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Abstract 

This study utilized machine learning (ML) models to investigate the effect of physical and chemical properties 
on the reactivity of various supplementary cementitious materials (SCMs). Six SCMs, including ground granulated 
blast furnace slag (GGBFS), pulverized coal fly ash (FA), and ground bottom ash (BA), underwent thorough mate-
rial characterization and reactivity tests, incorporating the modified strength activity index (ASTM C311) and the R3 
(ASTM C1897) tests. A data set comprising 46 entries, derived from both experimental results and literature sources, 
was employed to train ML models, specifically artificial neural network (ANN), support vector machine (SVM), and ran-
dom forest (RF). The results demonstrated the robustness of the ANN model, achieving superior prediction accuracy 
with a testing mean absolute error (MAE) of 9.6%, outperforming SVM and RF models. The study classified SCMs 
into reactivity classes based on correlation analysis, establishes a comprehensive database linking material properties 
to reactivity, and identifies key input parameters for predictive modeling. While most SCMs exhibited consistent pre-
dictions across types, GGBFS displayed significant variations, prompting a recommendation for the inclusion of addi-
tional input parameters, such as fineness, to enhance predictive accuracy. This research provided valuable insights 
into predicting SCM reactivity, emphasizing the potential of ML models for informed material selection and optimiza-
tion in concrete applications.
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1  Introduction
The use of supplementary cementitious materials 
(SCMs) as a replacement for Portland cement offers 
significant benefits in terms of concrete production, 
encompassing durability, sustainability, and long-term 
strength development (Mehta and Monteiro 2013). 
Among various types of SCMs, fly ash (FA) and ground 
granulated blast furnace slag (GGBFS) have been 
mainly utilized due to their worldwide availability, 
cost-effectiveness, and eco-friendly attributes. How-
ever, with the retirement of coal power plants and the 
increasing adoption of electric arc furnace steel making 
systems over blast furnaces, concerns have been raised 
about the insufficient supply of these conventional 

Journal information: ISSN 1976-0485 / eISSN 2234-1315.

*Correspondence:
Jinyoung Yoon
jyyoon@konkuk.ac.kr
1 Department of Civil and Environmental Engineering, Konkuk University, 
Seoul 05029, Republic of Korea
2 Department of Civil, Urban, Earth, and Environmental Engineering, 
Ulsan National Institute of Science and Technology, Ulsan 44919, Republic 
of Korea
3 School of Architecture and Building Science, Chung-Ang University, 
Seoul 06974, Republic of Korea
4 Department of Civil and Environmental Engineering, Pennsylvania State 
University, University Park, PA 16802, USA

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40069-024-00717-5&domain=pdf
http://orcid.org/0000-0003-4451-0953


Page 2 of 22Yoon et al. Int J Concr Struct Mater           (2024) 18:75 

SCMs to meet the demands of the concrete industry 
(Coal Combustion Products Production & Use Reports: 
ACAA 2019 CCP Survey Results 2019). As the SCM 
demand is expected to be growing, alternatives such as 
ground coal bottom ash (BA) (Kim 2015), calcined clay 
(CC) (Dhandapani et al. 2021; Jafari et al. 2022), fluid-
ized bed combustion (FBC) ash (Yoon et al. 2022), and 
waste concrete powder (WC) (Vashistha et  al. 2023), 
are being investigated. To enhance the utilization of 
various types of non-conventional SCMs, it is crucial 
to characterize their material properties and quantify 
their reactivities. Particularly, the correct identification 
and quantification of the reactivities of SCMs play an 
important role in their successful utilization in con-
struction materials (ASTM C311/C311M-18, Standard 
Test Methods for Sampling and Testing Fly Ash or Nat-
ural Pozzolans for Use in Portland-Cement Concrete 
2018).

One of the commonly used standardized methods for 
evaluating the reactivity of SCMs is through compres-
sive strength test, such as those outlined in ASTM C311 
(ASTM C311/C311M-18, Standard Test Methods for 
Sampling and Testing Fly Ash or Natural Pozzolans for 
Use in Portland-Cement Concrete 2018) and EN 196-5 
(EN 196-5. Standard methods for testing cement. Part 
5: Pozzolanicity test for pozzolanic cements 1988). For 
example, Strength Activity Index (SAI), as defined by 
ASTM C311 (ASTM C311/C311M-18, Standard Test 
Methods for Sampling and Testing Fly Ash or Natural 
Pozzolans for Use in Portland-Cement Concrete 2018), 
is determined by measuring the relative compressive 
strength of mortar samples where 20% of the Portland 
cement is replaced with SCMs, compared to a control 
mortar made with cement alone. In the SAI test, water-
to-cement ratio (w/cm) is varied to achieve similar 
workability between the control and test mortars. The 
resulting difference in the w/cm, e.g., for SCMs hav-
ing higher water requirement, can lead to a significant 
difference in the resulting strength development. To 
address this issue, some studies have assessed the reac-
tivity at a constant w/cm; this is known as the modified 
SAI test (Wang et al. 2021). In case of modified SAI test, 
the addition of superplasticizers should be considered to 
maintain similar level of workability between control and 
test mortars (Kasaniya et  al. 2022). A high SAI value is 
generally indicative of good reactivity in SCMs. However, 
the small replacement ratio of SCMs with cement and 
the influence of particle packing can lead to an inaccu-
rate evaluation of the reactivity. Specifically, it has been 
reported that early age strength development is more 
influenced by the physical contribution, such as the filler 
effect of fine SCM particles (Kasaniya et al. 2022; Walker 
and Pavía 2011).

Alternatively, various test methods have been proposed 
to assess pozzolanic reactivity based on the consump-
tion of calcium hydroxide (Chapelle 1958; Donatello 
et al. 2010; Tironi et al. 2013). The current standardized 
method for pozzolanic reactivity testing, as specified in 
EN196-5 and originating from the Frattini method (Frat-
tini 1949), involves evaluating the concentration of Ca 
ions in a solution with cement and SCMs. The Chapelle 
test (Chapelle 1958) measures the consumption of port-
landite in a mixture of cement and SCMs. While these 
test methods can assess the reactivity of SCMs by focus-
ing on the changes in Ca(OH)2, they may not be effec-
tive for SCMs with latent-hydraulic properties, such as 
GGBFS or high calcium FA (Li et al. 2018), limiting their 
applicability to specific SCM types.

