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Abstract 

Fly ash (FA) offers a sustainable alternative to cement in concrete, addressing environmental concerns and enhancing 
sustainability in construction practices. This substitution contributes to both resource efficiency and reduced car-
bon footprint. This review study investigated the effect of FA on the compressive strength of ultrahigh-performance 
concrete (UHPC). No negative effect associated with the increase in FA replacement percentage up to 60% by weight 
is observed in terms of compressive strength of UHPC without superplasticizer. However, higher replacement per-
centages are shown to negatively affect the compressive strength. Further investigations should focus on the com-
pressive strength characteristics and limitations associated with elevated levels of FA replacement, i.e. 60–80%. 
A promising behaviour associated with higher replacement percentages is observed in few studies. Moreover, 
the superior compressive strengths observed up to 50% FA replacement after a curing period of 90 days underscore 
the need for a more extensive exploration of longer curing durations. Future studies should focus on investigating 
the properties of UHPC beyond 90 days, as such information is currently limited.
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1 Introduction
Climate change emerges as a pivotal global concern 
that poses a threat to the sustainability of human soci-
ety (Hamada et  al., 2021). The construction industry 
accounts for a considerable share of greenhouse gas 
emissions and significantly contributes to the exacerba-
tion of this critical issue. Presently, the global production 

of concrete amounts to 2 tons per capita per annum 
(Abdalla et  al., 2022a, 2022b, 2022c; Aïtcin & Mindess, 
2011), and it is anticipated that by the end of 2050, this 
quantity will surge to 18 billion tons (Mehta, 2002). The 
production and utilization of Portland cement (PC), the 
fundamental component of concrete, occurs on a mas-
sive scale. Notably, China has held the position of the 
world’s largest cement producer since 1985, having man-
ufactured 2.35 billion tons of cement in 2015, represent-
ing approximately 50% of the global cement production 
for that year (L. Shen et  al., 2014; Y. Shen et  al., 2018). 
As an example, the energy consumption for producing 1 
ton of cement is estimated to range between 3.1 and 5 GJ, 
concurrently generating approximately 0.73 to 1.0 tons 
of  CO2 emissions (Hasanbeigi et  al., 2012). The cement 
production ultimately contributes to approximately 7% to 
10% of the total global  CO2 emissions (Kim et al., 2013; 
Liu Zhu 2019; Z. Liu, 2016); Thomas et al. 2021).
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In alignment with the worldwide commitment to sus-
tainable development, professionals have deliberated 
on technical approaches to ensure the sustainability of 
concrete construction (Nayak et al., 2022; Shukla et al., 
2023; Vilakazi et al., 2022; Thomas et al. 2022; Thomas 
et al., 2021a, 2021b; Liu et al., 2023; Yang et al., 2019). 
These strategies encompass efficient material utiliza-
tion in design, optimization of concrete durability, and 
incorporation of waste or supplementary cementi-
tious materials (SCMs), such as FA, slag, etc. By adopt-
ing these measures, there is a notable advancement 
towards cleaner production, resulting in the reduction 
of emissions and waste associated with the manufac-
turing of materials (Abdalla et al., 2022a, 2022b, 2022c; 
Abdalla et  al., 2022a, 2022b, 2022c; Dam et  al., 2016). 
The widespread adoption of replacing Ordinary Port-
land Cement (OPC) with FA in concrete is symbolic of 
the current prevailing shift in construction methodolo-
gies (Asa et al., 2020; G. Xu & Shi, 2018). Besides, there 
has been a lot of interest in using nanomaterials (NMs) 
to replace long-used components in concrete structures 
in order to develop concrete with unique functions and 
superior performance at previously unheard-of levels 
(Abd El-Aleem & El-Rahman Ragab, 2015; Abd et  al. 
2014.; S. Abd EI- Aleem et al., 2014). FA is a by-prod-
uct generated from the combustion of pulverized coal 
in thermal power plants. The dust collection system 
(comprise of electrostatic and mechanical systems sep-
arators) captures FA as a fine particulate residue from 
combustion gases, preventing atmospheric discharge 
(Rashad, 2015; Siddique, 2004). In another aspect, 
repurposing of waste materials (WMs) such as FA pre-
sents a pragmatic solution to waste management issues. 
The inclusion of FA in concrete endeavors not only 
provides a purposeful application for the waste mate-
rial but also alleviates the logistical challenges associ-
ated with its disposal (Orozco et al., 2023; Shukla et al., 
2023). This underscores the importance of adopting 
environmentally responsible approaches in waste man-
agement practices. Utilizing FA in concrete mitigates 
power plant waste disposal issues (Erdoğan, 1997). FA 
has been sourced from power plants. Yazici (2007) col-
lected FA from the Soma power plant in Turkey to use 
it in his experimental investigations. FA’s pozzolanic 
properties facilitate partial cement replacement, lower-
ing water demand (Ravina & Mehta, 1986) while main-
taining workability and enhancing strength. It is worth 
mentioning that FA has undergone a significant para-
digm shift, evolving from a perceived waste material to 
a valuable by-product with substantial market demand. 
This transformation is attributed to its versatile uses 
and benefits in various industries. The present inves-
tigation primarily concentrates on exploiting waste 

FA in the concrete industry, aiming to minimize waste 
disposal through dump filling to promote sustainable 
development in the construction sector.

Fly ash is a fine spherical powder that is a byproduct of 
burning coal gases to produce electricity and is handled 
as garbage. These tiny earth particles primarily consist 
of iron, silica, and alumina (Shaw & Sil, 2023). However, 
improper disposal of FA could negatively impact biologi-
cal cycles due to the presence of micron-sized particles. 
Therefore, it should be disposed of in an inexpensive 
manner (Nadesan & Dinakar, 2017). FA provides accept-
able binding and adhesion qualities if it is incorporated 
with cement due to its chemical makeup. FA is, there-
fore, referred to as supplemental cementitious material. 
FA improves workability and initially reduces hydration 
heat and thermal cracking. It also improves the mechani-
cal properties and durability of concrete, mainly in later 
stages (Hemalatha & Ramaswamy, 2017). Although FA 
provides several benefits, there are various restrictions 
that prevent 100% FA from being used.

China, the United States of America, and India account 
for over 70% of global coal use (Fig.  1). As to the CEA 
assessment, 132 thermal plants in India create around 
166 million tons of FA yearly (Fig. 2). About 56% of FA 
is used profitably in various ways as depicted in Fig.  2, 
with the remaining portion still under consideration. FA 
is more in demand and of greater interest when used for 
commercial purposes as a cement substitute material. At 
the same time, this method can absorb industrial waste 
and lessen the need for cement clinker. There are certain 
advantages of using FA as a mineral additive in concrete 
instead of cement. First, there is a drop in the heat of 
hydration and an increase in environmental greenness, 
together with a drop in cost. Second, the addition of FA 
increases durability. Third, the system has a finer pore 
structure, improved compactness in the interfacial tran-
sition zone, and enhanced workability when FA is pre-
sent. Several publications concerned with the impact of 
FA on concrete were evaluated. Evidence demonstrated 
that in the cases where superplasticizers are not used, 
the slow pozzolanic response indicated that strength 
increases with age. Some examples have shown a notice-
able increase in early strength (Yu et al., 2017). An exper-
imental investigation on the effects of water–binder ratio, 

Fig. 1 Consumption of FA (%) by country (Nadesan & Dinakar, 2017)
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FA replacement percentages, and curing period was 
conducted (Shaw and Sil 2022). Statistical best fit func-
tions were employed for the modelling of these features. 
This thorough investigation demonstrates that the com-
pressive strength of concrete decreases as the w/b ratio 
rises. In contrast, maximum strength gaining commences 
between 7 and 90 days in the case of concrete with FA. 
Significant strength gaining is observed after 90 days and 
ultimate strength gaining occurs at 365 days. The highest 
compressive strength observed is at 20% FA replacement 
level. Based on the obtained data, some experimental 
investigations were implemented on the cyclic load-
ing of reinforced concrete (RC) beam–***column joints 
employing FA–concrete (Shaw & Sil, 2020; Shaw et  al., 
2022, 2023).

