Mcr en la 
respuesta EcIcr agrietada, tal como se ilustra en la Fig. 3.7,9 
Esto es similar al planteamiento utilizado para concreto 
reforzado (no presforzado) descrito en la Parte 2 de la 
serie de artículos,2 a excepción de que la respuesta EcIcr 
se cambió hacia arriba en relación con la respuesta EcItr 
no agrietada. El desarrollo del modelo para concreto 
presforzado replica los pasos tomados en la Parte 2 de 
la serie de artículos

2
 para concreto reforzado. 

El momento Ma para la curvatura correspondiente a 
ϕa se define como

(1a)

(1b)

El reordenamiento de los términos conduce a

(1c)

lo que conduce a la curvatura ϕa = Ma /(EcIe) - ϕpe para 
un momento de inercia Ie efectivo y una curvatura efectiva 
de presfuerzo ϕpe, se define como

Sustituyendo

y

  (2a)

en la ecuación (1b) da

  (2b)

� �,      a c cr a p cr ts crM E I M� � � �� � �

,1a cr
a ts p cr

c cr a

M M
E I M

� � �
� �� ��

� � �� �� �
� �� �� �

� � � �, ,1 /cr cr cr tr c cr p cr p trM M I I E I � �� � � � �

 
1 1

cr
e

cr cr
ts

a tr

II
M I
M I

�
�

� �� �
� �� �� �

� �� �



Concreto Latinoamérica | Diciembre 2025 25

respuesta del
concreto 
presforzado

Curvatura

Fig. 3 Respuesta del modelo del miembro presforzado con 
endurecimiento por tensión

La curvatura del presfuerzo de una sección no 
agrietada ϕp,tr, se da por ϕp,tr = Poetr(EcItr), y la curvatura 
del presfuerzo de una sección completamente 
agrietada se da por ϕp,cr = Poecr/(EcIcr). ∆Mts disminuye 
con la carga mayor después del agrietamiento, 
utilizando un factor de endurecimiento por 
tensión asumido βts = Mcr/Ma  que se sustituye en 
la ecuación (2a) y (2b). Más, los términos para la 
sección transformada no agrietada (Itr, ϕp,tr, y etr) se 
transforman con los términos para una sección bruta 
(no agrietada) (Ig, ϕp,g, y eg) para dar expresiones de 
diseño simplificadas para Ie y ϕpe.

  (3a)

  (3b)

Se toma un paso final al establecer Poee = 
(EcIe)ϕpe para definir una excentricidad efectiva 
ee. Haciendo otra simplificación aproximando Po 
con Pe (básicamente calculando el esfuerzo de 
descompresión fdc con el presfuerzo efectivo fse), 
donde ϕp,g = Peeg(EcIg) y ϕp,cr = Peecr/(EcIcr), conduce a

Entonces la curvatura se calcula como ϕa = (Ma – 
Peee)/(EcIe). La Figura 4 ilustra la respuesta del miembro 
calculada cuando la respuesta EcIcr se encuentra ya sea 
debajo o sobre el momento de agrietamiento.

Restricción de la Contracción por 
Refuerzo no Presforzado

El momento de agrietamiento Mcr = (fr + fpe)Ig  /yt no se 
reduce para un miembro completamente presforzado 
(FP [por sus iniciales en inglés]) (donde la sección no 
incluye refuerzo no presforzado). Esto se debe a que 
la contracción y el flujo plastico ya se tomaron en 
consideración con el esfuerzo efectivo fse en el acero 
de presfuerzo utilizado para establecer la fuerza de 
presfuerzo efectiva Pe y el esfuerzo de compresión 
subsecuente fpe en la cara a tensión precomprimida 
(que a su vez se utiliza para calcular Mcr). No obstante, 
se necesita un momento de agrietamiento reducido 
λcrMcr para un miembro presforzado reforzado con 
refuerzo adicional no presforzado (definido como 
parcialmente presforzado [PP] en este artículo) 
para responder por los esfuerzos de tensión que 
se desarrollan en el concreto por la restricción a la 
contracción mediante el refuerzo no presforzado.11 El 
factor de reducción 

varia entre 2/3 para un miembro de concreto 
reforzado (no presofrzado) (idéntico al Código ACI 318-
19 para concreto no presforzado) y 1 para un miembro 
FP. La substitución del momento de agrietamiento 
reducido en la ecuación (3) entonces da