In recent years, the Rapid, Relevant, and Reliable (R3) 
test (ASTM C 1897) has been introduced to acquire reli-
able results regarding the reactivity of SCMs in terms of 
hydraulic and pozzolanic reaction within a 7-day period 
at an elevated temperature of 40 ºC (ASTM C1897-20, 
Standard Test Methods for Measuring the Reactivity of 
Supplementary Cementitious Materials by Isothermal 
Calorimetry and Bound Water Measurements 2020). 
The R3 test isolates the reaction of SCMs in simulated 
cement hydration environment, encompassing the pres-
ence of calcium hydroxide, calcite, sulfates, and alkalis. 
Results from the R3 test, measuring the heat release and 
bound water after 7  days of reaction, exhibited strong 
agreement with chemical reactivity as determined by the 
strength tests (Avet et al. 2016; Li et al. 2018). Although 
initially developed for calcined clays and their blends 
with limestone, the R3 test has proven to be reliable for 
various other SCMs, including FA, GGBFS, CC, natu-
ral Pozzolans, and their blends (de Azevedo Basto et al. 
2023; Londono-Zuluaga et al. 2022; Parashar and Bishnoi 
2020; Vayghan et al. 2021; Yoon et al. 2022). In addition, 
moderate or good correlations between characteristics 
of SCMs, such as particle size, chemical composition, 
and amorphous content, and their reactivity as obtained 
from the R3 test were also found (Kasaniya et  al. 2022; 
Yoon et al. 2022). However, one concern with the R3 test 
lies in the necessity to measure cumulative heat release 
or bound water content at 3 and 7 days. To expedite the 
results of the R3 test, a modified R3 test, measuring heat 
release within 24  h, was also explored (Blotevogel et  al. 
2020). While the results indicated the effectiveness and 
reliability of the modified R3 test for assessing the early 
age reactivity of GGBFS, it is essential to conduct further 
experimental work to validate this testing method for 
other SCMs.

Alternatively, the R3-based reactivity of SCMs can be 
estimated based on their physical and chemical prop-
erties. However, the intricate relationship of reactivity 
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with the physical and chemical properties of SCMs has 
not been thoroughly investigated owing to their complex 
correlations and a limited number of available data. To 
address this, the use of machine learning (ML), known 
for its capacity to handle complex correlations and pro-
vide accurate predictions, can be considered, employing 
a comprehensive database for various SCMs. ML models 
have proven successful in solving regression problems in 
construction materials research, such as predicting con-
crete strength, durability, and slump (Li et al. 2022). Nev-
ertheless, ML models have not been utilized for analyzing 
the R3-based reactivity test considering various physical 
and chemical properties of SCMs.

The aim of this study is to develop the ML models for 
estimating the R3-based reactivity of various SCMs based 
on their physical and chemical properties. First, a com-
prehensive investigation into the physical and chemi-
cal properties of SCMs belonging to GGBFS, FA, and 
BA groups and their reactivities assessed through both 
strength and R3 tests was conducted. By integrating the 
experimental results with data from the literature, a 
comprehensive database including material properties 
and results from the R3 test in terms of cumulative heat 
release was established. Using this database, several ML 
models, including artificial neural network (ANN), ran-
dom forest (RF), and support vector machine (SVM), 
were developed. The performance of each ML model was 
assessed, and the prediction results based on materials 
properties were thoroughly analyzed.

2 � Experimental Program
2.1 � Materials
In this study, seven SCMs were investigated, categorized 
as follows: GGBFS, FA, and BA. GGBFS is an industrial 
by-product from a steel manufacturing industry and is 
a type of blast furnace slag obtained by water-quench-
ing molten iron slag (Lee et  al. 2019). Because of its 
rapid cooling process, GGBFS mainly consists of amor-
phous phase, generally resulting in excellent reactivity. 
FA and BA are by-products of coal-fuel thermal power 
plants, with FA typically constituting around 80% and 
BA around 20% of coal combustion by-products. The 
chemical composition of FA categorized it into Class F 
(CaO < 18%) and Class C FA (CaO > 18%) according to 
ASTM C618 (ASTM C618-19, Standard Specification for 
Coal Fly Ash and Raw or Calcined Natural Pozzolan for 
Use in Concrete 2019). Class F FA, commonly used as a 
pozzolanic material, is highly siliceous with a large quan-
tity of amorphous phase. The median particle size of FA 
for use in concrete is approximately 10–15 μm, similar to 
that of most Portland cements. In contrast, BA has been 
disposed of in landfills due to its typically larger particle 
sizes (ranging from 0.1 mm to 20 mm) and highly porous 

structures (Yoon et  al. 2019a). As a result, BA’s use in 
concrete has been limited to use as lightweight aggre-
gates. Using BA as SCM requires grinding to achieve a 
fine particle size (Kim et al. 2021; Pormmoon et al. 2021; 
Yoon et al. 2019a).

All SCMs used in this study included two samples 
of GGBFS labelled as GS1 and GS2, two BA samples 
labelled as BA1 and BA2, and two FA samples labelled 
as FA1 and FA2. All SCMs were collected from compa-
nies in South Korea. The as-received coarse BA samples 
were milled with a ball milling device for 24  h prior to 
use. The physical and chemical properties of the SCMs 
were investigated, as listed in Table 1. The characteristics 
of ordinary Portland cement used in the preparation of 
mortar samples for the strength test are also included in 
Table 1. Tests for physical properties encompassed parti-
cle size distribution (PSD), density, and moisture content. 
PSD was determined using laser diffraction with a Horiba 
LA-950. The density was identified according to ASTM 
C 188 (ASTM C188-17, Standard Test Method for Den-
sity of Hydraulic Cement 2017). Moisture content and 
the loss on ignition (LOI) of each SCM were measured 
by heating each sample to 110  °C and 750  °C, respec-
tively, according to ASTM C311. Bulk chemical composi-
tion was quantified using fused bead X-ray fluorescence 
(XRF) spectroscopy.