One of the innovative construction materials nowadays 
is ultrahigh-performance concrete (UHPC), which has 
far superior qualities than ordinary concrete. Accord-
ing to ASTM C1856-17 (2017), a cementitious mixture 
falls into the UHPC category if its compressive strength 
is greater than 120  MPa. However, the ACI committee 
states that UHPC should have a compressive strength 
of at least 150 MPa (Meng & Khayat, 2017; Meng et al., 
2018; Schmidt & Fehling, 1947). UHPC also exhibits 
greater durability when compared to traditional concrete 
(Abuodeh et  al., 2020; Attom et  al., 2013; Graybeal & 
Tanesi, 2007; Piérard et al., 2012, 2013; Pyo et al., 2019). It 
also has remarkable resistance to chemical assault, freeze 
and thaw, water permeability, and chloride penetra-
tion. The fact that UHPC typically contains a significant 
amount of Portland cement may be its main drawback. In 
general, UHPC has a cement content that is around three 
times more by volume than regular concrete (Richard & 
Cheyrezy, 1995; Rossi, 2013). Despite the extraordinary 

properties of UHPC, its applications were limited by the 
extraordinarily high cost of the materials and the intri-
cate production method (Dils et al., 2013).

Recently, according to (Mousavinezhad & Newtson, 
2024), pumicite could substitute up to 75% of the FA 
in the control combination and still produce adequate 
compressive and flexural strengths for UHPC mixtures. 
These findings suggest that pumicite can be an adequate 
substitute to FA in normal strength concrete (NSC) and 
UHPC combinations. Again, Sun et al. (2024) determined 
the ideal UHPC mixing ratios with the Waste FA (WFA) 
and secondary aluminum dross (SAD) assembly unit. In 
parallel, a number of performance indicators have been 
acquired, encompassing this kind of UHPC’s micro-
scopic, mechanical, electrical, and rheological character-
istics. The UHPC’s mechanical strength can be computed 
using its electrical resistance. It was indicated that future 
solid waste solidification processes will benefit from 
the new materials and technologies that research will 
produce.

The goal of this study is to identify the suitable FA 
replacement percentage that is responsible for improv-
ing the compressive strength of UHPC and investigate 
its direct link to w/b ratio, curing period, and amount 
of superplasticizer used. A closer look on the related lit-
erature reveals that limited research has been conducted 
to date to extract or generalize the various engineering 
properties of FA. Therefore, its application is still lim-
ited in the construction industry. Additionally, the code 
of practice does not yet adequately address FA-UHPC or 
bring forth the limitations regarding its applicability in 
industry. Thus, this study aims to review the effects of FA 
on the properties of UHPC in two main categories: with-
superplasticizer FA-UHPC and without-superplasticizer 

Fig. 2 Percentages of FA uses in various sectors in India (Nadesan & Dinakar, 2017)
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FA-UHPC. An effort was made to accurately measure the 
engineering characteristics related to FA-UHPC’s com-
pressive strength and to establish a helpful correlation 
between them in order to identify a generalized behavior 
that affect FA-UHPC with and without superplasticizers.

2  Previous Conducted Reviews on FA‑UHPC
Numerous publications have addressed the mechani-
cal behavior of FA-UHPC. Enormous effort has been 
put into observing how FA affects UHPC, especially 
with superplasticizer. A thorough analysis of the impact 
of FA combined with superplasticizer as a substitute for 
cement on UHPC in terms of compressive strengths has 
been conducted. Literature suggested that incorporat-
ing a supplementary cementitious material which is finer 
than cement can be used to fill into the voids in concrete 
since it is effective in enhancing the packing density of 
the materials. FA represents one such material that has 
been documented for its utilization in concrete applica-
tions. Research indicates that a particle size of 75 μm or 
less facilitates optimal pozzolanic reactivity (Jin et  al., 
2000; Shao et  al., 2000). Specifically, high-volume FA 
with a median particle diameter of approximately 24 μm 
exhibits enhanced reactivity (Azmee et  al., 2021a). The 
particle size distribution of FA exhibits a wide range, 
spanning from submicron levels (< 1 μm) to over 100 μm, 
with a median particle diameter typically below 20  μm 
(Rashad, 2015). The fine FA, with 99% passing through a 
45-μm sieve, was utilized in concrete production (Haque 
& Kayali, 1998a).

The recognition of FA as a pozzolanic ingredient and 
the understanding of its reaction potentials date back to 
the early twentieth century. Nevertheless, the first com-
prehensive study on the utilization of FA in concrete was 
formally published in the United States in 1937 (McCa-
rthy et  al. 2019). According to the studies conducted in 
the 1980s, it was reported that cement replacement with 
FA can notably enhance the mechanical and durability 
properties of the concrete (Montgomery et  al., 1981) as 
FA possesses the capacity to improve the microstructure 
of the paste (Filho et  al., 2013). Some researchers have 
highlighted that incorporating FA in concrete has the 
potential to raise packing density and release a portion of 
the mixing water that would otherwise be trapped in the 
voids, thereby enhancing the ability of flow (Diederich 
et al., 2012; Long et al., 2002; Yahia et al., 2005). The lat-
ter phenomena were demonstrated through some exten-
sive investigations and corresponding reports (Kwan & 
Fung, 2011; Olhero & Ferreira, 2004). Zhang et al. (2011) 
suggested a broad and gap-graded particle size distribu-
tion grounded in the close packing theory. Their findings 
demonstrated that such a particle size distribution could 

augment packing density and decrease the water require-
ment in the concrete mixture.

Numerous studies have examined the utilization of 
FA in UHPC (Du et al., 2022; Jing et al., 2021; Lv et al., 
2022). It was reported that the incorporation of 16% FA 
in UHPC resulted in the highest strength (Ferdosian 
et al., 2017). Similarly, Chen et al., (2017, 2018) identified 
that the inclusion of 20% FA yielded the highest flexural 
strength and compressive strength. Typically, the replace-
ment of 10 to 30% of cement with FA by mass imparts 
superior properties compared to conventional UHPC. 
However, in the presence of high calcium FA, an opti-
mal range of 20—40% replacement is recommended for 
enhanced performance. Luan et  al. (2023), Meng et  al. 
(2017), and Meng and Khayat (2017) observed that 
10% replacement of cement with FA in UHPC led to 
improved compressive strength at later stages. This phe-
nomenon can be attributed to the gradual pozzolanic 
reaction, which, while slow, refines the microstructure 
over an extended period, ultimately enhancing the con-
crete compressive strength. Generally, FA demands less 
water compared to other pozzolanic materials. However, 
the combination of low water content and a high cement 
content in UHPC after 28  days resulted in un-hydrated 
cement grains, inhibiting the dissolution of FA and the 
pozzolanic reaction between FA and Portlandite (Korpa 
et al., 2009; J. J. Chen et al., 2017). In the same context, 
it is found that the replacement of FA in UHPC has the 
potential to induce the formation of an "elephant skin" 
under dry conditions. This phenomenon may restrict 
water escape and mitigate the relative humidity (RH) sen-
sitivity of UHPC (Yalçınkaya & Yazıcı, 2017). Luan et al. 
(2023) extensively demonstrated that FA displays a posi-
tive filling effect in UHPC. Nevertheless, the mechanisms 
underlying this filling effect, along with the influence of 
calcium content and the pozzolanic reaction of FA on the 
enhancement of strength and the development of a dense 
microstructure in UHPC, remain unidentified (Luan 
et al., 2023).

