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Abstract 

This paper focuses on the methodology for evaluating the degree of total curling in concrete pavement using 
machine learning. Deflection induced by falling weight deflectometer (FWD) testing is known as a direct correlation 
to total curling including built-in and daily curling. However, deflection measurement in the in-service road 
is also affected by others, such as environmental conditions, pavement geometry, subgrade stiffness, and mixture 
design. Thus, it is challenging to determine the level of curling from FWD data due to the complexity of influencing 
parameters. To navigate this complexity, prominent machine learning models are exploited to identify a non-linear 
relationship between curling and FWD deflections. A finite-element simulation of FWD is conducted to generate 
a vast data set, and a robust regression model is trained to estimate the total effective temperature difference (TETD) 
to quantify the effects of curling. Since input parameters for testing pavements can be measurable in the field, 
curling from TETD can be readily obtained using the proposed methodology. Comparative simulations highlight 
that the proposed models, with an MAE less than 0.5 °C significantly outperform the multiple regression performance, 
which registers an MAE of 3.45 °C in TETD, particularly in offering cost-effective and noise-tolerant prediction.

Keywords Concrete pavement, Machine learning, Finite element, TETD, FWD

1 Introduction
The Florida Department of Transportation has operated 
the Florida Concrete Test Road, a 4-km long test 
road (Greene, 2016). One of the major challenges in 
collecting data from this test road is how to determine 
the magnitude of total curling, which is defined as 
the degree of combined built-in and reversible daily 
curvature of a concrete slab. It is well-known that a 
high degree of concrete pavement curling deformation 
can result in undesirable issues that affect rideability 
(Johnson et al., 2010), cracking (Beckemeyer et al., 2002), 
and durability (Lange & Shin, 2001). Therefore, it is 
imperative to recognize the curling response of concrete 
pavement in the design process. Moreover, in the proper 
evaluation of concrete pavement response to in-service 
conditions, information on curling deformation should 
be considered. If the effect of curling is not considered 
in existing analysis tools, such as finite-element model 
(FEM) and the mechanistic-empirical pavement design 
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guide (MEPDG [ARA, Inc., 2007]), the concrete 
pavement stress state will be misjudged.

Built-in curling is known as a permanent form of 
curling deformation in hardened concrete pavement 
(Franklin, 1969; Poblete et al., 1990). The early age curing 
behavior of hardening concrete is closely associated with 
irreversibility mainly due to the temperature gradients 
at the concrete setting time, known as the built-in 
temperature gradient. In the long term, this irreversibility 
is further exacerbated by nonlinear factors such as 
excessive drying shrinkage in the internal pore region 
as well as creep close to the surface (Jeong & Zollinger, 
2003; Wei & Hansen, 2011; Yeon et  al., 2013). On the 
other hand, the temperature and moisture gradient 
through the concrete slab depth by diurnal events can 
lead to cyclic differential deformation between the top 
and bottom of the concrete slab, referred to as daily 
curling. The coexistence of built-in and daily curling on 
concrete pavement makes the total curling measurement 
difficult without long-term deformation data from the 
initial hardening phase.

The process of measuring the built-in curling 
of concrete pavement involves decomposing the 
irreversible built-in curling from the total curling. 
Numerous researchers have measured and determined 
the built-in curling of early age concrete slabs in 
controlled experiments (Alland et  al., 2017; Asbahan 
& Vandenbossche, 2011; Hansen et  al., 2006; Hiller & 
Roesler, 2010; Rao & Roesler, 2005). However, such 
approaches are not applicable to determine the degree 
of built-in curling of in-service concrete pavement at 
a hardened stage, where daily curling is also present. In 
regard to implementing existing tools or methods, most 
pavement surface profilers require time-consuming and 
costly instrumentation plans for long-term monitoring 
and data collection (Asbahan & Vandenbossche, 2011; 
Ceylan et  al., 2016; Hansen et  al., 2006; Rao & Roesler, 
2005; Sridhar et  al., 2022). Moreover, due to the high 
level of dependence on historic records, sparse data 
collection could result in an unreliable prediction of 
the performance of concrete pavement (Asbahan & 
Vandenbossche, 2011; Brody et  al., 2023). This led 
the significant need for a robust and cost-effective 
methodology to determine the in situ curling of concrete 
pavement.