The median particle sizes of BA1, and BA2, which 
underwent milling, were 79.5  μm and 66.0  μm, respec-
tively; these were larger than the size of GGBFS and 
FA, and may lead to a lower reactivity. Similar chemi-
cal compositions were observed between GS1 and GS2, 
and between FA1 and FA2. BA1 showed similar chemical 
composition with FA1 and FA2, classifying BA1 as Class 
F according to ASTM C618 (ASTM C618-19, Stand-
ard Specification for Coal Fly Ash and Raw or Calcined 
Natural Pozzolan for Use in Concrete 2019). Conversely, 
BA2 contained a significant amount of CaO, exceeding 
45%. BA2 was sourced from a thermal power plant using 
limestone for desulfurization during coal combustion, 
resulting in a higher percentage of CaO (and free lime) 
in the fly ash. According to ASTM C618 (ASTM C618-
19, Standard Specification for Coal Fly Ash and Raw or 
Calcined Natural Pozzolan for Use in Concrete 2019), the 
moisture content of SCMs should be less than 3.0%. All 
SCMs met the requirement ranging from 0.1% to 2.0%. In 
terms of LOI, it is required to be less than 6.0%. All SCMs 
adhered to this requirement.

The mineralogy of each SCM was investigated through 
quantitative X-ray diffraction (XRD) analysis. Each SCM 
underwent grinding using a McCrone micronizing mill 
for 6  min to achieve a d50 of approximately 5  μm. The 
powdered sample was introduced into a back-loaded 
sample holder and placed on a spinner stage. A Malvern 
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Panalytical AERIS X-ray Diffraction equipment was used 
to conduct the XRD data acquisition. The incident X-ray 
beam from CuKa radiation was operated at 40  kV and 
20  mA. Diffraction patterns were collected for approxi-
mately 30 min over the range of 8–70° 2-theta with a step 
size of 0.02°. For the quantification of individual mineral 
and amorphous phase, the Rietveld refinement was uti-
lized using the external standard method (Scarlett and 
Madsen 2006; Singh et al. 2016). In the external standard 
method, the absolute weight fraction of each phase was 
calculated using the scale factors of phases and standard 
from the Rietveld refinement. The weight fraction (wk) of 
a phase (k-phase) can be calculated as follows:

where Z represents the number of formula units in the 
unit cell, M indicates the mass of unit cell, and V is vol-
ume of the unit cell. The (ZMV)k and (ZMV)s means 
constant values of the k-phase and the standard (labelled 
s), respectively. ws is the crystallinity of the standard, Sk is 
scale factor of k-phase, Ss is scale factor of standard, µm 
is mass attenuation coefficient of bulk sample, and µms 
is the mass attenuation coefficients of standard. Using 
Eq.  (1), the weight fraction of each phase can be identi-
fied. Then, the weight fraction of amorphous phase can 
be obtained as follows:

(1)wk =
(ZMV)k

(ZMV)s
·
Sk

Ss
· ws ·

µm

µms
,

where wamorphous and wn indicate weight fraction of amor-
phous and each phase. This quantification process was 
conducted using PANalytical X’pert HighScore Plus 
software (PANalytical X’Pert HighScore Plus 2012) and 
Inorganic Crystal Structure Database (ICSD 2012) (Inor-
ganic Chemistry Structure Databases (ICSD) 2012). The 
crystalline products identified from the XRD analysis are 
illustrated in Fig.  1. The weight fraction of amorphous 
phase, related to the reaction of SCMs, is provided in 
Table 1.

GGBFS of GS1 and GS2 exhibited a large quantity of 
amorphous phase, exceeding 98%. Several peaks in GS1 
and GS2 corresponded to C3S and akermanite. FA1 and 
FA2 samples displayed similar XRD patterns containing 
mullite, quartz, and magnetite. Amorphous phase con-
tents for FA1 and FA2 were 66.2% and 74.6%, respec-
tively. Considering the chemical composition of FA1 
and FA2, they can be categorized as Class F according 
to ASTM C618 (ASTM C618-19, Standard Specification 
for Coal Fly Ash and Raw or Calcined Natural Pozzolan 
for Use in Concrete 2019). Regarding BA samples, it was 
found that XRD patterns for BA1 and BA2 had significant 
differences. The mineralogy and amorphous phase for 
BA1 was similar to FA1 and FA2. In contrast, BA2 had a 

