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Abstract

The current KDS 14 design method yields reasonable accuracy with acceptable safety in assessing the unbalanced
moment-carrying capacity of slab—column connections. However, the model requires considerable computational
effort owing to the effects of various design parameters, particularly the gravity-load effect. This study proposes

a method to simplify the KDS 14 model to evaluate the unbalanced moment-carrying capacity of slab—column
connections. In the proposed method, the gravity-load effect is decoupled from equations used for evaluating
unbalanced moment-carrying capacity components. Subsequently, the total unbalanced moment-carrying capac-
ity is determined by establishing an interaction between the gravity shear ratio and unbalanced moment compo-
nents without considering the gravity-load effect. For practical design purposes, final simplified design equations
are proposed. The reliability of the simplified method is validated based on a comparison with the current KDS 14
design code using a comprehensive database encompassing interior, exterior, and corner slab—column connec-
tions. Furthermore, a parametric study based on the proposed simplified approach, current design codes, combined
with finite-element (FE) analysis is performed to elucidate the effects of constituents on the unbalanced moment-
carrying capacity of corner slab—column connections. The results show that the proposed simplified model and KDS
design method are strongly correlated with the experimental and FE results for a range of design parameters. Mean-
while, the ACI 318 model consistently provides a lower limit for strength prediction, thus yielding overly conservative
and safe results compared with the test and FE results in most cases.

Keywords Slab—column connections, Strength model, Eccentric shear, Punching shear strength, Unbalanced
moment

1 Introduction on columns and serve as both the ceiling and floor of a

Reinforced concrete flat-plate structures have been
adopted increasingly in medium- and high-rise residen-
tial building construction owing to their simplicity and
efficiency in architectural planning. These structures are
characterized by using concrete slabs directly supported
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building, thus eliminating the requirements for beams or
girders. However, punching shear failure in slab—column
connections is a critical issue in the design and perfor-
mance of flat-plate systems. This type of failure occurs
when the applied load exceeds the shear capacity of the
slab around the column, thus causing an abrupt brit-
tle failure that can result in significant damage or even
structural collapse. Fig. 1 shows an incident of punch-
ing shear failure at a slab—column connection, which
resulted in a progressive collapse of the entire flat-plate
system in the UK in 1997 (Russell, 2015; Wood, 2003).
Notably, edge connections are subjected to both gravity
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loads transmitted directly through columns and unbal-
anced moments originating from various sources such
as irregular layouts, differential settlements, and lateral
loads. Therefore, additional shear stress is introduced in
the connections, thereby significantly increasing the risk
of punching shear failure.

The failure mechanism and structural performance of
slab—column connections without shear reinforcement
subjected to combined gravity loads and unbalanced
moments are intricate and depend significantly on fac-
tors such as the position of the column in the structural
plane (e.g., interior, exterior, and corner connections)
(Himawan, 2012; Park et al., 2007), the gravity-load lev-
els (Morrison et al., 1983), and the flexural reinforcement
ratio of the slab (Drakatos et al., 2016). The gravity-load
level is typically represented by the gravity shear ratio
(Vo/¢V,) between the direct shear force transferred by
the critical section around the column and the nominal
shear strength of the connections. Extensive experimen-
tal and theoretical investigations have been conducted to
elucidate the shear behavior of slab—column connections
subjected to unbalanced moments. However, the amount
of experimental data available for exterior and corner
connections is considerably less than that for interior
connections. Findings from experiments conducted by
Pan and Moehle (1989), Robertson and Johnson (2006),
and Tang et al. (2019) showed that an increase in the
gravity shear ratio reduced the unbalanced moment-car-
rying capacity, deformation capacity, and lateral stiffness
of interior slab—column connections. However, studies
by Stamenkovic and Chapman (1974) and Giduquio et al.
(2019) pertaining to corner slab—column connections
showed that the unbalanced moment-carrying capac-
ity increased with the gravity shear ratio, as opposed to
interior connections. Based on this observation, Moehle
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(1988) suggested a bilinear rectangular moment—shear
interaction for edge connections. Meanwhile, Robert-
son and Johnson (2006) and Choi et al. (2007) reported
that an increase in the slab flexural reinforcement ratio
enhanced the unbalanced moment-carrying capaci-
ties and lateral stiffness of slab—column connections
but reduce their lateral deformation capacity. Nonethe-
less, Drakatos et al. (2016) demonstrated that when the
gravity shear ratio approached 0.6, the increase in the
slab flexural reinforcement ratio minimally affected the
unbalanced moment-carrying capacities of slab—column
connections experiencing punching shear failure.

In the current design codes, different design
approaches are employed to evaluate the unbalanced
moment-carrying capacities of slab—column connec-
tions in flat-plate systems. The American Code (ACI
318-19, 2019), Chinese Code (GB50010-2019, 2019),
and European Code (EC2, 2002) adopted the eccen-
tric shear-stress model, primarily based on test results
from interior connections, which were then adjusted
for exterior and corner connections. In the design
provisions, the eccentric shear stress is assumed to be
linearly distributed in the critical section for a simple
and practical design. The unbalanced moment-carrying
capacity can be indirectly determined from the maxi-
mum shear stress in the critical section around the col-
umn by assuming a linear moment—shear interaction.
Meanwhile, the Korean Standard KDS 14 20 22 (2021)
evaluates the unbalanced moment-carrying capacity
based on the shear strength model originally developed
by Choi et al. (2014). This model determines the unbal-
anced moment-carrying capacity based on the eccentric
shear strength at each face of the critical area around
the slab—column connections, i.e., separate from the
direct punching shear strength. A summary of design
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Fig. 1 Punching shear failure at slab—column connections: Piper's Row Car Park, Wolverhampton, UK, 1997 (Wood, 2003)
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equations based on ACI 318-19 and KDS 14 is provided
in Appendix A. Fig. 2 provides a comparison of unbal-
anced moment-carrying capacity predictions for the
existing comprehensive test datasets of slab—column
connections (see Tables 1, 2, 3) between ACI 318-19
and KDS 14, where variations in gravity shear ratios
(Vo/¢V,) are considered. In general, KDS 14 demon-
strated better and safer predictions than ACI 318-19,
irrespective of the gravity shear ratio. Particularly, as
shown in Fig. 2b and c, the current design method of
ACI 318-19 presents overly conservative predictions
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for exterior and corner connections subjected to high
levels of the gravity shear ratio (V,/¢V, >0.6).