This study focuses on the development of a 
methodology for quantifying the total curling of 
concrete pavement using well-known machine learning 
algorithms. The deflection behavior of concrete pavement 
by downward loading increases with the loss of subgrade 
support by the deformation of slab curling (Huang, 2003). 
Therefore, it is hypothesized that the surface deflection 
induced by loading can be correlated to the magnitude 

of total curling. Falling Weight of Deflectometer (FWD) 
testing is a type of nondestructive testing method to 
capture surface deflection characteristics under various 
loading conditions. However, total curling is not the only 
factor that determines the amount of concrete pavement 
deflection, and many other geometric and environmental 
parameters are also affected. The core idea of the 
proposed methodology is to build a machine learning 
model to identify the complex relationship between total 
curling and the relevant influence parameters. Here, these 
parameters can be easily gathered from construction 
records (e.g., concrete mix design, pavement geometry) 
as well as measured in the field (e.g., FWD testing); thus, 
the proposed method permits the rapid evaluation of 
total curling without expensive instrumentation and 
tremendous monitoring effort.

To pursue this goal, the FE model simulates FWD 
testing to obtain the data set needed for training and 
testing the machine learning model for total curling 
estimation. Note that the FE model is designed 
specifically for one of the major types of concrete 
pavement, i.e., jointed plain concrete pavement (JPCP). 
Consequently, the findings and results are primarily 
applicable to JPCP. However, the presented methodology 
can be extended to other types of pavement, such as 
continuously reinforced concrete pavement (CRCP) or 
precast prestressed concrete pavement (PPCP), where 
curling exists. The FE simulation of FWD testing is 
conducted on various field-representative concrete 
models and testing environments. The model parameters 
are selected by considering the concrete mix design, 
structural geometric profile, boundary condition, and 
total curling. After aggregating the database, machine 
learning algorithms are used to develop the candidate 
models, and the performance of the total curling 
estimation for these models is thoroughly tested.

While the effects and measurements of curling have 
been extensively studied, there is still a gap in effective 
and efficient methodologies to determine the degree of 
total curling (Asbahan & Vandenbossche, 2011; Ceylan 
et  al., 2016; Hansen et  al., 2006; Rao & Roesler, 2005; 
Sridhar et  al., 2022). The novel methodology presented 
in this paper significantly contributes to the fact that 
the proposed method plays a pivotal role in efficiently 
and rapidly calculating the degree of total curling from 
the vast secondary data of FWD and providing the 
design input of total curling needed for existing design 
and analytic tools. To give you an idea, the developed 
regression model in this study will promptly output 
the intensity of total curling from the data collected by 
users. The trained regression model will be shared with 
the public, so that they can easily surrogate complex 
and computationally demanding FE model. By inputting 



Page 3 of 15Han et al. Int J Concr Struct Mater  (2024) 18:71 

total curling information directly to existing design tools, 
researchers and/or engineers can efficiently analyze 
the structural performance and obtain accurate curling 
behavior information.

2  FE Model for FWD Simulation
2.1  Concept of TETD for Curling in FE
The total curling behavior of concrete pavement is 
influenced by several nonlinear factors. Reversible 
curling behavior arises due to temperature (△Ttg) as 
well as the moisture gradient through the concrete slab 
(△Tmg). On the other hand, irreversible curling aspects 
are attributed to the built-in temperature gradient at 
the concrete setting time (△Tbi), differential drying 
shrinkage gradient through the concrete slab (△Tshr), 
and creep (△Tcrp). The accumulated degree of curling 
for a hardened concrete slab primarily results from the 
aforementioned nonlinear factors. This accumulation 
can be represented in terms of the temperature degree, 
referred to as the total effective temperature difference 
(TETD) △Ttot, as calculated below:

Given the fact that modeling the curling geometry is 
exceedingly difficult in a FE model (Sridhar et al., 2022) 
and MEPDG (Vandenbossche et  al., 2011) directly as 
a function of curvature degree, the concept of the total 
effective temperature difference (TETD) as a function 
of the temperature difference is adopted from Rao and 
Roesler (2005). The TETD allows us to simulate the same 
effect of built-in and daily curling in FE and MEPDG 
simulations using the temperature gradient through the 
depth of the concrete slab model. In brief, the TETD 
deforms the slab into a concave shape in a way that is 
similar to the deformation by total curling. Fig. 1 exhibits 
an example of how to apply daily and built-in curling to a 
FE model. Fig. 1a addresses a general method to simulate 
daily curling behavior by making the temperature differ-
ence at the time of FWD testing through the slab depth 
during the daytime (e.g., a temperature difference of + 5.0 

(1)
�Ttot = �Ttg +�Tmg +�Tbi +�Tshr +�Tcrp

°C, reflecting a top slab surface temperature of 25.0 °C 
and an interlayer temperature of 20.0 °C). Fig.  1b pro-
vides the effective temperature difference (ETD), which 
represents the degree of built-in curling, i.e., the effect 
of deforming a concrete slab by applying the top surface 
temperature to obtain a concave shape (e.g., − 10.0 °C). 
The superimposed temperature, defined as the TETD 
(e.g., −  5.0 °C), reflecting the effects of daily and built-
in curling, is used for this study, as shown in Fig. 1c. In 
this study, the TETD is the target output of the proposed 
regression model, allowing us to quantify the amount of 
slab curling.

2.2  FE Design for Achieving the FWD Data Set
FWD testing is defined as “a device designed to simulate 
deflection of a pavement surface caused by a fast-moving 
truck” according to FHWA (2006). This nondestruc-
tive testing is devised to measure the surface response 
behavior by dropping a circular plate from an array of 
installed geophones. To make the FE simulation of FWD 
testing, six geophones placement named as deflection 
basin is modeled according to the FHWA guidelines 
(2006). Moreover, a major pavement system of a jointed 
plain concrete pavement (JPCP) design is simulated. In 
this study, the configurations of FWD testing are design 

Fig. 1 Daily and built-in curling modeling through the total effective temperature difference (TETD).

Fig. 2 FWD testing configurations: Two impact locations are 
selected, one at the corner and another in the center of the slab.
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to obtain the optimal deflection response from FWD 
testing.

Some modifications to the configurations of FWD test-
ing are made for the purpose of predicting the TETD of 
JPCP. Two configurations of the FWD testing are located 
at the corner of the slab expected to experience the maxi-
mum deflection and another is located in the center of 
the slab, which experiences minimum deflection in the 
daytime. Fig. 2 illustrates the loading locations and their 
corresponding geophone locations (two directions of 
deflection basins). The two locations of FWD loadings 
and collected defection basins capture sufficient informa-
tion about the characteristics of deflection responses as 
the input data for the regression model.

Fig.  3a illustrates the 3D FE model used for generat-
ing FWD responses from the input parameters, which 
include the concrete mix design, geometry profile, 
boundary conditions, and TETD. The inputted values 
considering the combined properties are used to design 

the FE model. A full-size pavement system is designed, 
and the subgrade extends to each side to eliminate the 
effect of boundary conditions. Because of the JPCP 
design, a half-size adjacent slab—a symmetry condition 
that does not affect the FE results—is modeled, and each 
adjacent slab impacts the corner deflection due to the 
effect of load transfer on the joint. The FWD plate load-
ing is treated as a static loading condition because the 
primary concern is to determine the maximum deflec-
tion corresponding to a specific magnitude of loading to 
satisfy the purpose of this study. This approach contin-
gently saves tremendous computational time. To further 
enhance the FE model, the incorporation of dynamic 
loading conditions is recommended for future studies to 
account for the effect of the strain rate. In the FE model, 
rather than replicating the actual geometric conditions of 
dowel bars, the effect of load transfer is simulated by con-
sidering the behavior of dowel bars at the joint location of 
JPCP. To compute the actual magnitude of load transfer 

)b()a(

)d()c(
Fig. 3 3D FE model for generating FWD response data: a developed FE model, b results of the FE model after the TETD is applied (concave-up 
shape) for providing the initial deformation data, c results of the FE model after TETD and FWD loading at the center of a concrete slab, and d results 
of the FE model after TETD and FWD loading at the corner of the concrete slab.
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in this FE model, the effective load transfer is calibrated 
using the FWD field test data on JPCP along with actual 
dowel bars at the joint location.