(2)wamorphous = 1−
∑

n

wn,

Table 1  Physical and chemical properties of SCMs

Portland cement Granulated blast furnace 
slag

Fly ash Bottom ash

CEM GS1 GS2 FA1 FA2 BA1 BA2

XRF CaO 64.2% 45.1% 43.6% 4.3% 4.2% 4.3% 45.1%

SiO2 19.1% 32.9% 33.0% 57.1% 62.7% 57.3% 32.9%

Al2O3 4.6% 13.7% 14.4% 23.9% 22.5% 20.9% 13.7%

MgO 2.1% 3.6% 4.1% 1.1% 1.0% 1.5% 3.6%

SO3 3.7% 1.9% 2.3% 0.6% 0.8% 0.3% 1.9%

TiO2 0.3% 0.8% 0.8% 1.4% 1.3% 1.4% 0.8%

Fe2O3 3.6% 0.6% 0.5% 7.1% 4.2% 11.1% 0.6%

K2O 1.3% 0.6% 0.5% 1.4% 1.2% 1.5% 0.6%

MnO 0.2% 0.4% 0.4% 0.1% 0.1% 0.1% 0.4%

Na2O 0.3% 0.3% 0.3% 1.7% 0.9% 0.7% 0.3%

SiO2 + Al2O3 + Fe2O3 27.3% 47.2% 47.9% 88.1% 89.3% 89.3 47.2%

Particle size [μm] D10 4.7 5.2 5.6 5.2 5.1 9.6 4.2

D50 13.3 9.3 9.8 13.7 13.3 79.5 66.0

D90 31.6 15.0 15.6 48.4 44.6 321.4 262.1

Density [g/cm3] 3.11 2.89 2.87 2.22 2.29 2.45 2.85

Moisture content 0.1% 0.3% 0.2% 0.2% 0.5% 0.1% 0.3%

Free CaO 0.5% 0.1% 0.3% 0.2% 0.1% 0.0% 9.6%

Loss on ignition (LOI) 2.8% 0.0% 0.7% 2.8% 3.4% 2.0% 5.1%

Amorphous phase – 98.5% 98.0% 66.2% 74.6% 75.2% 37.3%
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relatively higher amount of CaO. Consequently, the min-
eralogy for BA2 included anhydrite, free lime and lime-
weathering products, such as portlandite and calcite.

2.2 � Methods for Evaluating the SCM Reactivity
2.2.1 � Modified SAI Based on Compressive Strength Test
One of commonly used testing methods to assess the 
reactivity is based on the compressive strength test. The 
modified SAI was employed with reference to ASTM 
C311 (ASTM C311/C311M-18, Standard Test Methods 
for Sampling and Testing Fly Ash or Natural Pozzolans 
for Use in Portland-Cement Concrete 2018), with the 
exception that a constant w/cm of 0.49 was maintained 
for all mixtures. The replacement ratio of cement with 
SCMs was set at 20%. The cementitious materials-to-sand 
ratio was consistent at 2.75 for all samples. To measure 
the 7- and 28-day compressive strength, six-cube samples 
(50 × 50 × 50 mm3) were made from each mix, with three 
samples utilized for measuring compressive strength at 7 
and 28 days, each. Mortar sample were designated with a 
label in the format of M- followed by the name of SCM, 
such as M-GS1 for the mortar sample incorporating GS1.

2.2.2 � Cumulative Heat Release and Bound Water Content 
from the R3 Test

Another method employed for assessing the reactivity 
was the R3 test, conducted in accordance with ASTM 
C1897 (ASTM C1897-20, Standard Test Methods for 
Measuring the Reactivity of Supplementary Cementi-
tious Materials by Isothermal Calorimetry and Bound 

Water Measurements 2020). In this test, a lime-Poz-
zolan paste was prepared using 10  g of SCM, 30  g of 
Ca(OH)2, 5  g of CaCO3, and 54  g of alkaline solution 
consisting of 4 g of KOH and 20 g of K2SO4 dissolved 
in 1 L of deionized water. The pH of the solution was 
approximately 13.6 as specified in Sivakumar et  al. 
(2021). For the R3 test, the paste was mixed for 2 min 
at 1600  rpm, and then placed into 20  mL ampoules 
for an isothermal calorimeter test. During the first 7 
days of hydration at 40  ºC, the isothermal calorim-
eter measured the heat of hydration. The cumulative 
heat values per gram of SCM at 3 and 7 days were 
considered as indicators of SCM reactivity. In addi-
tion, chemically bound water in the R3 paste at 3 and 
7 days was measured. For this purpose, the paste was 
crushed and pieces smaller than 2 mm, totaling about 
10 g, were placed in a crucible. The resulting specimen 
was dried in an oven at 105 ºC for 2 h. Approximately 
5 g of the dried specimen was heated at 350 ºC for 2 h 
in an oven followed by cooling in a desiccator for 1 h 
over silica gel. The bound water of samples is equal to 
the mass loss between 40 ºC and 350 ºC divided by the 
mass of dried sample at 40  ºC. (Avet et al. 2016). The 
weight loss between 105 ºC and 350 ºC is primarily due 
to dehydration of C–S–H.

2.3 � Establishment of Database for Machine 
Learning‑Based Models

In this study, seven SCMs were examined for their physi-
cal and chemical properties, as well as reactivity through 
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compressive strength and R3 tests. To identify the intri-
cate correlations between material properties and reac-
tivity of SCMs, ML-based models should be developed. 
For the ML model training, data were collected from both 
experimental results obtained in this study and literature 
sources. A thorough literature review was conducted to 
collect information on properties and R3 testing results 
of various SCMs. Given the recent standardization of 
the R3 test, several studies have utilized this method to 
evaluate the reactivity of SCMs, including CC, volcanic 
ash (VA), FA, BA, fluidized bed combustion (FBC) ash, 
and GGBFS. A total of 12 papers featuring the R3 test 
on SCMs was reviewed (Al-Shmaisani et  al. 2022; de 
Azevedo Basto et al. 2023; Flegar et al. 2020; Kaladharan 
et al. 2023; Kasaniya et al. 2022; Li et al. 2018; Parashar 
et  al. 2023; Sivakumar et  al. 2021; Vayghan et  al. 2021; 
Vladić Kancir and Serdar 2022; Weise et  al. 2021; Yoon 
et al. 2022), but only five provided the necessary physical 
and chemical properties of SCMs along with the R3 test 
results. By combining our experimental results with data 
from the literature review, a total of 46 data points for the 
ML model training was established, as shown in Fig. 2. It 
should be noted that all data used in this study are sum-
marized in Table 6 in Appendix A.

2.4 � Machine Learning‑Based Models for Predicting 
the Reactivity

Various ML models were utilized here to predict reac-
tivity of SCMs based on their material properties. Com-
monly employed ML models, including ANN, SVM, 
and RF models, which have been proven effective in 
analyzing construction materials (Li et  al. 2022; Yoon 
et  al. 2023; Yoon et  al. 2019), were employed. To facili-
tate comparison, a linear regression (LR) model was also 
incorporated. This section presents an overview of the 
characteristics of ML and LR models.