  (4a)

  (4b)

  (4c)

Las propiedades de la sección bruta (Ig, ϕp,g, eg) 
se utilizan para un miembro no agrietado cuando 
Ma≤λcrMcr.
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Evaluación

Los detalles completos sobre el nivel de precisión 
de este planteamiento basados en la comparación 
con una extensa base de datos de pruebas que 
utiliza los resultados de 180 vigas de 23 estudios 
se proporcionan en otra parte.7 Estas vigas tenían 
formas rectangulares, de una sola t o tenían forma de 
I; estaban soportadas de manera sencilla; tenían un 
perfil de tendón recto presforzado con excentricidad 
constante y estaban sujetas a dos cargas de puntos 
colocados simétricamente.11 La Figura 5 muestra 
una amplia variabilidad de resultados de estas 
pruebas, tal como se espera, donde las deflexiones 
experimentales ∆exp (incluyendo peralte y peso propio 
del miembro) se comparan con los valores calculados 
∆calc utilizando el procedimiento descrito en el 
ejemplo de deflexión. La deflexión se sobreestima 
por una cantidad moderada en promedio, con una 
relación de predicción de deflexión media (∆calc/∆exp) 
igual a 1.24 cuando los valores de deflexión se 
calculan directamente (basándose en los cálculos 
de curvatura neta, tal como se muestran en el 
ejemplo). La curvatura de integración (basada en Ie 
y en ee calculada en cada sección junto con el tramo 
del miembro) disminuye la relación media ∆calc/∆exp a 
un valor de 1.06. Al utilizar la fuerza de presfuerzo de 
descompresión Po y las propiedades de la sección 
transformada no agrietada para determinar Mcr, Ie, y 
ee se mejora aún más la predicción de deflexión.7

Fig. 4: Opciones de respuesta presforzada calculada.

(cambiado) con

Deflexión
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(cambiado) con

Propuesto

Fig. 5: Calculado versus deflexiones experimentales para vigas 
completamente presforzadas (FP) y parcialmente presforzadas (PP) 
(utilizando la base de datos compilada en la Referencia 11)

Fig. 6: Detalles del ejemplo de viga presforzada.
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Ejemplo de Deflexión Presforzada

El ejemplo 5.2.2.5 tomado del PCI Design Handbook 
202012 y basado en el Ejemplo 1 del documento PCI 
de Mast13 se utiliza para demostrar el planteamiento 
propuesto para calcular la deflexión inmediata de una 
viga presforzada soportada de forma sencilla agrietada 
bajo carga de servicio. La viga presforzada es rectangular, 
tal como se ilustra en la Fig. 6 y presforzada con doce 
fibras 270K de ½ pulgada de diámetro colocadas a una 
profundidad efectiva dp = 26 pulgadas. El tramo l = 40 
pies, f’c = 6 000 psi, y Ec = 57 000 √ f’c = 4 415 ksi para dar 
np = Ep/Ec = 6.46 (asumiendo Ep = 28 500 ksi).

Las cargas y los momentos a mitad de vano 
son los siguientes:

Peso propio = 150 lb/pies3 x (12/12) pies x (32/12)pies 
÷ 1 000 =

   0.40 kip/pies

Carga muerta superimpuesta = 1.0 kp/pies

Carga muerta total = 1.4 kp/pies

Carga viva = 1.25 kip/pies

MD = 1.4 x 402/8 = 280 kip-pies = 3360 kip-pulg.

ML = 1.25 x 402/8 = 250 kip-pies = 3000 kip-pulg.

Ma = MD + ML = 530 kip-pies = 6360 kip-pulg.