To address FWD protocols for generating a machine 
learning data set, two FWD deflection basins, such 
as those in the center and corner joints, should be 
computed. To calculate the deflection by FWD loading, 
the designed FE model should account for the initial 
deformation information that considers the TETD 
without FWD loading, as shown in Fig.  3b. Specifically, 
the concrete slab is already deformed by the effect of the 
TETD before FWD loading. Thus, the initial deformed 
positions need to be determined from the FE model with 
the TETD, referred to as the initial deformation. Note that 
this structural analysis can consider the predeformation 
in the concrete slab before applying FWD loading. From 
the FE results of initial deformation, the final deflection, 
such as center and corner joint deflection, can be 
computed by subtracting the center FWD loading or the 
corner FWD loading, as shown in Fig. 3c, d, respectively. 
Therefore, 1179 samples incorporating simulated center 
and corner joint deflection are generated in this study 
as the supervised training data set for machine learning 
regression, which requires a model trained on a data set 
that is triple the size, i.e., 3537 samples.

Table  1 presents the modeling parameters for the FE 
model categorized by the geometry condition, concrete 
mix design, boundary condition, and TETD. The ranges 
of the parametric values are obtained from a normal con-
crete pavement design based on AASHTO PP84 (2017). 
The number of feasible combinations with these factors is 
enormous; thus, 1179 randomly generated combinations 
are used for the input data of the FE model. Three dif-
ferent FE models for initial deformation, center, and cor-
ner joint loadings are analyzed using 1179 input values to 
produce two FWD responses, one at the center and the 
other at a corner joint. The FWD response results are the 

independent variables used to predict the TETD in this 
study. It is rational to anticipate that the effect of built-
in curling reduces the subgrade support at the corner 
of a concrete slab due to its deformation (i.e., concave-
up shape). As a result, the surface deflection measured 
by the FWD increases as the degree of built-in curling 
increases. Therefore, quantifying the total curling can 
be achieved by evaluating the concrete slab deflection 
response due to the corresponding FWD loading and 
its location. In this study, extensive FWD data reinforce 
establishing a meaningful pattern to achieve the relation-
ship between the various individual parameters. Note 
that the data set maintains a consistent number of input 
parameters in this study. For future studies, it is strongly 
advised to segment data sets based on varying counts of 
input parameters.

2.3  FE Calibration from the Field Data
To improve the reliability of the FE results, the FE model 
was calibrated using collected field data (Tia et al., 2020). 
The properties of the concrete material were determined 
from the results of laboratory tests on the sampled con-
crete. Surface deflections in the concrete pavement 
caused by FWD loading were used to estimate the values 
of the elastic modulus of the subgrade in the FE model. 
Based on the backcalculation methodology guided by 
FHWA (2006), the curling behavior of a concrete slab 
influenced by temperature and moisture gradients is 
theoretically negated when FWD testing is conducted at 
the different times corresponding to specific locations on 
JPCP. For instance, the center FWD loading is applied at 
night or in early morning—times when the concrete slab 
curls upward—to backcalculate the effective modulus of 
the subgrade (k value). In contrast, corner FWD load-
ing is carried out during the daytime, when the concrete 
slab curls downward, facilitating the determination of the 

Table 1 Lower and upper bounds of the finite-element analysis inputs.

Input values Lower bound Upper bound

Geometry condition Wide (m [ft]) 3.7 (12) 3.7 (12)

Depth (cm [in.]) 15.2 (6) 30.4 (12)

Length (m [ft]) 4.3 (14) 4.9 (16)

Concrete mix design MOE (MPa [ksi]) 24,131 (3500) 37,921 (5500)

Unit Weight (kg/m3 [pcf ]) 1922 (120) 2563 (160)

CTE (/°C [/°F]) 10.8 (6.0) 18.0 (10.0)

Poisson Ratio 0.23 0.25

Boundary condition Subgrade Modulus (MPa [ksi]) 344 (50) 2757 (400)

Load Transfer (kg/m [lb/in.]) 5760 (500,000) 34,563 (3,000,000)

TETD TETD (°C [°F]) − 33 (− 60) + 11 (+ 20)
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load transfer. In these scenarios, the FWD loading loca-
tion on the concrete slab achieves full contact conditions 
with the subgrade, effectively eliminating the influence 
of temperature and moisture gradients, irrespective of 
their intensity. Fig. 4 shows the measured and computed 
deflection basin caused by a 5.4-ton (12-kip) FWD load. 
The analytical deflection basin was calculated using an 
elastic modulus of the subgrade of 482 MPa for the test-
ing slab and 551 MPa for the adjacent slab, respectively. 
Using the previously estimated parameters and material 
properties, fairly well-matched results between the meas-
ured and the calculated deflection basins based on the 
calculated mean absolute error (MAE) were obtained.