2.4.1 � Linear Regression (LR)
LR is a popular statistical method for estimating the out-
put data based on independent input parameters. LR fits 
a linear regression between the multiple input and output 
variables using the ordinary least square method. A gen-
eral form of LR is provided below:

where Y is the output (i.e., R3-based reactivity), Xi is the 
input variable (i.e., physical and chemical properties), and 
a0 and ai are the model coefficients. The optimization 
of model coefficients was carried out using the training 
data set, 80% of the database. Subsequently, the accuracy 
of the LR model was assessed using the testing data set. 
It should be noted that the identical training and testing 
data sets were utilized for all prediction models to facili-
tate meaningful comparisons.

2.4.2 � Artificial Neural Network (ANN)
ANN serves as a mathematical modeling tool designed to 
analyze intricate relationships between input and output 
data by utilizing a network of highly interconnected neu-
rons. The architecture of an ANN primarily comprises 
three layers: the input layer, hidden layer(s), and output 
layer (Eskandari-Naddaf and Kazemi 2017). The initial 
layer is the input layer, with the number of neurons cor-
responding to the number of input parameters. Upon 
the introduction of input data to the input layer, signals 
are transmitted to connected neurons in the hidden lay-
ers. Weighted signals from the hidden layers are fur-
ther conveyed to the associated connected layer, known 
as the output layer. This process can be mathematically 
expressed as follows (Shiuly et al. 2022):

(3)Y = a0 +
∑

aiXi,

(4)Y = f
(

∑

wixi + bi

)

,
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where wi is the weight, bi is the bias, and xi is the input 
variable, and f(x) is the activation function, and Y is the 
output value. The number of neurons in the output layer 
is equivalent to the number of output variables. It should 
be noted that in hidden layers, the quantity of neurons 
in each layer, as well as the number of hidden layers, can 
be adjusted based on the complexity of the relationship 
between input and output data. During the training of the 
ANN model, back-propagation is employed to fine-tune 
the weights and biases, aiming to minimize the mean 
square error (MSE) for predictions. The process contin-
ues until no further decrease in the MSE is observed. The 
optimal weights and biases for the ANN model are then 
selected to assess prediction accuracy using the testing 
data set.

2.4.3 � Support Vector Machine (SVM)
The SVM has been used for classification and regression 
developed by Vapnik (Cortes and Vapnik 1995). Initially, 
the SVM was mainly used for classifications based on an 
optimal separation of classes by selecting a hyperplane 
with the maximum margin between classes. With the 
use of a ε-insensitive loss function, SVM can also address 
nonlinear regression problems (Yu et al. 2018). The origi-
nal data set is transformed into a higher dimensional 
space through a kernel function, allowing SVM regres-
sion to operate in the feature space using a kernel func-
tion. The accuracy of SVM regression is influenced by the 
kernel functions (e.g., Gaussian and polynomial kernel). 
Due to the global optimization properties inherent in 
SVM regression, it can mitigate overfitting issues. In the 
present study, the Gaussian kernel function was selected, 
taking into account the nonlinearity of both input and 
output variables:

where hk means the nonlinear mapping function, wk 
denotes the connection weight vector, and b indicates the 
bias. The optimization for coefficients can be obtained 
by solving minimization with objective function. Details 
for SVM regression model are also specified in Yu et al. 
(2018):

2.4.4 � Random Forest (RF)
The RF algorithm is a composite of multiple trees, with 
each decision tree constructed using a training data set 
from the original training data through the bagging 
method (Breiman 2001; Han et al. 2019). When applied 
to regression problems, the RF model fits the output 

(5)f (x) =
∑

wkhk(x)+ b,

(6)Robj(C) =
C

m

∑

H [yk , f (xk)]+
1

2
�w�2.

variables using samples of the input parameters. For each 
input variable, data are partitioned at various points, and 
the MSE is computed at each division point. The node is 
then assigned the minimum MSE value. In addition, the 
significance of variables can be gauged by permuting the 
values of input variables and observing the changes in 
prediction accuracy in out-of-bag samples. The RF model 
provides insights into the importance and impact of each 
input parameter on prediction outcomes. The underlying 
principle involves assessing the influence of an input var-
iable, xj, on prediction by evaluating changes in MSE. The 
model’s prediction accuracy may decrease when the val-
ues of variable xj are permuted. Consequently, variables 
are individually permuted, and the resulting reduction 
in prediction accuracy is measured. A greater decrease 
in prediction accuracy indicates a stronger association 
between the permuted variable and the response. For 
feature importance analysis, permutation-based MSE 
reduction is utilized. The equation for feature importance 
can be expressed as follows (Han et al. 2019):

where TD(θi) is the ith tree predictor with D(θi) indicat-
ing bagged samples in ith tree. Dj

OOB(θ i) represents per-
muted variable xj in the out-of-bag (OOB) samples in 
D(θi) . K means number of tree predictors in the forest.

2.4.5 � Evaluation of Model Performance
The performance of ML-based models, namely ANN, RF, 
and SVM, was evaluated by comparing the accuracies of 
the actual and predicted values. Three statistical crite-
ria of correlation coefficient (r), root mean square error 
(RMSE), and mean absolute error (MAE) were utilized 
for this evaluation. The r value indicated the linear corre-
lation between the actual and predicted values, providing 
insight into the strength and direction of the relationship. 
To gauge the average error, two metrics of RMSE and 
MAE were utilized. RMSE calculates the square root of 
the average squared differences between actual and pre-
dicted values, offering measure of the overall accuracy. 
On the other hand, MAE computes the average absolute 
differences between target and prediction, providing a 
robust indicator of prediction accuracy. The following 
equations were used to determine each parameter:

(7)

Feature importance
(

xj
)

=

MSE
(

TD(θi)

)

−MSE
(

T
D
j
OOB(θ i)

)

1
K

∑K
i=1

(

MSE
(

TD(θi)

)

−MSE
(

T
D
j
OOB(θ i)