Los detalles de la fuerza de presfuerzo son 
los siguientes:

Aps = 12 x 0.153 = 1.836 pulg.2

pp = Aps(bdp) = 1.836/(12 x 26) = 0.0059

(más p = 0 porque no hay refuerzo presforzado)

fpu = 270 ksi

Nivel de presfuerzo inicial = 0.75fpu y pérdida calculada 
de 20% da fse = (1 – 0.20)(0.75)(270) = 162.0 ksi

Pe = 1.836 x 162.0 = 297.4 kip

Las propiedades de la sección son las 
siguientes:

Ag = 384 pulg.2 e Ig = 32 768 pulg4

yt = 16 pulg. y eg = 26 – 16 = 10 pulg. (ver Fig. 6)

fpe = Pe/Ag + (Pe x eg)yt/Ig = 297.4/384 + (297.4 x 10) x

    16/32 768 = 2.227 ksi

fr = 7.5 √f’c = 7.5 √6000 = 581 psi

Mcr = (fr + fpe) Ig/yt = (0.581 + 2.227) 32 768/16 = 5 750 kip-pulg.

λcr = (2/3) * [0.0059/(0 + 0.0059)](1/3) = 1.0 y

    λcrMcr = 5750 kip-pulg.

nppp = 6.46 x 0.0059 = 0.038

(el centroide está ubicado en el eje neutral porque 
la sección está completamente agrietada.

Icr = b(ccr)3/3 + npAps (dp − ccr)2 =  
	 12 × (6.24)3/3 + 6.46 × 1.836 × (26 − 6.24)2 = 5 603 pulg.4

Utilizando la aproximación PCI12 para

Esta aproximación funciona razonablemente 
bien para pp hasta más o menos 0.5% pero puede 
subestimar Icr significativamente a relaciones de 
refuerzo más altas.11

Los cálculos de deflexión son de la siguiente 
forma:

La sección está agrietada bajo carga muerta 
completa más carga de servicio viva con

Ma = 6360 > λcrMcr = 5750 kip-in. 
λcrMcr/Ma = 0.904

La curvatura ϕa en Ma se calcula como

ϕa = Ma/(EcIe) − Pe × ee/(EcIe) = (Ma − Pe × ee)/(EcIe) =  
	 (6360 − 297.4 × 10.67)/(4415 × 17,373) = 41.55 × 10⁻6 1/

� �26.46 1.836 26 1 1.6 0.038 5517 in.4
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1 0.904 1 5603 / 32,768eI � �
� �

y

� �17,373 17,3730.904 10 1 0.904 19.76
32,768 5603ee � � � �� � � � � � � �� �� � � �� �

10.67
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Fig. 7: Distribución de curvatura para ejemplo de viga.
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y la fuerza de presfuerzo de descompresión 
Po = fdc x Aps = 317.4 kip para dar un momento de 
agrietamiento más alto Mcr = 6 065 kip-pulg. (que 
actúa sobre la sesión transformada no agrietada). 
El momento de agrietamiento más alto disminuye 
considerablemente la deflexión calculada de la 
carga viva (de 0.934 pulg. a 0.690 pulg.  utilizando 
la aproximación parabólica para la curvatura neta) 
debido a la proximidad más cercana del momento de 
carga de servicio Ma = 6 360 kip-pulg. al valor mayor 
del momento de agrietamiento (incrementando de 
5 750 a 6 065 kip-pulg.). Los valores calculados de 
deflexión de carga viva varían entre 48 y 70% del 
límite del Código-318 de ACI de ℓ/360 = 1.33 pulg. 
para este ejemplo, dependiendo del curso en el 
procedimiento utilizado para calcular la deflexión.

Completamente presforzado (FP): miembro 
presforzado únicamente con refuerzo presforzado

Parcialmente presforzado (PP): miembro presforzado 
con refuerzo presforzado y no presforzado

ℓ

in.

El valor estimado de ∆i,L = 0.934 pulg. sobreestima 
la deflexión de carga viva en 36% en comparación 
con un valor de 0.688 pulg. obtenido al integrar la 
curvatura, mientras que el valor para ∆a = 0.899 pulg. 
sobreestima la deflexión en aproximadamente la 
misma cantidad en comparación con el valor de 
0.653 pulg. cuando la curvatura está integrada. El 
área sombreada en la Fig. 7 representa el error al 
calcular la deflexión con la curvatura neta aproximada 
por una curva parabólica (asumiendo que la carga se 
distribuye de manera uniforme).