3  Development of Regression Models
This section addresses the development of regression 
models and the evaluation of their performance to 
predict the TETD that is used in existing designs and 
analytic tools and for estimating the degree of curling. 
In this study, prominent machine learning algorithms 
are used to create the best-performing regression 
model. Three regression models are built and tested for 
the performance of TETD estimation. Noise sensitivity 
analysis is also conducted to validate the model 
developed under a field setting involving FWD testing 
and input parameter measurements.

Fig. 5 illustrates the steps for training the regression 
model. First, the data set is prepared by conducting a 
simulation of FWD testing using random combina-
tions of properties. The range of each concrete mix 
property is in accordance with AASHTO PP84 (2017), 
as summarized in Table  2. Commercial finite-element 
software, ADINA, is used to iteratively simulate FWD 
testing under different parametric setups. A total of 

1179 samples are created from the FE simulation. The 
TensorFlow, Keras, and Sklearn libraries in Python are 
implemented to develop the regression models using 
the simulation data set. Here, surface deflection is the 
output of the simulation and field-measurable through 
FWD testing. Therefore, the regression model uses the 
surface deflection as an input as well, but the TETD 
becomes the output of the model. Note that due to 
the lack of extensive field FWD data, FE simulations 
are utilized to create a vast amount of defection basin 
data, which genuinely serve as the dependent variable 
in this process. However, the FE-driven deflection basin 
data are then used to train the machine learning mod-
els, positioning these data as an independent variable 
for predicting the TETD output. This scheme is com-
monly termed ‘surrogate modeling’. Here, a low-fidelity 
machine learning model is trained to act as a stand-
in for a more computationally intensive high-fidelity 
numerical simulator. This surrogate modeling approach 
might prompt concerns regarding the reliability of pre-
dictions, including potential overfitting issues, from the 
trained models. To address these concerns and vali-
date the models, k-fold cross-validation is conducted, 
and the model is tested with noise sensitivity analysis. 
By randomly subdividing the data into k segments and 
using k-1 folds to train and the remaining fold to test, 
we can ensure the independence between the training 
and testing data. Furthermore, we generate adversar-
ial samples, defined as noise-added deflection basins, 
which add 5%, 10%, and 15% Gaussian random noise 
into the FE-derived deflection basin data. The robust-
ness of trained models using noise-added deflection 
basins to random noise shows that the model is well 
trained on the general data not included in the training 

Fig. 4 Determination of the effective subgrade modulus using an FWD basin caused by a 5.4-ton (12-kip) FWD load at the center for the (a) testing 
slab and (b) adjacent slab.
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and validation data. The detailed process and subse-
quent results are addressed in the following sections.

3.1  Preparation of the Data Sets
After analyzing the FE model, a series of surface 
responses regarding deflection basins 1 and 2 can be 
achieved. Since the objective of this study is to estimate 
the TETD as one of the input properties of the FE model, 
a method of supervised learning—one of the big data 
learning categories among supervised, unsupervised, and 
reinforcement learnings—is selected. Supervised learn-
ing makes use of both the independent variable(s) and 
the dependent variable of the TETD as one of the needed 
input data for model training. The data set combining 
input(s) and output data from the FE simulation is then 
used to train and test the regression models based on the 
technique of supervised learning.

To improve the performance of the regression model, 
the normalization of the data samples is recommended 
to calculate the numerical matrix by removing the mag-
nitude difference between independent values (Chou & 
Pham, 2013). Min–max normalization is a well-known 
and effective method for avoiding the magnitude differ-
ence between inputs that convert all values to the range 
between 0 and 1. Fig. 6 clearly illustrates input data that 
are uniformly distributed and free of outliers, although 
the target data for the TETD appear biased due to the 
randomly combined matrix of input parameters. In this 
figure, the data distribution is presented in its nonnor-
malized form, confirming the absence of outliers. This 
suggests that the application of min–max normalization 
is suitable, as this technique performs well in scenarios 
without outliers.