)) ,

(8)r =

∑

(x − x′)(y− y′)
√

∑

(x − x′)2
∑

(y− y′)2
.
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3 � Experimental Results
3.1 � Results of Modified SAI Test
Compressive strength of mortar samples, using mixture 
proportions outlined in Sect.  2.2.1, was evaluated after 
curing for 7 and 28 days, as shown in Fig. 3. At 7 days, 
M-GS2 exhibited the highest compressive strength, 
reaching 40.3 MPa. M-GS1, M-BA1, and M-BA2 showed 
a comparable 7-day compressive strength, ranging from 
28.0 to 34.6  MPa. Meanwhile, the compressive strength 
of M-BA2, M-FA1, and M-FA2 was approximately 
23.0  MPa at 7  days. At 28  days, a significant enhance-
ment in compressive strength was observed for M-GS1 
from 28.2  MPa at 7  days to 51.4  MPa. Because of the 
similar chemical and physical composition of GS1 and 
GS2, both M-GS1 and M-GS2 demonstrated a compara-
ble level of compressive strength exceeding 50 MPa, indi-
cating the high reactivity of GS series as SCMs. Samples, 
such as M-BA1, M-BA2, M-FA1, and M-FA2, showed 
compressive strength ranging from 31.1 to 37.7  MPa at 
28 days. The strength test confirmed that highly reactive 
GGBFS, such as GS1 and GS2, contributed significantly 

(9)RMSE =

√

1

n

∑

(y− y′)2.

(10)MAE(%) =
1

n

∑

∣

∣y− y′
∣

∣

∣

∣y′
∣

∣

× 100.

to the development of compressive strength at 28 days. In 
can be concluded that GS1 is a highly reactive SCM, as 
expected.

The relative strength in Fig.  3 was determined by cal-
culating the ratio of the compressive strength of SCMs-
incorporated samples to the control sample. At 7  days, 
relative strength was mostly below 100%, except for 
M-GS2. At 28  days, both M-GS1 and M-GS2 exhibited 
relative strength of 113.4% and 123.3%, respectively. 
These results indicate that GS series possessed good 
reactivity, suggesting that a 20% replacement of cement 
with GS can maintain the compressive strength of the 
control sample at 28 days. The relative strength of FA and 
BA series at 28 days ranged from 68.5% to 83.1%, indicat-
ing moderate reactivity.

3.2 � Cumulative Heat Release and Bound Water from the R3 
Test

The R3 test for all SCMs measured cumulative heat 
release and bound water content for 7  days to evaluate 
the reactivity. The results of cumulative heat release of 
the R3 paste incorporating SCMs are presented in Table 2 
and Fig.  4. The highest heat release, reaching 657.3  J/g 
of SCM, was observed for GS2, attributed to the reac-
tion of large amount of amorphous silica and Ca(OH)2 
in the R3 environment (Al-Shmaisani et  al. 2022). Simi-
larly, GS1 also exhibited a significant heat release. 
FA1, FA2, and BA1 showed a heat release of approxi-
mately 200  J/g of SCM at 168  h. In contrast, R3 pastes 
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incorporating BA2 displayed lower heat release of 76 J/g 
of SCM, respectively.

High cumulative heat release in the R3 paste corre-
sponds to an increased bound water content due to the 
generation of hydration products. Fig. 5 illustrates linear 
correlations between cumulative heat release and chemi-
cally bound water content. At 3 days, a moderate linear 
relationship was found with an R2 of 0.54. Meanwhile, a 
stronger agreement between cumulative heat and bound 
water was observed at 7  days, showing an R2 of 0.89. 
Based on the R3 test results, GS1 and GS2 can be classi-
fied as highly reactive materials, while BA and FA sam-
ples can be considered moderately reactive materials.

The results of the R3 test, including cumulative heat 
release and bound water content at 7  days, were com-
pared to the relative strength, as depicted in Fig.  6. 
Relationships between relative strength, cumulative 
heat, and bound water content exhibited good correla-
tions (R2 > 0.90). These findings indicate that the R3 test 
can effectively assess the reactivity of SCMs by isolat-
ing their reaction in a simulated cement hydration envi-
ronment while excluding the particle packing effect. 
Therefore, estimating the cumulative heat or chemically 
bound water of SCMs from the R3 test serves as a crucial 

parameter for comprehending and characterizing the 
chemical reactivity within a cementitious environment. 
This estimation can be enhanced by employing a ML-
based model, incorporating both physical and chemical 
properties of SCMs.

4 � Database Establishment Based on a Comparative 
Analysis

To develop a reliable and robust ML-based prediction 
model for assessing the reactivity of SCMs, it is impor-
tant to establish a comprehensive quality database. Based 
on literature review (Al-Shmaisani et al. 2022; Avet et al. 
2022; de Azevedo Basto et al. 2023; Vayghan et al. 2021; 
Yoon et  al. 2022), a total of 40 data set was collected, 
and combined with our experimental results of six data 
sets. The database encompasses various types of SCMs, 
including 9 FA, 5 GGBFS, 6 BA, 3 metakaolins, 5 CC, 
and other SCMs, such as volcanic ash, FBC ash, and 
blended SCMs. Each data set contained parameters, 
such as mean particle size (D50), specific gravity, amount 

Table 2  Results of cumulative heat release and bound water 
obtained from the R3 test

Cumulative heat release 
(J/g of SCM)

Bound water (g/100 g 
of dried paste)

3 days 7 days 3 days 7 days

R3-GS1 396.4 428.8 18.0 32.0

R3-GS2 499.2 657.3 14.0 36.0

R3-BA1 97.4 216.5 13.0 15.0

R3-BA2 66.2 76.0 4.0 5.0

R3-FA1 132.1 212.4 5.0 8.0

R3-FA2 118.0 199.8 8.0 9.0
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of chemical composition (e.g., SiO2, Al2O3, Fe2O3, and 
CaO) from XRF, and amorphous phase content quanti-
fied by XRD analysis, and reactivity based on cumulative 
heat at 7 days from the R3 test. All data used in this study 
are provided in Appendix A, and their minimum, maxi-
mum, average, and standard deviation are summarized in 
Table 3. Given the impact of particle size, density, chemi-
cal composition and amorphous phase on the chemical 
reactivities of SCMs evaluated by the R3 test (Londono-
Zuluaga et al. 2022; Wang 2023; Yoon et al. 2022), input 
and output parameters were defined as shown in Table 3.