Despite the advantages of KDS 14 20 22 in comparison
to ACI 318-19 for assessing the unbalanced moment-
carrying capacities of slab—column connections, the
current provision requires considerable computational
effort owing to various influencing design parameters.
Notably, as listed in Table 5, the calculation procedure
is challenging for exterior and corner connections with
asymmetrical critical sections, where the existing grav-
ity stress (v,) transferred by the columns complicates
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Fig. 2 Unbalanced moment prediction based on KDS 14 and ACI 318-19
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the determination of the unbalanced moment-carrying
capacity (M ¢pg) induced by the eccentric shear stress
at the side. This complexity arises from the necessity to
establish the neutral-axis locations (cy; and cy,) of the
shear-stress distribution based on the force equilibrium
while considering the gravity-load effect. Therefore, the
current KDS model needs to be simplified further to
enhance its applicability in design practices.

In this study, a method is proposed to simplify the
KDS 14 design method for evaluating the unbalanced
moment-carrying capacities of slab—column connec-
tions. In the proposed method, the influence of gravity
load is decoupled from equations for evaluating unbal-
anced moment-carrying capacity components. Subse-
quently, the total unbalanced moment-carrying capacity
is determined by establishing an interaction between
the gravity shear ratio and unbalanced moment compo-
nents without considering the gravity-load effect. Next,
simplified design equations are proposed. The reliability
of the simplified method is verified by comparing it with
the original KDS 14 design code based on a comprehen-
sive database encompassing interior, exterior, and corner
slab—column connections. Additionally, a parametric
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study combined with finite-element (FE) analysis is per-
formed to elucidate the effects of constituents on the
unbalanced moment-carrying capacity of corner slab—
column connections.

2 Development of Simplified Method for Slab-
Column Connections Subjected to Unbalanced
Moment

2.1 Unbalanced Moment-Carrying Capacity Without

Considering Gravity-Load Effect

Fig. 3 shows the components of the resisting moment
of interior, exterior, and corner slab—column connec-
tions based on the KDS 14 design method. The total
unbalanced moment-carrying capacity is determined
as the summation of three main components: the flex-
ural moment-carrying capacity (Mg ps), the unbalanced
moment-carrying capacity due to the eccentric shear at
the front/back (Mg yps), and the unbalanced moment-
carrying capacity at the sides (M yps):

M, xps = Mg xps + Msxps + Mrt,kDs- (1)

Interior
slab-column connections

slab-column connections

Corner
slab-column connections

Exterior

Fig. 3 Components of resisting moments of interior, exterior, and corner slab—column connections
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The design equations of KDS 14 20 22 are summarized
in detail in Table 5 in the Appendix. In KDS 14 and as
shown in Fig. 3, the front and back indicate the faces on
which the flexural moment induced by the lateral load
is added to or subtracted from the flexural moment
induced by the gravity load, respectively, whereas the
faces orthogonal to the front and back are defined as the
sides. Additionally, owing to the asymmetry of the critical
section for exterior and corner slab—column connections,
KDS 14 distinguishes the front, back, and side locations
based on the load case, as shown in Table 5. Here, Elf
and E;, are the load cases in which unbalanced moments
whose axes are parallel to the free edge of the slab are
added to or subtracted from the unbalanced moment
developed by the gravity load, respectively.

As mentioned previously, incorporating gravity stress
(v) in the design equations requires considerable com-
putational effort. Therefore, in the first phase of the pro-
posed method, the gravity-load effect was decoupled
from the components of the unbalanced moment-car-
rying capacity owing to the eccentric shear at the front/
back and sides. Accordingly, the unbalanced moment-
carrying capacities at the front/back (Mg,) and sides
(My,) without considering v, are expressed as follows:

« For interior connections:

Mso = [vales +dd] (c1 + ), @)
4 +d\?
MT,a = gvn,T <Cl ) > ’ (3)

where v, and v,; are the shear stress capacities at the
front/back and sides of the connections, respectively (see
Table 5 in the Appendix).

« For exterior connections:

Fig. 4 shows the eccentric shear-stress distribution at
the sides for the case of exterior connections (load case
E,) based on the KDS 14 model. In the presence of a
gravity load (Fig. 4a), the neutral-axis locations (c,; and
¢\p) of the shear-stress distribution were determined
to satisfy the force equilibrium for a specified gravity
load (direct shear stress). Therefore, the (cy;/cpp) ratio,
based on the analysis of the test database (see Table 2),
was strongly correlated with the gravity shear ratio; the
higher the gravity shear ratio, the higher was the (c);/cyy)
ratio. Based on KDS 14 (see Eq. (40)), the values of ¢y,
and ¢, are to be determined meticulously based on two
cases (cyp=>cyp) and (cyp <cpp). When the gravity load
was not considered (Fig. 4b), owing to the only effect
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0.6 08 1 0 02 04 06 08 1

VoV,
(b) Eccentric shear stress at sides
without considering v, effect

(a) Eccentric shear stress at
sides considering v, effect

Fig. 4 Eccentric shear stress at sides of exterior slab—column
connections with and without considering gravity-load effect

of the shear-stress capacity (v,) at the front, the neutral
axis of the shear-stress distribution consistently deviated
toward the front, thus resulting in cy; being less than cy,.
Accordingly, Mg, and My, can be derived without con-
sidering the effect of v, as follows:

Ms,o = Msxps = 0.5v,(ca + d)d(c1 + d), (4)

2 C1
Mr,o = {361\11 +cno — 5~ 6} (en1/en2)VaTdent

1 c
+ |:—CN2 + 2 + e} VuTdeno,

3 2
(5)
where
¢N1+eng =c¢1 +05d +e, (6)
vur(c1 + 0.5d + e)?