According to Haque and Kayali (1998a, 1998b, 1998c), 
10% was the maximum amount for cement replacement. 
Cement replacement in the 400  kg/m3 series concrete 
resulted in a very slight increase in drying shrinkage, but 
there was a minimal decrease in the 500  kg/m3  series 
concrete. Rougeau and Borys (2004) demonstrated that 
the application of ultrafine pozzolanic materials yields 
additional technical benefits, such as less temperature 
rise and improved strength enhancement. However, in 
certain situations, strength development occurs more 
slowly. Secondary C–S–H gel can be created inside the 
cement paste by the reaction of ultrafine pozzolanic 
materials with Portlandite, which is produced dur-
ing cement clinker hydration. The microstructure of 
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cement paste is more compact thanks to the secondary 
formation of C-S–H gel. Strength can be significantly 
increased by reducing the amount of Portlandite. Yazici 
(2007) elaborated that excessive cement usage increases 
production costs and can lead to shrinkage issues due to 
its detrimental impact on the heat of hydration. FA and 
plasticizer (PS) are good mineral admixtures for concrete 
because of their pozzolanic properties. Moreover, the 
durability of concrete may be enhanced by the addition of 
mineral additives. Nath and Sarker (2011) experimented 
on the test specimens which were cast, using concrete 
mixtures that contained FA at levels of 30–40%, of the 
total binder. The concrete specimens containing FA and 
control were evaluated for their compressive strength 
including other mechanical behaviours. The concrete 
compositions’ 28-day compressive strengths ranged 
from 65 to 85 MPa. When designed for the same 28-day 
compressive strength of the control concrete, the FA-
UHPC samples exhibited less drying shrinkage than the 
control concrete samples. Alsalman et al., (2017a, 2017b) 
expressed that when compared to natural sand, the use of 
FA as a fine material has minimal impact on compressive 
strength at 28 days of age. Wang et al. (2017) presented 
that FA microspheres (FAM) can greatly enhance pore 
structure at later stages. Additionally, FAM can reduce 
early-age autogenous shrinkage while enhancing con-
crete’s flowability, late-age strength, and permeability to 
chloride ions. Comparing concrete containing ultrafine 
FA to concrete containing silica fume, significant 
decreases in autogenous shrinkage and a higher shrink-
age cracking resistance have been reported (Haque & 
Kayali, 1998a, 1998b, 1998c; Subramaniam et  al., 2005; 
Xie et  al. 2002). Compared to 15% silica fume concrete 
and plain cement concrete, the autogenous shrinkage 
value of 15% FAM was considerably lower. This might 
occur because, in a cement slurry system, the hydration 
rate of FAM is slower than that of cement and silica fume. 
The early effective water-to-cement ratio increased when 
part of the cement was replaced with FAM at the same 
W/B ratio. This reduced the autogenous shrinkage value 
and the degree of self-desiccation at early ages (Jiang 
et al., 2014). When making high- and ultra-high-perfor-
mance concretes, mineral admixtures play a crucial role 
in filling up the spaces between the bigger cement parti-
cles, improving the rheological characteristics, and mini-
mizing cracking caused by heat release during hydration 
or early age shrinkage (Ghafari et al., 2015; Kodur et al., 
2016; Yoo et  al., 2014). Owing to their higher cementi-
tious material and high range water lowering admixture 
contents, UHPCs are prone to significant autogenous and 
drying shrinkage under standard curing conditions (Tam 
et  al., 2012). The Natural Pozzolona with 60% (NP60) 
specimen’s significant shrinkage strain can be attributed 

to the NP’s marginally larger particle angularity, which 
raises the percentage of water retention (Shannagt & Yeg-
inobali 1995).

Again, Alsalman et  al., (2017a, 2017b) presented that 
the compressive strengths of the concrete were lower at 
early ages when the FA content was higher than 20%, but 
these strengths rose with time. The highest 90-day com-
pressive strength was achieved with a FA percentage of 
30%; at all ages, the strengths were least affected by a 
FA level of 20%. On the other hand, Chen et  al., (2017) 
reported that FA may greatly raise the packing density, 
improving both flowability and strength performance 
at the same time. Researchers also reported a thorough 
analysis of the prospects and present trends in sustain-
able concrete construction, stressing the significance of 
implementing eco-friendly methods to lessen the envi-
ronmental impact of the sector. Permeable concrete, cool 
concrete, green concrete, additional cementitious ingre-
dients, and utilizing regional resources are investigated as 
sustainable materials and approach (Nilimaa, 2023).

Several investigations have explored the utilization of 
high-volume FA (exceeding 50% replacement) in UHPC. 
Notably, (Azmee et  al., 2021) demonstrated that high-
volume FA substitution yields beneficial outcomes in 
reducing cement content in concrete. Recent research 
has revealed that the incorporation of FA yields enhanced 
concrete strength when accompanied by a low water/
cement ratio (Lam et al., 2000; Wang et al., 2012; Yazici, 
2007). Conversely, research conducted by (Azmee et al., 
2021; Siddique, 2004) revealed that the incorporation 
of FA leads to a decrease in early-age concrete strength 
compared to the control mixture. Hakeem et al., (2022a, 
2022b) investigated the effect of replacing natural sand 
with FA on compressive strength. Their findings revealed 
that a 60% replacement yielded superior compressive 
strength compared to 40%. This improvement can be 
attributed to the FA’s pozzolanic reactivity, where smaller 
FA particles fill gaps between cement grains, enhanc-
ing strength. However, a significant decline in com-
pressive strength was observed when FA replacement 
exceeded 80% and 100% (Hakeem et  al., 2022a, 2022b). 
Azmee et al., (2021) demonstrated that 50% FA replace-
ment reduces compressive strength by 5.6% at 28  days 
and 10.7% at 90  days, relative to the control mix. Simi-
larly, Wu et al., (2017) observed slightly lower compres-
sive strength reductions (5% at 28 days and 6% at 90 days) 
with 60% FA replacement. Yazici (2007) observed no sig-
nificant decline at 60% FA replacement, whereas an 80% 
replacement resulted in a notable 33% decrease in com-
pressive strength at 28  days. Also, as an admixture, FA 
increases the compressive strength at early age and devel-
ops corrosion preventing characteristics at later stage 
(Maslehuddin, 1989). Otherwise, investigators have used 
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different superplasticizers in the preparation of UHPC 
at different percentage. For example, Yazici (2007) has 
added 4% but Haque and Kayali (1998a, 1998b, 1998c) 
added 6% of superplasticizers by weight of cementitious 
material in the mixture. Readers seeking more informa-
tion on specific superplasticizers are directed to the cor-
responding references.

Previous research studies have been conducted in 
mixed form, i.e. FA with other additives. In this paper, 
only superplasticizer was taken into consideration with 
FA to measure the effects of both parameters, inclu-
sion and exclusion of superplasticizer in FA-UHPC. It 
should be noted that this review is concerned only with 
Class F fly ash. The primary goal of this review paper is 
to examine how FA, as a cement replacement material, 
affects the compressive strength of UHPC after compil-
ing the necessary data from various experimental reports 
and results. To investigate how admixture contributes 
to the acquisition of different engineering properties in 
FA-UHPC, the literature review in this investigation is 
categorized into two main areas: (1) Effects of FA on the 
compressive strength of UHPC, with or without super-
plasticizer, while taking into account various properties; 
and (2) Effects of external parameters such as water–
binder ratio, curing days, and level of replacement on the 
properties of FA-UHPC.