Due to the diverse requirements for SCM proper-
ties and the limited availability of data, it is necessary to 
acknowledge the restricted number of available data sets. 
Moreover, it is noteworthy that many previous studies 
have preferred to evaluate SCM reactivity using the heat 
release rather than bound water content from the R3 test. 
This might be attributed to relatively larger interlabora-
tory variations observed in the bound water results due 
to sensitivity issues (Londono-Zuluaga et al., 2022). Thus, 
this study also utilized cumulative heat release value at 
7 days from the R3 test for the ML model development. 
For the training and testing phases of the ML models, the 
database was randomly divided into training (80%) and 
testing (20%) data sets. This approach ensures a robust 
evaluation of the developed ML models and enhances 
their predictive capability.

Fig.  7 illustrates the correlations between material 
properties and cumulative heat release. A moderate lin-
ear correlation between Al2O3 content and heat release 
is observed in Fig. 7f. This is associated with the higher 
evolution of heat during the hydration reaction of SCMs 
containing increased aluminate phases (Parashar et  al. 
2023). It can be inferred that the reaction products of alu-
minate-rich SCMs in the R3 environment may encompass 
ettringite, monosulfates, hemicarbonates, and monocar-
bonates, as identified by XRD analysis in previous studies 
(Parashar et al. 2023; Yoon et al. 2022). However, except 

for Al2O3 content, no distinct correlations were evident 
between the properties of SCMs and cumulative heat at 
7 days. This indicates the existence of a complex relation-
ship between material properties and chemical reaction 
of SCMs.

5 � ML‑Based Prediction Models for Evaluating 
the Reactivity

5.1 � ML‑Based Prediction Models
The accuracy of predicting the cumulative heat release of 
SCMs-incorporated R3 paste at 7  days was investigated 
using LR, ANN, SVM, and RF models. Each prediction 
model was trained and tested using the same data set. 
For the LR model, the updated coefficients for each input 
parameter can be expressed as follows:

where x1 ~ x7 indicate input parameters of particle size 
of D50, density, content of CaO, SiO2, Al2O3, Fe2O3, 
and amorphous phase, respectively. The ANN model, 
comprising 20 neurons in each of the 5 hidden layers, 
utilized the scaled conjugate gradient backpropagation 
method for training. The tangent sigmoid transfer func-
tion served as the activation function. The SVM model 
employed the Gaussian kernel function, considering the 
nonlinearity of input and output variables, with fine-
tuned hyperparameters related to box constraint and ker-
nel scale. The RF model, comprising 100 regression trees, 
used the ensemble aggregation algorithm of least-squares 
boosting. Since it is a boosting algorithm, the ensemble 
was composed of regression trees allowing a maximum 
of 5 splits, and a learning rate of 0.1 was selected.

The results for each prediction model are summa-
rized in Fig. 8 and Table 4. Due to the complex relation-
ship between inputs and cumulative heat release, the LR 
model exhibited poor prediction accuracy, indicated by 
a high training MAE of 42.2%, suggesting an underfit-
ting problem. For the ANN model, the training and test-
ing MAEs were 9.2% and 9.6%, respectively. The RF and 
SVM models exhibited 10.8% and 8.9% training MAEs, 
respectively. Meanwhile, their testing MAEs were 22.0% 
and 21.5%, respectively. Consequently, it was observed 
that the ANN model demonstrated a good performance 
in predicting the cumulative heat release of R3 pastes.

With respect to the centered RMSE, r value, and stand-
ard deviation, the performance of different prediction 
models on the testing data was compared using a Tay-
lor diagram, as depicted in Fig. 9. It should be noted that 
centered RMSE can be obtained using a below equation:

(11)
y =− 64.2− 1.5x1 − 538.1x2

+ 1228.5x3 − 1619.2x4

− 394.8x5 + 138.3x6 + 343.0x7,

Table 3  Summary of the database

Min Max Average Standard 
deviation

Inputs Particle size (D50) (μm) 2.2 79.5 16.0 14.7

Density (g/cm3) 2.10 3.66 2.60 0.31

CaO 0% 45.1% 10.8% 13.5%

SiO2 21.3% 91.5% 53.1% 13.5%

Al2O3 0.2% 43.8% 19.6% 9.6%

Fe2O3 0.2% 31.0% 5.8% 6.5%

Amorphous phase 18.8% 100% 72.8% 20.8%

Output Cumulative heat 
at 7 days (J/g SCM)

76.0 1014.1 339.4 216.4
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where a and b indicate average of target and prediction 
from the ML models. In general, ML-based prediction 
models exhibited superior performance when compared 
to the LR model. The standard deviation for ANN, RF, 
and SVM models ranged from 43.1 to 100.6. Among 
these ML models, the RF model displayed the lowest 
standard deviation. In terms of centered RMSE, for the 
ANN model, it achieved the lowest RMSE at 22.5, cou-
pled with the highest r of 0.97, indicative of its robustness 
and excellent performance. The other ML models, SVM 
and RF, had centered RMSE values of 100.6 and 63.6, 
respectively, with correlation coefficients of 0.21 and 
0.79. In contrast, the LR model exhibited a higher RMSE 
of 114.2. These results affirmed that the ANN model 
demonstrated notable effectiveness and robust perfor-
mance compared to the other models evaluated.