Aproximar la curvatura neta con una respuesta de 
distribución lineal (de forma triangular con ϕneta  = 62.11 
x 10-6 1/pulg. en el ápice ubicado a la mitad del vano) 
da valores de ∆i,L = 0.635 pulg. y ∆a =  0.600 pulg., que 
subestima la deflexión en aproximadamente 8% en 
cada caso, en comparación con integrar la curvatura. 

La comparación también puede hacerse con 
el planteamiento más exacto basándose en Po y 
las propiedades de la sección transformada no 
agrietada (Itr, ∆p,tr, y etr) utilizadas para determinar Mcr, 
Ie, y ee.

El esfuerzo de descompresión

� �2

172.9e ge
dc se p

g g

P ePf f n
A I

� �
� �� � � �
� �
� �

Al referirnos a la Fig. 7, la curvatura neta ϕneta = ϕa + 
ϕp,g = ϕD + ϕL

con ϕp,g = Pe x eg/(EcIg) = 297.4 x 10/(4 415 x 32 768) =

     20.56 x 10-6 1/pulg.

y ϕD = MD(EcIg) =  3 360/(4 415 x 32 768) =23.22 x 10-6 1/
pulg.

∴ϕneta = (41.55 + 20.56) x 10-6 = 62.11 x 10-6 1/pulg.

y ϕL = ϕneta - ϕD = (62.11 – 23.22) x 10-6 = 38.89 x 10-6 1/
pulg.

Deflexión neta ∆neta = KMϕnetaℓ2 (con KM = 5/48 para 
una distribución parabólica asumida de curvatura tal 
como se ilustra en la Figura 7. 

∆neta = 5/48 x 62.11 x (40 x 12)2 x 10
-6

 = 1.491 pulg.

∆a = ∆neta - ∆p,g = 1.491 – 0.592 = 0.899 pulg.

con ∆p,g = Kpϕp,gℓ2 = (1/8) x 20.56 x (40 x 12)
2
 x 10-6  =

0.592 pulg. Kp = 1/8 para un miembro con 
soporte sencillo con tendones rectos que tengan 
excentricidad constante.

Deflexión de carga viva ∆i,L = ∆neta - ∆i,D con ∆i,D = (5/48) ϕDℓ2.

∆i,D = (5/48) x (23.22 x 10-6) x (40 x 12)2 = 0.557 in.

y ∆i,L = 1.491 – 0.557 = 0.934 pulg. Alternativamente,
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Resumen

El planeamiento del Código-318-19 de ACI 
para calcular la deflexión inmediata del concreto 
reforzado (no presforzado) se amplía para incluir 
concreto presforzado cargado sobre el momento de 
agrietamiento (miembros presforzados Clase T y Clase 
C). Se utiliza un modelo mecánico racional como la 
base para agregar un componente de endurecimiento 
por tensión (en este momento de caso) en la respuesta 
EeIcr agrietada que se cambia hacia arriba en relación 
con la respuesta EcIg no agrietada debido a la fuerza 
de presfuerzo excéntrica. El enfoque propuesto 
resumido en la Fig. 1 para concreto presforzado incluye 
un momento efectivo de inercia Ie y excentricidad 
efectiva ee de la fuerza de presfuerzo cuando el 
miembro se agrieta. Ig y eg se utilizan para un miembro 
no agrietado. El momento de agrietamiento se reduce 
con un factor de reducción λcr para responder por los 
esfuerzos de tensión que se desarrollan en el concreto 
por la restricción a la contracción por el refuerzo no 
presforzado cuando está presente. Los procedimientos 
están presentes para calcular la deflexión directamente 
basándose en la curvatura neta (utilizando un valor 
uniforme asumido de Ie y ee en la sección crítica) y 
comparado con la deflexión calculada al integrar la 
curvatura (utilizando Ie y ee calculados en cada sección 
a lo largo del vano del miembro). La respuesta de 
carga-deflexión bilineal PCI también se considera en el 
ejemplo extra. 
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