N2 = <c1+05d+e.

N2 var(2c1 +d +e) —vu(co +d) — !
(7)

+ For corner connections:

Using a similar approach, Mg, and My, can be derived
for load case E;; without considering the effect of v, as
follows:

Ms,, = Msxps = 0.5v,(ca + 0.5d)d(c1 + d), (8)
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2 c cN1/c 2
My, = {m P e] (en1/ Nz)vnT dext s — 0.5v,7(c1 + 0.5d + e)
3 2 2 vur(c1 + 0.5d + e) — vy(ca + 0.5d) (11)
1 c v < . .
+—cena+ = +e| 2 deys, <c1+05d+e
3 2 2
) . , ,
h 2.2 Interaction Between Gravity Shear Ratio
where and Unbalanced Moment
en1 = c1 +0.5d + e — cna, (10)  In the second phase, considering the effect of gravity load

¢=137-450 (mm), d=48.8-127 (mm)
f,=15-45.7 (MPa), £;=315-524 (MPa)
p~0.004-0.015, ¥,/ V,~0.1-1.0

(direct shear stress) on the unbalanced moment-carrying

Analytical data point
— Simplified relationship

/E 1.0
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t. 08
53
E -
= 0.6
2 L
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= 04
= M
2 V.
3 02 7
02 bt o 107 )
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0.0 0.2 0.4 0.6 0.8 1.0 1.2
VoY,

¢c=100-495 (mm), d=41-140 (mm)
[4=20.7-51.5 (MPa), £,=365-496 (MPa)

c

p0.005-0.018, V,/p¥,=0.1-1.0

(a) Interior connections
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©n T > >
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VAV, VoV,
(b) Exterior connections
¢=100-406 (mm), d=60-168 (mm)
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2 3.
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(c) Corner connections

Fig. 5 Gravity shear ratio-normalized unbalanced moment interactions of slab—column connections
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capacity of slab—column connections, the relationship
between the gravity shear ratio and unbalanced moment
without considering the gravity-load effect, as presented
in Sect. 2.1, was established. Fig. 5 illustrates the grav-
ity shear ratio-normalized unbalanced moment, which
was derived via a parametric study for various types of
slab—column connections. The analytical models of the
slab—column connections used for the parametric study
exhibited identical geometrical and material characteris-
tics with those of the experimental datasets for interior,
exterior, and corner connections, as listed in Tables 1, 2,
3. The variable for parametric analysis is the gravity shear
ratio (V,/¢V,,), which ranged from 0.1 to 1.0.

Fig. 5a shows the relationship between (M; ;ps+Mryps)
[see Egs. (36) and (37)] normalized by (Mg,+M7,) [see
Egs. (2) and (3)] and the gravity shear ratio for the inte-
rior connections. For a safe design, the following equation
is proposed to determine the total unbalanced moment-
carrying capacity of the interior connections, where the
gravity-load effect is considered:

V,
Mn,prop = MF,o + (MS,O +MT,0) (1 —0.7 & )
¢V

(12)

Fig. 5b and c shows the relationship between Mg

[see Egs. (40, 43, 46, 49)] normalized by the correspond-

ing My, (see Eq. (5)) and the gravity shear ratios for the

exterior and corner connections, respectively. For a safe

design, the following equation is proposed to determine

the unbalanced moment-carrying capacity of the exterior

and corner connections while considering the gravity-
load effect:

+ Forload case E;

Miy,prop = ME,o + Ms,o + Mrp. (13)

+ Forload case E

Mn,prop = MF,o +MS,0 + (iMT,o (1 - ¢V‘§M> = MT,u)o
(14)
Fig. 6 shows the correlation among the unbalanced
moment-carrying capacities of the interior, exterior, and
corner connections for various load cases predicted by
the KDS 14 design method (M, xps) and the proposed
method (M, ,,,) using Egs. (12-14) and the experi-
mental dataset. Furthermore, Fig. 7 shows a compari-
son of the unbalanced moment-carrying capacity ratios
M, o5t/ M, prop Detween the test results and the results
predicted based on KDS 14 and the proposed method. In
general, the proposed and KDS design methods showed
satisfactory agreement.
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Fig.6 Comparison between M, «psand M, o,

2.3 Simplified Design Equations

In this section, the unbalanced moment-carrying capaci-
ties at the sides, without considering the v, effect, M,
are simplified for design purposes. For exterior connec-
tions (load case E lf), Eq. (7) can be reformulated as:

CN2 1

c+05d+e o_ ( Czﬁﬁd).
VT \ €1+0.

(15)

Equation (15) suggests that the distance (cp,) from
the back to the neutral axis of the shear-stress distribu-
tion normalized by the side edge of the critical section
(¢;+0.5d +€) can be presented as a function of the aspect
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Fig. 7 Unbalanced moment predictions based on KDS 14
and proposed method
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ratio of the column section (c;/c,) and the strength ratio
(v,/v, 1) (refer to Table 5). This relationship is depicted in
Fig. 8, utilizing a comprehensive parametric study of ana-
lytical models of slab—column connections with different
design parameters, combined with the analysis results
of the test specimens (Tables 2 and 3) for exterior and
corner connections. The parametric study incorporated
a wide range of design parameters: ¢; =100-700 (mm),
¢,/¢;=0.5-2.5, d=90-250 (mm), f,,=20-50 (MPa), and
p;=0.004-0.015.