3  Data Analysis and Results
A total of 100 and 120 compressive strength data were 
collected for with- and without- superplasticizer FA-
UHPC, respectively. (Costa et  al., 2012; Kou & Xing, 
2012; Abd Elrahman & Hillemeier, 2014; Mohseni et al., 
2015; Shi et  al., 2015; Wang et  al., 2016; Martins et  al. 
2016.; Ferdosian & Camões, 2017; Ferdosian et al. 2017b; 
Haque & Kayali, 1998a, 1998b, 1998c; Jaturapitakkul 
et al., 2004; Yazici, 2007; Nath & Sarker, 2011; Alsalman 
et al., 2017a, 2017b; Alsalman et al., 2017a, 2017b; Chen 
et  al., 2017a; Wang et  al., 2017; Wu et  al., 2017; Azmee 
et  al., 2021; Hasnat & Ghafoori, 2021; Hakeem et  al., 
2022a, 2022b). The data was utilized to draw relation-
ships between water to binder (w/b) ratio, FA replace-
ment percentages, dosage of superplasticizer and curing 
periods on UHPC’s compressive strength. The data anal-
ysis was segregated into two parts: (1) without-superplas-
ticizer UHPC and (2) with-superplasticizer UHPC, which 
are discussed intensively in the subsequent sections.

3.1  Without‑Superplasticizer UHPC
In this section, the compressive strength of UHPC with 
different replacement percentages of FA, w/b ratios, and 
curing periods is collected and analyzed. All data col-
lected in this section is corresponding to an UHPC mix 
design without superplasticizer.

3.1.1  Water–Binder Ratio
The water–binder (w/b) ratio is the most significant fac-
tor for concrete mix design. It is essential for both fresh 
and hardened concrete since it gives the products mobil-
ity, consistency, and a homogenous composition that 
forms after a chemical reaction or hydration of the con-
stituent parts, which gives the strength for UHPC. The 
data analysis is conducted from obtained experimental 
data without superplasticizers and at a curing period 
of 28 days. The list of data used is presented in Table 1. 
The objective of this analysis is to study the effect of FA 
replacement percentages on the compressive strength 
of UHPC at different w/b ratios. The w/b ratios ranged 
from 0.1 to 0.35. Experimental data corresponding to a 
w/b higher than 0.35 is very scarce, as higher w/b ratios 
lead to as low compressive strength as 70  MPa. Fig  3 
shows the relationship between the UHPC compressive 
strength and percentage of FA used in the mix design, 
with respect to different w/b ratios. The majority of the 
collected data is corresponding to a w/b ratio of 0.15 
and 0.2, respectively. The trend for these two w/b ratios 
is nearly constant, indicating that the FA replacement 
percentage has no negative effect on the compressive 
strength of UHPC. Moreover, a FA percentage of 60% 
exhibited almost the same strength as the control speci-
men (0%) according to Hakeem et al., (2022a, 2022b), and 
only a 7% decrease in strength according to Wu et  al., 
(2017) data. The trendline for other w/b ratios and for 
the average is even linearly increasing, indicating a posi-
tive effect of the replacement. However, more data points 
are needed for high w/b ratios (0.25–0.35) to support the 
trend displayed by the current data. It is noteworthy that 
the compressive strength data obtained from cube test-
ing are taken directly. However, those which are obtained 
from cylinder testing are converted to equivalent cube 
strength (European Committee for Standardization CEN 
2004) to maintain consistency in the current database.

The mean compressive strength for each replace-
ment percentage of FA at different water–binder ratios 
is computed in Table 2 and visualized in Fig. 4. For each 
w/b ratio, the average compressive strength correspond-
ing to a certain replacement percentage of FA collected 
from the mentioned references in Table 1 was calculated. 
Moreover, the percentage of decrease in compressive 
strength was computed with respect to the mean com-
pressive strength corresponding to 0% FA. A maximum 
decline of 14.6% in compressive strength of FA-UHPC 
is noted in Table 2. In fact, most of the FA replacement 
percentages showed an increase in the mean compressive 
strength compared to the 0% FA specimens for different 
w/b ratios. In Fig.  4, it is illustrated that a FA replace-
ment percentage of (20–40) % always resulted in higher 
compressive strength compared to 0% replacement. 
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Moreover, a replacement percentage of (60–80) % can 
yield to a satisfactory compressive strength that is com-
parable to the compressive strength of UHPC without 
any FA replacement. However, more data points are 
needed for such higher replacement percentages to verify 
this assumption.

In certain instances, the compressive strength could 
not reach 100 MPa. As a result, few explanations are 
covered in-depth. According to Chen et al., (2018), add-
ing fly ash improves compressive strength, and vary-
ing the quantity of fly ash can have varying effects. The 
increase in FA concentration from 20 to 30% causes 
a decrease in compressive strength. When 20% FA 
is added, the compressive strength at 7day and 28day 
increases by 6.6% and 10.0%, respectively; however, 
this gain decreases to 3.7% and 6.2% when 30% FA is 
added. Regarding the impact of FA, a number of studies 

Table 1 Data collected for without-superplasticizer UHPC at 
different w/b ratio and FA replacement percentages

Reference FA (%) w/b Compressive 
strength 
(MPa)

Chen et al., (2017) 0 0.1 88

0 0.12 135

0 0.15 122

0 0.18 110

0 0.2 95

0 0.23 88

0 0.25 80

0 0.3 70

20 0.1 125

20 0.12 155

20 0.15 145

20 0.18 135

20 0.2 130

20 0.23 115

20 0.25 110

20 0.3 110

40 0.1 125

40 0.12 135

40 0.15 130

40 0.18 120

40 0.2 110

40 0.23 105

40 0.25 100

40 0.3 100

Wang et al. (2016) 0 0.35 48

8 0.35 60

15 0.35 77

0 0.25 90

8 0.25 95

15 0.25 100

Wu et al., (2017) 0 0.2 150

20 0.2 135

40 0.2 140

60 0.2 140

Hasnat and Ghafoori (2021) 0 0.15 134

10 0.15 129

30 0.15 126

40 0.15 119

Hakeem et al., (2022a, 2022b) 0 0.15 161

40 0.15 150

60 0.15 158

80 0.15 143

100 0.15 130

Table 1 (continued)

Reference FA (%) w/b Compressive 
strength 
(MPa)

Ferdosian et al., (2017) 0 0.2 150

10 0.2 140

15 0.2 145

20 0.2 155

25 0.2 137

30 0.2 137

35 0.2 140

20 0.2 145

20 0.2 145

25 0.2 155

30 0.2 150

Fig. 3 Compressive strength of without-superplasticizer UHPC 
versus FA%, for different w/b ratio
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revealed that its addition might lower the Ca/Si ratio 
of hydration products and cause the C-S–H gels of 
suitable composites to transition quickly to crystal-
line phases (Hong & Glasser, 2004; Yazici et al., 2008). 
Also, Wang et al. (2017) gave an idea that from 3 to 28 
days, the Ca(OH)2 content of the FA-containing sample 
increased, suggesting that less Ca(OH)2 was absorbed 
by FA during this time than was produced by cement 
hydration. Additionally, it showed that FA had a lower 
reaction degree. Between 28 and 90 days, there was a 
considerable drop in the Ca(OH)2 content of the FA-
containing sample, suggesting that FA was consuming 
more Ca(OH)2 than cement hydration was producing 
during this time. After 90 days, the Ca(OH)2 level of 

the several samples that contained FA was consider-
ably lower than the sample made of plain cement. From 
Fig.  5, Wang et  al. (2017) narrated that compared to 
regular fly ash, fly ash microscope (FAM) activity was 
greater; this was caused by FAM’s higher Calcium con-
centration than regular fly ash in addition to its signifi-
cantly smaller particle size. Due to the fact that divalent 
 Ca2+ can increase the tendency of structural disorder 
and hence decrease the degree of polymerization in 
amorphous materials, the damage to the Si–O-Al and 
Si–O-Si structures was more evident than it would have 
been with univalent ions (Li et al., 2010; Xu & Deventer, 
2000; Yip et  al., 2005). Furthermore, Fig.  6 illustrates 
that nearly all the components in FAM were amor-
phous, which was advantageous for the rise in FAM 
activity (Shaikh & Supit, 2015). However, at these early 
ages, FAM’s total reactivity degree was low.