Fig. 5 Regression model development environment and the input(s) and output(s) for each step.

Table 2 Results of the performance indicators for SVM, DT, and DNN.

Performance indicator SVM (Quadratic) DT (LGBM) DNN (Deep Learning)

MAE (Degree, °C) Training 0.35 0.02 0.32

Test 0.71 0.99 0.78

adjusted_R2 Training 0.998 0.999 0.998

Test 0.991 0.984 0.987

MSE Training 0.0001540 0.0000003 0.0000860

Test 0.0005102 0.0009628 0.0007355
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3.2  Training the Regression Model (Supervised Learning)
Three machine learning algorithms are utilized: the 
support vector machine (SVM)-based quadratic model, 
decision tree (DT)-based light gradient boosting 
machine, and deep neural network (DNN) model. 
The SVM builds the feature of a kernel to create a 
hyperplane and then computes the optimized margin 
between the different objectives. The DT involves 
splitting the variables at discrete cutting points from 
the specified criteria. The DNN is a perceptron-based 
method that updates the weights until the minimum 
of the cost function is found. These algorithms are 
compared to each other to select the best-performing 
algorithm.

Although all machine learning models can achieve 
high accuracy, they can overfit the data, limiting suc-
cessful prediction results to those within the training 
data. To avoid this issue, first, the data set is divided as 

follows: 80% for the training data set and 20% for the 
test data set. The divided samples for the training and 
test data sets are then applied to the technique of k-fold 
cross-validation, as illustrated in Fig. 7. This technique 
is constantly applied to all regression models to avoid 
overfitting issues. Moreover, the grid search technique 
using the Sklearn application determines the best com-
bination of hyperparameters for each model to opti-
mize each regression model. Note that every model has 
different types of fitting parameters to achieve various 
levels of predictive performance.

3.2.1  Multiple Regression
Multiple regression predicts the TETD with the 
same data set to provide benchmarks for assessing 
the performance of the machine learning models. 
Among the multiple regression methods, principal 
component regression (PCR) is used for a large number 

Fig. 6 Non-normalized data set distribution for training the machine learning regression model.

Fig. 7 Designed k-fold cross-validation (i = 5 iterations) to prepare the data set in this study.
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of independent variables. This method generates new 
predictor variables referred to as the component, and 
tuning the number of components improves the accuracy 
of the regression model. By applying 21 components, the 
regression model achieves the best results in terms of 
predicting the TETD. This method builds new predictor 
variables as linear combinations from the original 
predictor variables. Despite this widely used solution 
for regression, the predictive performance could be 
limited in regard to complex nonlinear cases. In this 
paper, PCR serves as the benchmark for assessing the 
predictive performance of the machine learning models. 
Future studies should consider comparisons with other 
conventional nonlinear regression approaches.

3.2.2  Support Vector Machine (SVM)
The support vector machine (SVM) is a popular machine 
learning algorithm that is used to solve regression and 
classification cases and was introduced by Cortes and 
Vapnik (1995). The algorithm minimizes the loss that is 
measured based on the distance between the observed 
value and the boundary. The SVM can be divided into 
four different methods in terms of the type of kernel 
function, such as the linear kernel, radial basis function 
kernel, sigmoid kernel, and quadratic (polynomial) 
kernel. In this study, due to the characteristics of 
the nonlinear relationship between dependent and 
independent variables, the quadratic SVM aids in 
predicting the values from the prepared data set. This 
study makes use of the grid search technique, thereby 
building a robust regression model based on the 
optimized combination of the fitting parameters. This 
technique determines the hyperparameters in terms 
of degree (degree of the polynomial kernel function), 
C (regularization parameter), epsilon (epsilon in the 
epsilon–SVR model), and gamma (kernel coefficient) for 
the SVM-based regression model. Regarding the tuning 
parameters for this model, more detailed information can 
be found in the Scikit-learn documentation (Pedregosa 
et al., 2011).