Fig. 8 shows that by disregarding the gravity-load effect,
as (¢,/c,) (v, 7/v;,) increased, the normalized distance cy,
decreased and converged to approximately 0.6. Based on
the relationship [cn1 + cn2 = ¢1 + 0.5d + e], the follow-
ing simplified equations are derived for exterior connec-
tions to determine cy; and ¢y, for load case E; ¢

ent = 0.25(c; + 0.5d + e) [(“) (V"T> _ 1],
(&) Vn
(16)
C1 Vn, T
cno = 0.25(c; + 0.5d + e) [— (c) (v) + 5] ,
2 n
(17)

wherel < (%) (V‘f—MT
The unbalanced moment-carrying capacities at the
sides (as expressed in Eq. (9)) can be represented in the

following equivalent form:

) <25.

1 c
Mt =— |:VnT + <m>vnT:| (c1 +0.5d + e)
6 CN?2

(c1 —d +4e)d + 0.5d(d — 2e)
CN1

(CN

N2

(18)
)vnT(cl + 0.5d + e).
By substituting Eqs. (16) and (17) into Eq. (18), the final

simplified expression for directly calculating My, is as
follows:

1.2
1.0 =
<
v 0.8
=
g 0.6
\\-; L
5 04 r Analytical parameters: X Parametric analysis
02 [ ¢,=100-700 (mm),‘ 2 €1/6=0.5-2.5 OTest specimen analysis
. d=90-250 (mm), /,=20-50 (MPa)  _ _ Simplified relationship
0 0 I /)FOIOO470I015 1 1 1 1 1 1 1
o 1 2 3 4 5 6 7 8 9 10

(C] /Cz)(vn,r /Vn)
(b) Corner connections
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2.0 -
Analytical parameters:
T =250-800 (mm), ¢/c,=0.2-8.0
$ 1.6 d=90-500 (mm), /;=20-50 (MPa)
3 | »70.004-0.015
§§
~

S
s&‘

¢ /¢

(a) Exterior connections

Fig. 9 Relationship between M;/Mr, gy, and column aspect ratio

1
MT,o_simp =8VHTd(CI +0.5d + e)

4(c; +2d —2¢) | (19

(e ur
(8) () +5
For corner connections, a simplified expression for

directly calculating My, (load case E;) can be deduced
using a similar approach as follows:

—3d + 6e +

1
MT,o_simp zﬁVan(Cl + 0.5d + e)

4(c1 +2d — 2e) (20)

~(&)() +o

—3d + 6e +

where 2 < (C—l> (V”—T) < 3.5.

c Vi

The simplified expression for directly calculating the M,
of the exterior and corner slab—column connections for
load case E;;, can be determined using a similar method-
ology. Finally, to present the proposed simplified method,
the unbalanced moment-carrying capacity equations are
summarized in Table 4 separately for interior, exterior, and
corner slab—column connections.

« For interior slab—column connections:

Vg
Mysimp = Mo+ (Ms,o +Mr,) (1 — 0.7¢V .
n

(21)

« For exterior and corner slab—column connections:

Load case Ey;
Mpsimp = MF,0 + Ms,o + MT,0_simp- (22)

Load case E;;:
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Fig. 10 Unbalanced moment predictions based on simplified
method
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Mn,simp :MF,O + MS,o

5 Vy
+ (SMT,o_simp (1 - ¢Vn> =< MT,o_simp> .

(23)
For the application of the proposed simplified model in
design practice, Fig. 9 presents the ratio between the unbal-
anced moment-carrying capacities at the sides (M) of the
exterior and corner slab—column connections, determined
based on the KDS model without considering the gravity
load effect and My, g, according to the variation of col-
umn aspect ratio (c;/c,). As the ¢;/c, ratio increases, the
My, /My, gy increases, indicating a pronounced differ-
ence between My, and My, .. Thus, it is recommended
that the applications of the proposed simplified method be

limited to the range of column aspect ratio as follows:

max (c1/cp,c2/c1) <5.

(24)

(¢) Reinforcement details

Fig. 11 Three-dimensional FE model of corner slab—column connections
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3 Assessment of Simplified Approaches

The reliability of the proposed simplified model pre-
sented in Table 4 was evaluated by applying to a compre-
hensive database of slab—column connections collected
from previous publication sources (Cheng & Giduquio,
2014; Choi et al., 2007; Giduquio et al., 2019; Luo et al,,
1995; Moehle., 1988; Tian et al.,, 2008). The datasets,
which comprised 50 interior connections, 36 exterior
connections, and 22 corner connections, are summarized
in detail in Tables 1, 2, 3. The data included a wide range
of experimental parameters: for interior connections,
137 mm<c¢; (or ¢,) <450 mm, 48.8 mm<d <127 mm,
15 MPa<f,; <457 MPa, 0.004<p;<0.015, and
315 MPa< fy§524 MPa; for exterior connections,
100 mm<¢; (or ¢;) <495 mm, 41 mm<d<140 mm,
20.7 MPa<f,;<51.5 MPa, 0.005<p;<0.018, and
365 MPa<f <496 MPa; and for corner connections,
100 mm<¢; (or ¢,) <406 mm, 60 mm<d<168 mm,

V' )
-------- Loading block
Rollc;r support

'/I'
>* Out-of-plane
support

AN

Steel plate

% Roller support

4
(b) Three-dimensional FE model

(d) FE mesh
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20.7 MPa<f,;,<489 MPa, and
379 MPa<f, <720 MPa.