Again, Hasnat and Ghafoori (2021) portrayed com-
pressive strength results, as well as the drying shrinkage 
for various aggregate-to-cementitious material ratio 
 (VA/Vcm) as a function of curing periods. The compres-
sive strength of the 28-day cured UHPCs ranged from 
119 to 149 MPa, 118 to 151 MPa, and 108 to 139 MPa 
for  VA/Vcm of 0.80, 1.0, and 1.20, respectively. The mean 
drying shrinkages after 120  days were 0.1062, 0.0979, 
and 0.0896% for  VA/Vcm values of 0.80, 1.0, and 1.20, 
in that order. Fig 7 illustrates the relative performance 
of the control (C100) UHPC against the binary, ternary, 
and quaternary UHPCs. As testing time increased, all 
UHPCs gained vigor from sustained hydration. Binary 
FA combinations in UHPCs resulted in slower com-
pressive strength growth at early ages compared to 
the control (C100). The 90-day cured binary UHPCs 
with FA exhibited comparable or better compressive 
strength than the control UHPC because to enhanced 
pozzolanic responsiveness. Nevertheless, UHPC con-
taining silica fume as a partial replacement for Port-
land cement outperformed the control UHPC in terms 
of strength improvements throughout all curing ages. 
Adding reactive fine silica to UHPCs increased their 
early strength compared to the control UHPC. Similar 
trends were seen across all cementitious material types 
and combinations for each  VA/Vcm ratio. UHPCs with 
FA or natural pozzolan had higher long-term compres-
sive strengths, while those with silica fume had higher 
compressive strengths at a younger age. GGBS-contain-
ing UHPCs had marginally lower compressive strengths 
than control UHPCs at all cement replacement levels. 
The main hydration process created calcium hydrox-
ide (CH), whereas the secondary pozzolanic reaction 
produced stronger calcium silicate hydrate (C-SH). 
This resulted in improved later age strength perfor-
mance for UHPCs containing FA and natural pozzolans 

Table 2 Mean compressive strength at each w/b ratio for 
different fly ash replacement percentages

w/b ratio Fly ash (%) Mean compressive 
strength (MPa)

%Decrease with 
respect to 0% FA

0.1 0 111.5 –

20 140 − 25.6%

40 130 − 16.6%

0.15 0 123

10 111.5 9.3%

20 145 − 17.9%

30 105 14.6%

40 113 8.1%

60 158 − 28.5%

80 143 − 16.3%

100 130 − 5.7%

0.2 0 125.6 –

10 140 − 11.5%

15 145 − 15.4%

20 131.7 − 4.9%

25 146 − 16.2%

30 143.5 − 14.3%

35 140 − 11.5%

40 120.8 3.8%

60 114.5 8.8%

0.25 0 82.2 –

8 91 − 10.7%

15 98 − 19.2%

20 112.5 − 36.9%

40 102.5 − 24.7%

0.3 0 70 –

20 110 − 57.1%

40 100 − 42.9%

0.35 0 60 –

8 70.3 − 0.4%

15 81 − 15.7%
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(Langan et  al. 2002). Adding more FA or natural poz-
zolan reduced early strength development because 
to the passivity of the pozzolanic components. The 

subsequent cementitious reaction between pozzolanic 
materials and CH produced stronger 90-day cured sam-
ples. The use of secondary cementitious elements in 

Fig. 4 Compressive strength with respect to w/b and FA%

Fig. 5 SEM figures of hardened paste. a b at 3 days; c d at 90 days (Wang et al., 2017)
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UHPC depends on CH formation in the matrix. With-
out it, these pozzolanic components merely serve as 
fillers. In general, linear blend UHPCs with FA outper-
formed slag and natural pozzolan. FA’s spherical shape 
efficiently covered micro deficiencies in the matrix, 
surpassing irregular GGBS or natural pozzolan shapes 
(Fig. 8). Asymmetric UHPCs created with FA superior 
to those prepared with natural pozzolan or GGBS, lead-
ing to a bit more strength (Hasnat & Ghafoori, 2021).

On the other hand, (Hakeem et  al., 2022a, 2022b) 
presented the various mixes’ average compressive 
strengths at 3, 7, 14, and 28  days of age in Fig.  9. Fol-
lowing 28  days of curing, compressive strength sub-
stantially elevated when compared to previous ages of 
specimens. The compressive strength of UHPC speci-
mens fluctuated between 125 and 135  MPa at 14  days 
and 150 to 158 MPa at 28 days of age. Micro silica (MS) 
replacement levels of Metakaolin (MK), FA, and Natu-
ral Pozzolan (NP) led to modestly inferior later age 
compressive strength compared to the control, with the 
exception of M0 mix specimens. The FA60 mix, includ-
ing 60% FA, achieved the highest compressive strength 
(158  MPa) over 28  days. FA plays a role in improving 
compressive strength of various mixes, which may be 
influenced by reduced particle size. This FA is used as a 
filler material among cement grains because of its poz-
zolanic reactants.

3.1.2  Curing Period
Utilizing data gathered from previous published litera-
ture presented in Table 3, Fig. 10 is plotted. It should be 
noted that most of the available data in the literature is 
corresponding to a w/b ratio of 0.2 and 0.15, respectively. 
Also, for w/b ratios 0.35 and 0.25, the maximum reported 
replacement percentage of FA was 15%. Fig 5 illustrates 
the variation in compressive strength as the FA percent-
age is increased at different curing periods, namely, 3, 
7, 28, and 90 days, plotted separately for each w/b ratio. 
For w/b ratios of 0.3 and 0.25, the compressive strength 
increases linearly as the FA replacement percentage var-
ies from 0 to 15% at all curing periods. For w/b ratios of 
0.2 and 0.15, the FA replacement percentage ranged from 
10 to 100% Wt, as shown in Fig.  10c and d. It is noted 
that the compressive strength of UHPC decreases with 
the increase in FA replacement percentages at a cur-
ing period of 7 days. Nevertheless, the data recorded for 
a curing period of 28  days showed an almost negligible 
decline in compressive strength as the replacement per-
centage increased. For a curing period of 90  days, no 
change in compressive strength of UHPC is observed as 
the FA replacement percentage increases. This empha-
sizes on the fact that the FA matrix gains strength with 
time.

The relationship between the mean compressive 
strength and different percentages of FA at different 

Fig. 6 XRD figure of FAM (Qiang et al. 2017)

(See figure on next page.)
Fig. 7 Comparative characteristics of the UHPCs with the control UHPC (C100) at three different aggregate-to-cementitious materials ratios: a 0.8 
for aggregate-to-cementitious materials; b 1.0 for aggregate-to-cement; c 1.2 for aggregate-to-cementitious materials (Hasnat & Ghafoori, 2021)
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Fig. 7 (See legend on previous page.)
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Fig. 8 An image captured by a scanning electron microscope (SEM) of the cementitious materials (a) class F FA, b natural pozzolan, c powdered 
granulated blast-furnace slag, and (d) silica fume (Hasnat & Ghafoori, 2021)

Fig. 9 Compressive strength of UHPC at different ages (Hakeem et al., 2022a, 2022b)
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curing durations was established. Table  4 provides 
the mean values of the compressive strength at cor-
responding curing periods for different FA replace-
ment percentages, and this relationship is illustrated in 
Fig. 10. Naturally, higher mean compressive strength is 
observed with longer curing periods. In general, a per-
centage replacement of FA in the range of 20 to 35% 
consistently yields favourable results in terms of mean 
compressive strength of UHPC. For instance, after 
7  days of curing, UHPC with a 20% FA replacement 
attains the maximum mean compressive strength of 
105 MPa. Similarly, after 28 days of curing, UHPC with 
a 25% FA replacement achieves the highest mean com-
pressive strength at 146 MPa. As mentioned before, the 
later stage of curing (90  days) exhibits an almost con-
stant variation in compressive strength with respect to 
the FA replacement percentage, with the highest mean 
compressive strength associated with a 40% replace-
ment of FA.