(12)centeredRMSE =

√

RMSE2 −
(

a− b
)2

,
5.2 � Feature Importance
Feature importance analysis is valuable in understanding 
crucial input parameters for predicting a target, and this 
can be achieved through the RF model using Eq.  (7). As 
depicted in Fig.  10, the relative importance of each input 
parameter on cumulative heat release was determined. 
Notably, Al2O3 exhibited a significantly high relative 
importance compared to other parameters. This promi-
nence can be attributed to the fact that the early-age heat 
of hydration of cementitious materials and the reaction of 
SCMs are predominantly influenced by the Al2O3 content. 
This might be attributed that highly reactive SCMs, such as 
calcined clay, GGBFS, and metakaolin, tended to contained 
relatively larger amount of Al2O3. This estimation corre-
sponded to the results provided in Fig. 7f. A robust linear 
correlation between cumulative heat release at 7 days and 
the Al2O3 content of SCMs was identified.
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6 � Discussion
In Sect. 5, it was determined that the ANN model exhib-
ited the highest prediction accuracies, boasting training 
and testing MAEs of 9.2% and 9.6%, respectively. The 
results for all 46 data points are depicted in Fig. 11. On 
the whole, the target and prediction outcomes from the 
ANN model displayed acceptable correspondence. This 
indicates that various types of SCMs exhibited satisfac-
tory agreement in predictions, even in the presence of 
notable variations in their material properties.

To assess the effect of various types of SCMs on reac-
tivity, as indicated by cumulative heat release at 7  days, 
a comparison of ANN-based prediction results based on 
SCM types was conducted. For a comprehensive analysis, 
material properties in terms of D50, density, amorphous 
phase, SiO2, Al2O3, Fe2O3, CaO were normalized in a 
range of 0 to 1 using the min–max normalization equa-
tion as follows (Yoon et al. 2023):

(13)xnor =
x − xmin

xmax − xmin
.
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Table 4  Prediction accuracies in terms of MSE, MAE, and r 

Training Testing

MAE (%) RMSE r MAE RMSE r

LR 44.7 135.3 0.81 42.2 114.2 0.53

ANN 9.2 48.4 0.98 9.6 33.4 0.97

RF 10.8 37.4 0.99 22.0 106.8 0.21

SVM 8.9 51.6 0.98 21.5 82.1 0.79
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Substantial variations in physical and chemical prop-
erties were observed for SCMs in the same category, 
such as CC, Class F FA, BA, and metakaolin as shown in Fig. 12a–c, and e. However, despite these differences, 

they exhibited good linear correlations with a R2 higher 
than 0.90 due to the excellent robustness of the ANN 
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model and quality of the database. In case of GGBFS, 
a good agreement between the target and prediction 
results was also observed. However, its R2 value was as 
low as 0.04 due to closely located data points. This could 
be attributed to slightly different cumulative heat release 
values despite very similar physical and chemical prop-
erties of GGBFS (see Table 5). To precisely estimate the 
reactivity of GGBFS, incorporating additional relevant 
input parameters, such as fineness, LOI, carbon content, 
and other chemical compositions (MgO, K2O, Na2O, etc.) 
might be needed (Blotevogel et al. 2020; Zhu et al. 2020).

7 � Conclusion
In this study, an extensive exploration of the relationship 
between material properties and the reactivity of various 
SCMs was undertaken using ML models. The investiga-
tion encompassed six SCMs, including GGBFS, FA, and 
BA, with a focus on their physical and chemical proper-
ties. Experimental identification material characteris-
tics and reactivity tests, including the modified SAI and 
R3 test were conducted. A total of 46 database, obtained 
through experimental results and literature review, were 
utilized for training ML models, such as ANN, SVM, 
and RF. The ANN model exhibited favorable prediction 
results, leading to the following conclusions.

•	 Commonly used SCMs of GGBFS and FA and non-
conventional SCMs of BA were used for material 
characterization and reactivity test. Reactivity test 
included the modified SAI and R3 test in terms of the 
bound water and cumulative heat release. Good cor-
relations were observed between the results of the 
modified SAI and R3 test. Based on this, reactivity 
of SCMs can be classified into good (GS1 and GS2), 

moderate (BA1, FA1, and FA2), and low (BA2) reac-
tivities.

•	 A comprehensive database integrating material prop-
erties and R3-based reactivity was established, combin-
ing experimental results and literature data. Critical 
input parameters, including particle size of D50, den-
sity, chemical composition of SiO2, Al2O3, Fe2O3, and 
CaO, and amorphous phase were selected based on 
their correlations with reactivity. This data set, com-
prising 46 entries, served as the foundation for ML 
model training.

•	 The ANN model demonstrated the highest prediction 
accuracies, achieving a testing MAE of 13.5% com-
pared to SVM and RF models. Further investigation 
into prediction results considering different SCM types 
revealed a generally high level of agreement. Notably, 
GGBFS, despite having similar material properties, 
exhibited slightly differences in R3-based heat release. 
Recommendations were made to enhance accuracy for 
GGBFS by incorporating additional input parameters, 
such as fineness.

In summary, this study contributes valuable insights into 
predicting SCM reactivity, emphasizing the efficacy of ML 
models, particularly the ANN model, for informed mate-
rial selection and optimization in concrete applications. 
The findings underscore the importance of comprehen-
sive databases and considerations of specific input param-
eters for accurate predictions, setting the stage for further 
advancements in SCM reactivity modeling.

Appendix
See Table 6.

Table 5  Characteristics of GGBFS in terms of material properties and 7-day cumulative heat release from the R3 test

GGBFS D50 (μm) Density (g/cm3) Amorphous 
phase (%)

SiO2 (%) Al2O3 (%) Fe2O3 (%) CaO (%) Cumulative heat release 
at 7 days (J/g of SCM)

Target Output (ANN)

#1 9.3 2.89 98.5 32.9 13.7 0.6 45.1 428.8 542.4

#2 9.8 2.87 98.0 33.0 14.4 0.5 43.6 657.3 547.5

#21 8.6 2.93 95.5 35.2 10.6 1.5 39.0 510.0 479.1

#39 17.2 2.48 96.5 35.7 11.9 0.8 41.4 503.8 500.7

#40 14.3 2.66 91.8 34.1 19.9 0.5 33.0 558.8 501.3
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