The experimental and predicted unbalanced moment-
carrying capacities based on the simplified method for
different types of slab—column connections are sum-
marized in Tables 1, 2, 3, and a plot of their strength
ratios (M, o /M, gimp,) against the gravity shear ratio (V,/
¢V,) is shown in Fig. 10. The 5% fractile (P s) criterion
(CEN, 2002), which is generally accepted as a character-
istic value of resistance in limit-state theory (CEN, 2002),
was utilized to appraise the safety of the load-bearing
units. The closer the 5% fractile value is to unity, the
higher is the safety level. It should be noted that for the
cases of corner connections, the moment component
M,=(Mg+ M) caused by eccentric shear is reduced by
a factor of 50% to take into account the biaxial effect of
applied unbalanced moment, as followed the failure cri-
terion in KDS 14 (refer to Appendix A2).

As shown in Fig. 10, the proposed simplified method
can reasonably predict the unbalanced moment-carry-
ing capacity of the slab—column connections listed in
Tables 1, 2, 3 with a wide range of gravity shear ratios.
Specifically, for interior connections, the obtained mean
M, o5t/ M, 5imp Tatio was 1.25 and the coefficient of varia-
tion was 0.16; correspondingly, for exterior connections,
the values were 1.33 and 0.26, respectively, and for corner
connections, the values were 1.42 and 0.25, respectively.
Compared to the original KDS 14 design method (see
Fig. 2), the simplified method maintained a similar accu-
racy level. Additionally, an acceptable safety level was
achieved by adopting the simplified method, as indicated
5% fractile values of 0.92, 0.97, and 0.84 for the interior,
exterior, and corner connections, respectively.

0.0031<p,<0.0113,

4 Parametric Study Using FE Analysis

In this study, a parametric study was performed to
analyze the effects of different design parameters on
the unbalanced moment capacities of slab—column
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connections. Owing to the limited available test data, the
case study performed focused on corner connections,
which were critically affected by unbalanced moments
owing to the geometric asymmetry in both directions.
Results from the parametric study using the proposed
simplified model were compared with the available lim-
ited data as well as with augmented simulation results
from FE analysis.

4.1 Finite Element Analysis

4.1.1 Finite Element Model

To investigate the unbalanced moment-carrying capac-
ity of corner slab—column connections, a nonlinear FE
model was developed to validate the test program exe-
cuted by Giduquio et al. (2019). Specimen G1 from this
study was chosen for FE analysis due to its exposure
to both gravity and lateral cyclic loads, resulting in an
unbalanced moment. The loading and boundary con-
ditions of the FE model replicating the experiment are
presented in Fig. 11. The FE models were established
using the commercial DIANA 10.5 program (Chai &
Chai, 2020). The experimental (Giduquio et al., 2019)
and simulated test setups are shown in Fig. 10a and b,
respectively. The 20-node isoparametric solid brick ele-
ment (CHX60) available in the DIANA program, which
is based on quadratic interpolation and Gaussian inte-
gration, was used to simulate the nonlinear behavior of
concrete. Meanwhile, a three-dimensional (3D) truss ele-
ment was employed to model the steel rebar.

As shown in Fig. 11b, the column base was fixed to a
steel block mounted on the hinge support, whereas the
top of the column was attached to a steel block connected
to the deformation support restrained in the X-direc-
tion, where lateral loading was generated. Based on the
actual test configuration, out-of-plane restraining condi-
tions were imposed at the top of the column to prevent
displacement in the transverse direction (Y-direction).
For the concrete slab, the three corners were supported

Compression op
o A TA
O'/ﬁ S,u Ee gc;/3 > f
| & u
1 k Tinax
j A .
G./h -1 fal3 : : /
I I
. ! ! 17
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(a) Concrete

Fig. 12 Material constitutive models used for FE analysis

(b) Reinforcing steel

(c) Bond-slip between
reinforcement and concrete
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by roller supports, and the steel plates were sandwiched
along the west and east slab edges to prevent out-of-
plane deformation. A gravity load was applied to the slab
at three loading points affixed to the steel bearing plates.
The steel blocks and bearing plates in the FE model were
modeled using CHX60 solid elements with the linear
elastic behavior of steel.
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categories of the total strain crack model, was employed
to model the concrete constitutive behavior, based on
the assumption that the crack orientation (the princi-
ple-strain direction) is fixed during the computational
process. To model the concrete behavior in compres-
sion, a parabolic curve with the following stress—strain
function was adopted in DIANA:

—1/3fuk (8/&/3) for ec;3 <e <0 05)
— _ 2
o= _1/3ﬁk[1+4(;_§g;3) _2(;_3;;3) } for e. < & < /3,

—fak [1 = (e — &)/ (eu — &c))?]

fore, <e<eg

Fig. 11c shows the reinforcement details of the FE
model of specimen G1, which are based on Giduquio
et al. (2019). The top and bottom reinforcement ratios
were set to 0.67% (rebar #5 @ 203 mm) and 0.33%,
respectively, around the slab—column connections
within an effective slab width of 711 mm measured
from the slab edge. Outside the effective width, the
flexural reinforcement spacing was set to 457 mm to
satisfy the temperature and shrinkage requirements.
Fig. 11d shows the mesh size of the model. In the pre-
liminary analysis, the sensitivity of the mesh size was
determined to evaluate the accuracy and efficiency of
the FE analysis based on a comparison with the test
results. Finally, mesh sizes of 50 mm for the slab and
100 mm for the column were selected to optimize the
acceptable accuracy while maintaining the computa-
tional timing efficiency.