3.2  UHPC with Superplasticizer
The purpose of this section is to examine and propose 
possible correlations between compressive strength 
and w/b ratios, when superplasticizer FA-UHPC is 
considered.

Table 3 Data collected for UHPC without-superplasticizer at 
different curing periods and FA replacement percentages

Reference %FA w/b Curing 
period 
(Days)

Compressive 
strength 
(MPa)

Wang et al. (2016) 0 0.35 3 50

0 0.35 7 62

0 0.35 28 48

0 0.35 90 80

8 0.35 3 46

8 0.35 7 75

8 0.35 28 60

8 0.35 90 100

15 0.35 3 47

15 0.35 7 90

15 0.35 28 77

15 0.35 90 110

0 0.25 3 75

0 0.25 7 70

0 0.25 28 90

0 0.25 90 90

8 0.25 3 85

8 0.25 7 87

8 0.25 28 95

8 0.25 90 97

15 0.25 3 92

15 0.25 7 100

15 0.25 28 100

15 0.25 90 100

Wu et al., (2017) 0 0.2 3 98

0 0.2 7 122

0 0.2 28 150

0 0.2 90 154

20 0.2 3 85

20 0.2 7 105

20 0.2 28 135

20 0.2 90 150

40 0.2 3 85

40 0.2 7 105

40 0.2 28 140

40 0.2 90 165

60 0.2 3 75

60 0.2 7 93

60 0.2 28 140

60 0.2 90 150

Table 3 (continued)

Reference %FA w/b Curing 
period 
(Days)

Compressive 
strength 
(MPa)

Hasnat and Ghafoori (2021) 0 0.15 1 63

0 0.15 7 105

0 0.15 28 134

0 0.15 90 153

10 0.15 1 63

10 0.15 7 102

10 0.15 28 129

10 0.15 90 152

30 0.15 1 51

30 0.15 7 90

30 0.15 28 126

30 0.15 90 153

40 0.15 1 47

40 0.15 7 81

40 0.15 28 119

40 0.15 90 151
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3.2.1  Water–Binder (w/b) Ratio
The data collected for the compressive strength of UHPC 
with different replacement percentages of FA at different 
w/b ratios are presented in Table  5. All specimens cor-
respond to a concrete mix design with different dosages 
of superplasticizer. The compressive strength versus FA 
replacement percentages is plotted in Fig.  11. A scatter 
in the data is noticed for all w/b ratios. The average val-
ues for each replacement percentage displayed a slight 
decrease in the compressive strength of UHPC. How-
ever, the trend for w/b of 0.2 exhibited a minor increase 
in the compressive strength. Therefore, more data points 
are needed for with-superplasticizer UHPC to provide 
meaningful conclusions on the relationship between 
FA replacement percentages and UHPC’s compressive 
strength.

The mean compressive strength for each FA replace-
ment percentage and w/b ratio is calculated and 

Fig. 10 Effect of FA replacement percentage on the compressive strength of UHPC at different curing periods

Table 4 Mean Compressive strength of UHPC with different FA 
replacement percentages and at different curing days

FA,% Mean compressive strength (MPa)

1 day 3 days 7 days 28 days 90 days

0 63 74.3 90 108.6 119.5

10 63 – 102 134.5 152

15 – 69.5 95 – –

20 – 85 105 133.8 150

25 – – – 146 –

30 51 – 90 138 153

35 – – – 140 –

40 47 85 93 121.3 158

60 – 75 93 145 147
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Table 5 Data collected for UHPC with-superplasticizer at different w/b ratio and FA replacement percentages

Reference FA% Superplasticizer w/b Compressive 
strength 
(MPa)

Haque and Kayali (1998a, 1998b, 1998c) 0 6 0.4 77.5

10 6 0.35 94

15 6 0.35 73.5

0 7.5 0.35 92.5

10 7.5 0.25 111

15 7.5 0.3 102

Jaturapitakkul et al. (2004) 15 6 0.3 80

25 5.3 0.3 82

35 4.3 0.3 80

50 3.2 0.3 77

Rougeau and Borys. (2004) 25 18 0.2 147

Yazici (2007) 0 45 0.2 117

20 45 0.3 122

40 45 0.4 124

60 45 0.5 117

80 45 0.65 77

Nath and Sarker (2011) 0 5.11 0.4 65

30 4.77 0.3 75

40 4.75 0.3 65

0 6.77 0.3 85

40 4.24 0.3 86

Alsalman et al., (2017a, 2017b) 0 30.2 0.2 106.3

0 30.2 0.2 113.2

20 30.2 0.2 109.9

30 30.2 0.2 114.8

40 30.2 0.2 114.8

0 34.2 0.2 113.8

0 34.2 0.2 113.8

0 34.2 0.2 115.2

Fig. 11 Mean compressive strength versus FA% at different curing days
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presented in Table 6. In addition, the percentage decrease 
in compressive strength with respect to the mean com-
pressive strength of 0% FA is computed. The compres-
sive strength decreased in the range of 0.7 to 27.8%, 
compared to a maximum decrease of 14.1% portrayed in 
the previous section for without-superplasticizer UHPC. 
From Fig. 12, it can be deduced that FA replacement per-
centage of 25% resulted in an increase in the compressive 
strength of UHPC compared to a percentage of 0% FA 
replacement. Fig 13 further illustrates the distribution of 

compressive strength values corresponding to w/b ratio 
and FA replacement percentages.

Jaturapitakkul et  al. (2004) showed the scanning elec-
tron microscopy image of ground coarse FA (FAG) in 
Fig. 14. Concrete with 15%, 25%, and 35% FAG replace-
ment in lieu of cement developed its strength more 
quickly than concrete with 50% replacement; at all ages, 
25% replacement in place of cement produced the best 
compressive strength. Using 15–35% content replace-
ments resulted in greater compressive strengths than 
control concrete at all ages up to 180 days. For example, 
concrete with 15%, 25%, and 35% FAG substitution had 
7-day compressive values of 71.0, 71.2, and 70.8  MPa, 
respectively, which is approximately 120% of the control 
concrete. At 28  days, compressive strength increased 
with curing age for all mixes, ranging from 77.3 MPa in 
FAG50 to 82.5 MPa in 25% FAG replacement sample. FA’s 
fineness and pozzolanic characteristics provide a packing 
effect. These features improve concrete strength and den-
sity. The results validate Kiattikomol et al. (2001) finding 
that the fineness of FA significantly impacts the compres-
sive strength of FAG–cement mortar. Furthermore, no 
significant variation in compressive strength was seen for 
mortars containing categorized FA and FAG with compa-
rable median particle size.

According to Ferdosian et al., (2017), 4.48 µm FA par-
ticles have a stronger and more fluid consistency than 
9.3  µm FA particles. The spheroid of the fine particles 
in FA and their shine surface even after crushing allow 
for simpler particle sliding amongst each other when 
mixed on the cement paste (Fig.  15), which is why flu-
idity is directly dependent on the FA particle size. Since 
these finer particles can fill in the spaces left by coarser 
cement particles to create a uniform distribution of 

Table 6 Mean Compressive strength of UHPC at various w/b 
ratios and fly ash replacement percentages

w/b FA% Mean compressive 
strength (MPa)

%decrease with 
respect to 0% FA

0.2 0 107.5 –

20 98.12 8.7%

25 148.5 − 38.1%

30 95.42 11.2%

40 95.42 11.2%

0.25 10 102.25 –

0.3 0 86.83 15.1%

15 89.4 12.6%

20 122 − 19.3%

25 87.8 14.1%

30 73.83 27.8%

0.3 35 86.2 –

40 78.4 9.0%

50 81.8 5.1%

0.35 0 85.62 0.7%

10 85.25 –

15 65.5 23.2%

Fig. 12 Compressive strength of with-superplasticizer UHPC versus FA% for different w/b ratio
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compressive stress, the increase in compressive strength 
may be related to the finer FA particles’ higher activity. 
These particles may also react with a higher percentage of 
cement particles in the paste to produce a higher C-S–H 
development and more substantial packing density.