4.1.2 Material Constitutive Models

The constitutive behavior of concrete is shown in
Fig. 12a. The “total strain crack model” available in
DIANA was employed to model concrete behavior. This
model deals with the average stress—strain approach to
obtain the fracture energy within the element, which
was established based on the modified compression
field theory originally developed by Vecchio and Col-
lins (1986) and further improved by Selby and Vecchio
(1995), to extend its applicability to 3D elements. In
the study, the “fixed crack model’, which is one of the

where f; is the concrete compressive strength; and ¢,
g, and g, are strains corresponding to 1/3 f, f, and
the ultimate stage, respectively. To model the concrete
behavior in tension, the Hordijk curve with the following
stress—strain function for simulating nonlinear tension
softening after cracking was adopted in DIANA:

1 £ ’ £ 1 3
% + mlsu - exp —ngu —( +c1> exp (—my)

— 514
&y = 5. i,
G = 0.0651In (1 + f,1/10),

(26)
where 71, =3.0 and m,=6.93, 0 is the normal stress paral-
lel to the crack direction, w, is the strain when the stress
is fully released, Gy is the tensile fracture energy, and f; is
the tensile strength of concrete.

The constitutive behavior of the reinforcement is
shown in Fig. 12b. The von Mises yield criterion with iso-
tropic hardening characteristics was used for modeling.
The values of yield strength and strain (fy, ey), as well as
those of the ultimate strength and strain (f,, €,) were set
based on material test results of Giduquio et al. (2019).
The bonding behavior between the steel reinforcement
and concrete was considered in the modeling based on
the bond-slip constitutive model of steel reinforcement,
in accordance with the FIB model code 2010 (2010) in
DIANA, as depicted in Fig. 12c. The bond-slip equations
are as follows:
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Thmax(As/As))®  for 0 < As < Asg
Thmax for As; < As < Asy

Thmax — (Tbmax — Tbf) (As — As2)/(As3 — Asy)
Ty for Asz < As

T =
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(27)
for Asy < As < As3”’

where T,y is the maximum shear bond stress; 7, is the
local shear bond stress; As is the slip displacement (mm);
As;=As,=0.10 mm (for hot rolled deformed rebars)
is the slip at Thpax; and As;=c¢ e, Where ¢y, [=7 mm]
is the clear distance between ribs. In the FE model,
Tp max = 8(ﬂk/25)0'25, a [=0.4], and 1 = 0.4Tp . Were
adopted based on the FIB model code 2010 (2010) and
Tao et al. (2021).

4.2 FE Model Validation

4.2.1 Comparison of Failure Modes and Crack Patterns

Fig. 13 shows a comparison of the crack patterns and
failure modes between the FE analysis and experimental
results for specimen G1 at a drift ratio of 3%. In general,
the FE model reasonably simulated the punching failure
from the experiment. At the north and west sides of the
specimen (Fig. 13a and b), under the combined gravity
load and cyclic lateral load, which caused an unbalanced
moment on the connection, severe diagonal cracks with a
slope of approximately 30° emerged, as similarly observed
in the experimental results. On the top face of the slab
(Fig. 13c), critical damage occurred primarily around the
column near the top and bottom surfaces, which resulted
in the formation of a punching cone. Meanwhile, the
bottom face of the slab (Fig. 13d) exhibited numerous
fine cracks caused by flexure, accompanied by predomi-
nant damage oriented at the critical section around the
column.

4.2.2 Comparison of Moment-Carrying Capacities
Fig. 14 shows the FE results of gravity load and unbal-
anced moment response for specimen G1. The gravity
load transferred to the column was determined from the
reaction force at the support at the column base in the
Z-direction, and the unbalanced moment was calculated
as the product of the lateral load at the top of the column
and the actual height of the column, based on Giduquio
et al. (2019). In the initial phase (Fig. 14a), the gravity
load was applied incrementally to the slab until the grav-
ity load (Vi pp) transferred to the column reached the
specified target V. of 109.3 kN, based on the experi-
mental procedure of Giduquio et al. (2019). Subsequently,
a horizontal cyclic load was applied, causing unbalanced
moments.

Fig. 14b shows the strong correlation between the FE
predictions and the test results in terms of the unbal-
anced moment-drift response, where the difference in

the unbalanced moment capacity between the simulation
and test results was 6.3%, at an approximate drift of 1.2%.
Additionally, under the damage caused by the increasing
unbalanced moment, the connection gradually lost its
capacity to transmit the gravity load to the column, which
is consistent with the experimental results. Additionally,
the prediction results from KDS 14 and the simplified
model were presented in this Figure, which exhibited a
conservative trend compared to the test results.

4.3 Parametric-Study Results

Fig. 15 presents the parametric-study results obtained
using the proposed simplified model to understand
the influence of the primary parameters on the unbal-
anced moment-carrying capacity of corner slab—col-
umn connections; the results were compared with the
current design codes of KDS 14 and ACI 318-19 and
evaluation guidelines ASCE 41-17 (refer to Appendices
A1-A3). According to ASCE 41-17 (2017), the unbal-
anced moment capacities of connections should be
calculated as the lesser of the strength determined in
accordance with ACI 318 and the flexural strength of the
slab section surrounding the column. Parametric analysis
was performed for load case E;;, whose axes were parallel
to the free edge of the slab and added to the unbalanced
moment developed by the gravity load.

In Fig. 15a, the influence of the sectional aspect ratio
(c1/c2) was investigated with variations from 0.45 to 3.0
achieved by adjusting the dimension cl in the loading
plane from 182.7 mm to 1218 mm. The other parameters
were based on those of G1, which were in fact tested
by Giduquio et al. (2019). Overall, both the simplified
and KDS 14 models yielded similar conservative results
that closely aligned with the experimental and finite ele-
ment (FE) analysis outcomes. Conversely, the ACI 318-
19 model produced unsafe predictions for high aspect
ratios, whereas the ASCE 41-17 model demonstrated
good agreement with both the test and FE results. For
all prediction models, the higher the sectional aspect
ratio, the higher the unbalanced capacity of the corner
connections. This is because, in both the proposed and
KDS 14 models, the unbalanced moment-carrying capac-
ity due to the eccentric shear at the front (M) and side
(M) increased, which was accompanied by an increase
in the critical sectional area at the connection (see Egs.
(42) and (43) in in the Appendix). In the ACI 318 model
[Eq. (33)], the increase in the moment-carrying capacity
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Fig. 13 Comparison between FE analysis and experimental results for failure modes of specimen G1 at 3% drift (Giduquio et al.,, 2019)
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was primarily attributed to the increase in the perim-
eter of the critical section around the column, which
consequently increased the polar moment of inertia
resisting the eccentric shear stress transferred to the con-
nection caused by the unbalanced moment. Meanwhile,
the ASCE 41-17 guidelines [Egs. (58)] provided more
conservative results compared to ACI 318-19 for the case
of (¢;/cy>1) by selecting the minimum value between
strength predicted by the ACI 318 model and the flexural
strength of the slab section surrounding the column.

In Fig. 15b, the influence of concrete compressive
strength was investigated with variations from 23 to
60 (MPa). The other parameters were based on those
of specimen G1, which were in fact tested by Giduquio
et al. (2019). The results show that all models consid-
ered the effect of concrete compressive strength. As the
concrete compressive strength increased, the predicted
unbalanced moment-carrying capacity increased as well.
Compared with the ACI 318-19 and ASCE 41 model,
the proposed and KDS 14 models exhibited a less pro-
nounced effect of increasing compressive strength on the
unbalanced moment-carrying capacity, which is consist-
ent with the FE results. This phenomenon was observed
because the increase in compressive strength increased
the tensile strength of concrete, thus improving the over-
all shear stress capacity (v, and v,;) of the critical sec-
tion but also simultaneously reducing the compression
zone depth, as observed when evaluating both the flex-
ural moment resistance at the front [see Eq. (41)] and the
two-way nominal shear strength (v,) [see Eq. (56)].

Fig. 15c shows the effect of the flexural reinforcement
ratio on the unbalanced moment-carrying capacity of
corner slab—column connections. In both the proposed
and KDS 14 models, increasing the top flexural rein-
forcement ratio from 0.004 to 0.013 correlated with an
improvement in the overall unbalanced moment-car-
rying capacity of the corner connections. This phenom-
enon arises from the increased flexural moment-carrying
capacity at the front (M) of the connection with a higher
top-reinforcement ratio [see Eq. (41)]. Additionally, the
high flexural reinforcement ratio also increased the com-
pression zone when evaluating the maximum capacity of
the eccentric shear stress (v,) at the front, which conse-
quently increased the unbalanced capacity (M) owing to
the eccentric shear at the front [see Eq. (42)]. The ana-
lytical results were consistent with the FE results and the
results of specimens G1 and R3 tested by Giduquio et al.
(2019), which featured slab—top reinforcement ratios of
0.0058 and 0.0097, respectively. Meanwhile, the ACI 318
model provided a constant strength prediction, indicat-
ing insufficient consideration of the effect of flexural rein-
forcement. In comparison with ACI 318, the ASCE 41
model yielded conservative results for low reinforcement
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ratios (p;,<0.005), before showing identical results for
(p;=>0.005). This is attributed to the governed strength
determined by the eccentricity shear resulting from the
combined shear and moment at the connections.

5 Conclusions

An approach for simplifying the KDS 14 design method
to assess the unbalanced moment-carrying capacity in
slab—column connections was proposed in this study. In
the initial step of the proposed method, the gravity-load
effect was decoupled from the moment-carrying capac-
ity components due to the eccentric shear at the front/
back and sides of the connections, and unbalanced
moment-carrying capacity equations were derived. In
the subsequent step, considering the gravity-load effect,
an interaction was established between the gravity shear
ratio and unbalanced moment-carrying capacity com-
ponents to determine the total unbalanced moment-
carrying capacity of different types of slab—column
connections.

For design purposes, equations for evaluating the
unbalanced moment-carrying capacity at the sides, with-
out considering the gravity-load effect, were simplified
for exterior and corner slab—column connections corre-
sponding to different load cases. These equations were
derived based on the neutral-axis locations of shear-
stress distribution at the sides, which were determined
based on the aspect ratio of the column section (c,/c,)
and the shear strength ratio (v,/v, ;) while disregarding
the gravity-load effect.

The reliability of the simplified method was assessed
based on large datasets of exterior, interior, and corner
slab—column connections with a wide range of design
parameters, which were obtained from the literature. The
results indicated that the proposed simplified method
predicted the unbalanced moment-carrying capacity of
slab—column connections with an accuracy level compa-
rable to that of the KDS 14 design method and an accept-
able safety level.

A parametric study using the proposed simplified
approach and current design codes was conducted to
elucidate the effects of selected parameters on the unbal-
anced moment-carrying capacity of corner slab—column
connections. The results from the parametric study were
compared with the test results and simulation results
yielded by a 3D FE model that was developed and cali-
brated based on the experimental results. Based on the
parametric analysis, both the proposed simplified model
and the KDS 14 design method exhibited strong corre-
lations and were conservative with the experimental and
FE results for a range of design parameters, including the
sectional aspect ratio, concrete compressive strength,
and flexural reinforcement ratio of the slab. Meanwhile,
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the ACI 318 model consistently provided a lower limit
of strength prediction, which yielded overly conservative
and safe results compared with the test and FE results in
most cases.