3.2.2  Curing Period
The effect of curing period and FA replacement percent-
ages on the compressive strength of UHPC with super-
plasticizer is studied in this section. The data collected 
for this purpose is listed in Table 7. Also, the compressive 

strength versus replacement percentages of FA is plot-
ted in Fig. 16, irrespective of the amount of superplasti-
cizer used. A similar trend can be observed in Fig. 16 for 
the variation of compressive strength of UHPC to the 
trend of without-superplasticizer UHPC that is shown in 
Fig. 10 of Sect. 3.1.2. There is an obvious decline in com-
pressive strength at earlier curing periods and the decline 
fades as the curing period increases to 56 and 90  days. 
This confirms once again that FA-UHPC gains higher 
strength with age, regardless of the replacement percent-
age of FA (Table 8).

Fig. 13 Compressive strengths of UHPC with respect to FA% and w/b ratios

Fig. 14 Scanning electron microscopy image of ground coarse fly ash (FAG) (Jaturapitakkul et al., 2004)
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Nath and Sarker, (2011) reported that the FA concretes 
showed better resistance to the entry of chloride ions 
at 28 and 180 days. Therefore, it is possible to construct 
UHPC with reduced permeability by using up to 40% 
FA into the overall binder. Fig 10 presents the compres-
sive strength versus the FA replacement percentages at 
different curing days. For all FA replacement percent-
ages in this graph, the compressive strength after 7 days 
of curing was much lower than it was after other curing 
times. Due to the use of less FA content, the compres-
sive strengths at 28-day curing intervals were initially 
higher by 25–30% higher than those at 56-day curing 
periods. Early in the cementitious system, FA can signifi-
cantly improve hydration (Wang et  al., 2017b). Follow-
ing that, when FA percentages increased, compressive 
strengths unexpectedly increased for 56 days during the 
curing period as opposed to 28 days because of a delayed 

pozzolanic interaction between FA and superplasticizer 
that occurred when 30% of FA is used. The compressive 
strengths at 90 days, however, remained superior for all 
FA percentages between 0 and 50% because of the notice-
ably stronger pozzolanic interaction between the FA and 
superplasticizer. This observation indicates that all cur-
ing days, for up to 20–25% of FA, produced improved 
results. Certain limitations are also discovered in this 
instance, such as the fact that there is insufficient data to 
investigate FA replacement rates above 50% in UHPC. In 
addition, statistics on compressive strength after 90 days 
of curing are quite uncommon, which means that ideas 
may still come to fruition later. Moreover, several fac-
tors including the type of superplasticizer and its dosage, 
grade of the concrete, and the w/b ratio, contribute to the 
UHPC’s compressive strength. Wang et  al. (2017) dem-
onstrated that FA improved late-age strength even more 
than silica fume. It is also noteworthy that at 40% FA, the 
data from tests of 90-day cured compressive strength and 
28-day cured compressive strength overlap (Fig. 17).

3.2.3  Effects of Superplasticizer on FA‑UHPC
The important addition that increases both conven-
tional concrete’s and UHPC’s compressive strength is the 
superplasticizer. Table  9 displays the mean compressive 
strength regardless of the FA replacement percentage. 
Based on the available data, Fig.  18 is plotted. This fig-
ure demonstrated rather clearly how the mean compres-
sive strength increases as superplasticizer concentration 
increases across the board. This figure made it evident 
that greater superplasticizer dosages (30–45  kg/m3) 
result in stronger compressive strengths, up to roughly 
40–60% of FA replacement. However, the quantities were 
scarce and not widely documented in the literature. This 
review has also revealed that superplasticizer dosages 
in the range of 10–30  kg/m3 have not yet been used. It 
is noted that the maximum mean compressive strength 
is 112 MPa. Once the prescribed dosage has been used, 
superplasticizer effects could be easier to pinpoint and 
comprehend. Also, not much research has been con-
ducted on the superplasticizer dosage up to 10 kg/m3 at 
different FA replacement rates. As a result, no precise 
understanding of this situation is obtained.

4  Summary and Conclusion
The purpose of this study is to review the effect of various 
parameters on the compressive strength of UHPC when 
ordinary Portland cement is replaced by FA. The param-
eters include FA replacement percentages, water–binder 
ratios, superplasticizer dosages, and curing period. Sev-
eral findings have been reached following the analysis of 
data taken from previous published literature.

Fig. 15 Low Magnified SEM image of (a) 9.3 and (b) 4.48 µm FA 
particles (Ferdosian et al., 2017)
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Table 7 Data collected for UHPC with-superplasticizer at different curing periods and FA replacement percentages

Reference FA% Superplasticizer w/b Curing period 
(Days)

Compressive 
strength 
(MPa)

Haque and Kayali (1998a, 1998b, 1998c) 0 6 0.4 7 62

0 6 0.4 14 70

0 6 0.4 28 77.5

10 6 0.35 7 70

10 6 0.35 14 77.5

10 6 0.35 28 94

10 6 0.35 56 99.5

15 6 0.35 7 58

15 6 0.35 14 65

15 6 0.35 28 73.5

0 7.5 0.35 7 69

0 7.5 0.35 14 75

0 7.5 0.35 28 92.5

0 7.5 0.35 56 106

10 7.5 0.25 7 84

10 7.5 0.25 14 93.5

10 7.5 0.25 28 111

10 7.5 0.25 56 121.5

15 7.5 0.3 7 75.5

15 7.5 0.3 14 89

15 7.5 0.3 28 102

15 7.5 0.3 56 113.5

Jaturapitakkul et al. (2004) 15 6 0.3 7 70

15 6 0.3 28 80

15 6 0.3 56 90

15 6 0.3 90 95

15 6 0.3 180 100

25 5.3 0.3 7 70

25 5.3 0.3 28 82

25 5.3 0.3 56 92

25 5.3 0.3 90 95

25 5.3 0.3 180 100

35 4.3 0.3 7 70

35 4.3 0.3 28 80

35 4.3 0.3 56 88

35 4.3 0.3 90 93

35 4.3 0.3 180 100

50 3.2 0.3 7 70

50 3.2 0.3 28 77

50 3.2 0.3 56 84

50 3.2 0.3 90 87

50 3.2 0.3 180 91

Rougeau and Borys. (2004) 25 18 0.2 28 147

25 18 0.2 90 150
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Table 7 (continued)

Reference FA% Superplasticizer w/b Curing period 
(Days)

Compressive 
strength 
(MPa)

Yazici (2007) 0 45 0.2 28 117

20 45 0.3 28 122

40 45 0.4 28 124

60 45 0.5 28 117

80 45 0.65 28 77

Nath and Sarker (2011) 0 5.11 0.4 3 40

0 5.11 0.4 7 50

0 5.11 0.4 28 65

0 5.11 0.4 56 78

0 5.11 0.4 91 79

0 5.11 0.4 210 79

30 4.77 0.3 3 48

30 4.77 0.3 7 59

30 4.77 0.3 28 75

30 4.77 0.3 56 85

30 4.77 0.3 91 87

30 4.77 0.3 210 89

40 4.75 0.3 3 44

40 4.75 0.3 7 50

40 4.75 0.3 28 65

40 4.75 0.3 56 88

40 4.75 0.3 91 86

40 4.75 0.3 210 87

0 6.77 0.3 3 68

0 6.77 0.3 7 71

0 6.77 0.3 28 85

0 6.77 0.3 56 97

0 6.77 0.3 91 100

0 6.77 0.3 210 100

40 4.24 0.3 3 68

40 4.24 0.3 7 70

40 4.24 0.3 28 86

40 4.24 0.3 56 97

40 4.24 0.3 91 100

Alsalman et al., (2017a, 2017b) 40 4.24 0.3 210 100

0 30.2 0.2 1 59

0 30.2 0.2 7 95.7

0 30.2 0.2 28 106.3

0 30.2 0.2 56 108.8

0 30.2 0.2 90 114.1

0 30.2 0.2 1 70.7

0 30.2 0.2 7 97.4

0 30.2 0.2 28 113.2

0 30.2 0.2 56 113.8

0 30.2 0.2 90 118.1
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• For without-superplasticizer UHPC, most of the 
reported data in the literature corresponds to a w/b 
ratio of 0.15 and 0.2. For such w/b ratios, no negative 
effect associated with the increase in FA replacement 
percentage up to 60% is observed. For higher w/b 
ratios (0.25, 0.3), the compressive strength of UHPC 
was improved with the increase in FA replacement 
percentage. However, the data corresponding to such 
w/b ratios is insufficient, and no data is observed for 
FA replacement percentages beyond 40% for higher 
w/b ratios.