Appendix A

Unbalanced Moment-Carrying Capacity Based
on Current Design Codes and Guidelines

Al. ACI318-19

For slab—column connections subjected to combined
gravity and unbalanced moments, ACI 318-19 adopts
the eccentric shear-stress model to determine the maxi-
mum shear stress at a vertex of the control perimeter as
follows:

:‘%inW
bod Je

Vu , (28)
where V, and M, are the gravity load and unbalanced
moment of the connection, respectively; b, is the perim-
eter of the critical section located 0.54 from each column
face; d is the effective depth of the slab; ¢ is the eccentric-
ity of shear stress; J, is the polar moment of inertia; and y,
is the fraction of unbalanced moment transferred by the
eccentricity of shear, which can be determined as follows:

(29)

1
Y P —
v 1+2/3/b1/b;

The nominal two-way shear stress, v,, of the slab is
determined as follows:

Vy = Ve + Vs, (30)
Avfyt
Vs = Tos’ (31)

where v, and v, are the contributions of the concrete and
shear reinforcement, respectively; A, is the shear-rein-
forcement area on the perimeter peripheral to the col-
umn; and f,, and s are the yield strength and spacing of
the shear reinforcement, respectively.

0.33252/fuk
0.17(1 + %)isi\/ﬂ ,

0.083(2 + 44 ) Ao/

Ve = min

(32)

where f is the ratio of the long to short sides of the col-
umns; o, =40 for interior columns, 30 for edge columns,
and 20 for corner columns; A is the modification factor
to reflect the reduced mechanical properties of
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lightweight concrete relative to normal-weight concrete
of the same compressive strength (A=1.0 for normal-
weight concrete and 1=0.75-0.85 for lightweight con-

crete); Ag [: v/2/(140.004d) <1, disinmm| is the

size-effect factor; and f,; is the specified compressive
strength of concrete.

When punching shear occurs, the maximum shear
stress v, (Eq. (28)) reaches the nominal stress v,
(Eq. (30)). Thus, the unbalanced moment-carrying
capacity of the slab-column connection can be derived
as follows:

. J J
Myact = min | (v, — Vg)ic; (vn + Vg) . ’
Yy oYy

(33)

where v [: Vel bod} is the gravity shear stress at the criti-
cal section.

A2. KDS 142022

See Table 5

In KDS 14 20 22, the punching shear perimeter is
defined similarly as in ACI 318-19, with the critical
section located 0.5d from each column face. The total
unbalanced moment-carrying capacity developed at the
slab—column connections is determined as the summa-
tion of several components at the faces of critical sec-
tions, namely, the flexural moment-carrying capacity
(Mggps) at the front/back, the unbalanced moment-car-
rying capacity (Mgypg) due to the eccentric shear at the
front/back, and the unbalanced moment-carrying capac-
ity (Mrgps) at the sides:

M, = Mg + Mg + Mr. (34)

In the KDS 14 design method, the moment compo-
nents are defined differently depending on the con-
nection locations (e.g., interior, exterior, and corner
connections) and load cases (e.g., £y Ey;, and E,). The
design equations (from 35 to 49) for KDS 14 20 22 are
summarized in Table 5.

The nominal two-way shear stress v, of the slab is
determined as follows:

Vi = Ve + vg < 0.58f ¢, /d, (50)

ve = kskpor/fre (fre + 2/3f) cu/d, (51)
_ A

Vg = Dos” (52)

where v, and v, are the contributions of the concrete
and shear reinforcement, respectively; f,, is the tensile
strength of concrete; &, is the size-effect factor; &y, is the
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aspect-ratio factor of the critical section; ¢, is the depth of
the compression zone; A, is the shear-reinforcement area
on the perimeter peripheral to the column; f; [=0.5/,] and
s are the tensile stress and spacing of the shear reinforce-
ment, respectively; and f, is the yield strength of the shear
reinforcement.

fte =02 fck ’ (53)
ks =0.75 < v/300/d < 1.1, (54)
kpo = 4 <1.25
b0 = abd - (55)
[p P
cy =d(25,/— —300— |. 56
* < Jex fck) (56)

At the corner slab-column connections, when the
biaxial unbalanced moments are applied, the contri-
bution of the eccentric shear stress to each direction
should be decreased because the eccentric shear stress
contributes to both unbalanced moments. On the other
hand, the contribution of the flexural moments at the
connections is independent in each direction. In KDS
14, these aspects are considered for the case of biaxial
unbalanced moments by the following failure criteria:

(Mm _MF1> n (Mu2 _MF2> <1,
le MVZ
where M, ; and M, are biaxial unbalanced moments; and
M,= (MSZ.+MTZ.).
It should be noted that considering the biaxial unbal-
anced moment effect, in the strength evaluation of the
corner connections in Table 3, the moment component

M, = (Ms+ M) caused by eccentric shear is reduced by
a factor of 50%.

A3. ASCE 41-17

(57)

In ASCE 41-17 (2017), it is recommended that the
unbalanced moment capacities of connections be calcu-
lated as the lesser of the strength considering the eccen-
tricity of shear at the slab-critical section due to the
combined shear and moment, in accordance with ACI
318 (M, sc; in Appendix A1) and the flexural strength of
the slab section surrounding the column, as follows:

Mp,asce = min (Z M/ ye, MV,ACI>’ (58)
where Y Mg is the sum of positive and negative flexural
strengths of a section of slab within two and one-half slab
thicknesses (2.5 #4) from the column edges, and
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yel=1/(1 + 2/3\/b1/b2)} is the fraction the moment
resisted by flexure, based on ACI 318-19.
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