• Investigations on the effects of FA have shown that it 
may reduce the Ca/Si ratio of hydration products and 
accelerate the transition of appropriate composites’ 
C-S–H gels to crystalline phases.

• The collapse to the Si–O-Al and Si–O-Si structures 
was more pronounced than it would have been with 
univalent ions, resulting in less reactivity of FA at 
early curing periods. The divalent  Ca2+ can boost the 
tendency of structural unrest and therefore reduce 
the level of polymerization in transparent substances.

• While UHPCs with silica fume had higher compres-
sive strengths at a younger age, those with FA or nat-

Table 7 (continued)

Reference FA% Superplasticizer w/b Curing period 
(Days)

Compressive 
strength 
(MPa)

20 30.2 0.2 1 53.7

20 30.2 0.2 7 99.2

20 30.2 0.2 28 109.9

20 30.2 0.2 56 110.3

20 30.2 0.2 90 117.5

30 30.2 0.2 1 24.6

30 30.2 0.2 7 101.2

30 30.2 0.2 28 114.8

30 30.2 0.2 56 117.2

30 30.2 0.2 90 119.3

40 30.2 0.2 1 24.6

40 30.2 0.2 7 101.2

40 30.2 0.2 28 114.8

40 30.2 0.2 56 117.2

40 30.2 0.2 90 119.3

0 34.2 0.2 1 72.8

0 34.2 0.2 7 102.8

0 34.2 0.2 28 113.8

0 34.2 0.2 56 126.2

0 34.2 0.2 90 139.3

0 34.2 0.2 1 72.8

0 34.2 0.2 7 102.8

0 34.2 0.2 28 113.8

0 34.2 0.2 56 126.2

0 34.2 0.2 90 139.3

0 34.2 0.2 1 73.2

0 34.2 0.2 7 102.3

0 34.2 0.2 28 115.2

0 34.2 0.2 56 129.3

0 34.2 0.2 90 149.7
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ural pozzolan exhibited higher compressive strengths 
over the long run. At every cement replacement level, 
the compressive strengths of UHPCs containing 

GGBS were somewhat lower than those of the con-
trol UHPCs.

• The ground coarse FA cement mortar’s compressive 
strength is greatly influenced by the FA’s fineness. 
Moreover, mortars containing classified FA and FAG 
with comparable median particle sizes did not exhibit 
any discernible differences in compressive strength.

• Fluidity is directly correlated with FA particle size 
because the spheroid of the fine particles in FA 
and their glossy texture following smashing enable 
smoother particle slips between one other when 
mixed on the cement paste. In addition, a higher per-
centage of cement particles in the paste might inter-
act with these FA particles to raise C-S–H develop-
ment and considerably raise packing density.

• According to few studies, a 60% replacement per-
centage of FA provided comparable compressive 
strength to the strength of 0% FA replacement. Nev-

Fig. 16 Effect of FA replacement percentage on the compressive strength of UHPC at different curing periods

Table 8 Mean Compressive strengths of UHPC at various 
replacement percentages of FA and at different curing days

FA% Mean compressive strength (MPa)

1 day 3 days 7 days 28 days 90 days

0 83.66 100 110.66 120 83.66

20 99.2 116 110.3 117.5 99.2

25 70 114.5 92 122.5 70

30 80.1 95 101.1 103.15 80.1

35 70 80 88 93 70

40 73.73 97.5 100.73 102.65 73.73

50 70 77 84 87 70
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ertheless, more data points are needed for such high 
replacement percentages (60–80%).

• In general, samples that have a FA replacement in 
the range of 20 to 35% produce satisfactory results 
for UHPC’s compressive strength. The water–binder 
ratio that ranges from 0.15 and 0.25 when combined 
with a 20–35% FA replacement provided an optimum 
compressive strength.

• For UHPC without-superplasticizer and with-super-
plasticizer, higher curing periods are associated with 
higher compressive strength and less decline in com-
pressive strength with the increase in FA replacement 
percentage. For a curing period of 90 days, a minimal 
decrease in compressive strength is observed when 
the FA replacement percentage is increased. How-
ever, the maximum recorded FA replacement per-
centage is 50%. Therefore, more data is required for 
higher replacement percentages.

• For FA-UHPC with superplasticizer, the most con-
sistent compressive strength findings were obtained 
for a w/b up to 0.2–0.25. Beyond this threshold, 
no sufficient data is identified in the literature. A 
decrease in the compressive strength of UHPC is 
detected with the increase in FA replacement per-
centage. This might be attributed to the significantly 
greater pozzolanic interaction between FA and 
superplasticizer. Nonetheless, the data collected for 
with-superplasticizer UHPC is limited, and more 
experimental data is essential to identify an accurate 
relationship between FA replacement percentage and 
compressive strength.

• The compressive strengths after 90  days remained 
superior for all FA percentages between 0 and 50%. 
Up to 20–25% FA replacement, all curing days 
showed enhanced results. The tendencies for the 
28–90  day and 7–56  day curing periods persisted 
throughout the FA all-replacement percentages.

5  Future Prospects
This study provided insights into the impact of various 
parameters on the compressive strength of UHPC, sev-
eral avenues for future research emerge from the current 
findings.

Fig. 17 Mean compressive strength versus FA% at different curing days

Table 9 Mean compressive strength at various FA% replacement 
and superplasticizer dosages

Superplasticizer dosage (kg/
m3)

%FA Mean 
compressive 
strength (MPa)

3.2 50 81.8

4.24 40 86.83

4.3 35 86.2

4.75 40 70

4.77 30 73.83

5.11 0 65.16

5.3 25 87.8

6 0 69.83

6 10 85.25

6 15 79

6.77 0 86.83

18 25 148.5

30.2 0 99.71

30.2 20 98.12

30.2 30 95.42

30.2 40 95.42

34.2 0 112

45 0 117

45 20 122

45 40 124

45 60 117

45 80 77
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• The study has identified a gap in data for water–
binder ratios beyond 0.3 and FA replacement per-
centages exceeding 40%. Future research should aim 
to fill this void by exploring the compressive strength 
trends for UHPC under these conditions.

• Further investigations should focus on gathering 
additional empirical evidence to confirm the com-
pressive strength characteristics and limitations asso-
ciated with elevated levels of FA replacement (> 60%).

• The interaction between FA and superplasticizer 
presents an intriguing aspect affecting compres-
sive strength. Further experimental investigations 
are necessary to define the intricate relationship 
between FA replacement percentage and compres-
sive strength in UHPC when combined with super-
plasticizer.

• The superior compressive strengths observed up to 
50% FA replacement after 90  days underscore the 
need for a more extensive exploration of longer 
curing durations. Future studies should focus on 
collecting data on compressive strength beyond 
90 days, as such information is currently limited.
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