3.2.3  Decision Tree (DT)
The light gradient boosting machine (LightGBM) 
is a decision tree (DT)-based model composed of a 
weighted combination of multiple regression trees 
introduced by Microsoft Research (Ke et  al., 2017). 
By combining multiple regression trees, the accuracy 
is generally improved. In other words, the LightGBM 
model aggregates all results of each single regression tree 
and then uses the average of the results for regression. 
Depending on the method used to select the random 
subset of the original data, such as boosted tree or 
bagged tree, the ensemble algorithms generate different 

predictions. In this study, the boosted tree algorithm 
predicts the dependent value. Recalling the grid search 
used for each model, the hyperparameters in terms 
of the learning rate (boosting learning rate), number 
of leaves (maximum tree leaves for base learners), 
and n_estimators (number of boosted trees to fit) are 
determined.

3.2.4  Deep Neural Network (DNN)
Deep learning uses neural networks to learn useful 
representations of features and to find a specific 
pattern directly from inputted data. This deep neural 
network algorithm combines multiple nonlinear hidden 
processing layers. In the parametric study to tune the 
number of hidden layers by manual calibration, the use 
of nine hidden layers generates the best performance 
for predicting the dependent value. Moreover, the 
aforementioned grid search technique employed in 
this developed model determines the hyperparameter 
tuning regarding optimizers (method of updating the 
deep neural network based on the loss function), epoch 
(number of data sets passed forward and backward 
through the deep neural network; 500 in this study), 
batch (size of a data sample; 5 in this study), and learning 
rate (deep neural network learning rate; 0.001 in this 
study).

4  Evaluation of the Regression Models
4.1  Assessing the Goodness‑of‑Fit of the Regression 

Models
Three different regression models, including SVM, DT, 
and DNN, have been tested on the database from the FE 
simulation in the previous section, and their performance 
is compared with that of the control model by a simple 
statistical approach. The accuracy of each selected 
regression model is evaluated by comparing the values 
of the true and the predicted TETD from the same data 
set. For the quantitative evaluation, the mean absolute 
error (MAE) is primarily used as the performance 
indicator, which intuitively reports the actual difference 
of the TETD in the degree unit. The mean absolute error 
(MAE) determines the level of error between the true 
and predicted values. The MAE explains the absolute 
difference between the predicted and actual values. The 
results of the MAE scores are from zero to any positive 
value. The MAE score indicates how much error the 
model produces. In addition, both the adjusted R-squared 
(adjusted_R2) and mean square error (MSE) are provided 
as supplemental information. Recall that the developed 
models uniformly apply k-fold cross-validation, and 
then the performance indicators, including the MAE, 
adjusted_R2, and MSE, are computed from the average 
results of K validations.
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Fig.  8 exhibits the relationship between the true and 
predicted TETD. Here, the true values of the TETD are 
normalized ranging from 0 to 1, and the corresponding 
predicted TETD values are plotted. For the analysis of 
the quantitative measurements, from the overall regions 
identified through machine learning, an adjusted_R2 
of 0.99 was obtained, closely aligning with the ideal lin-
ear correlation coefficient of 1.0. On the other hand, 
the static method spreads the predicted values. Overall, 
every machine learning model exhibits a small-scale dif-
ference between the true and predicted values and an 
unbiased fit to the ideally upward trend.

Table  2 presents the performance of each regression 
model using performance indicators such as the MAE, 
adjusted_R2, and MSE. The computed adjusted_
R2 provides sufficient evidence of the outstanding 
performance of the machine learning models compared 
to that of multiple regression. Even though the 
adjusted_R2 is an effective evaluation indicator based 

on variability, overfitting the model or multiplicated 
independent variables could artificially inflate the result 
of the adjusted_R2. To overcome this limitation, another 
performance indicator, the MAE, evaluates the prediction 
errors with regard to the training and test data sets 
separately. More specifically, the TETD leads to residual 
stresses caused by the curling deformation subjected to 
vehicle loading. As a point of reference, a TETD value of 
0.7 °C induces residual stresses between approximately 
0.09  MPa and 0.14  MPa with standard concrete slab 
depths of 15 cm to 30 cm for JPCP. Additional discussion 
and insights on this matter can be found in Sect. 4.3.

The DT exhibits the lowest MAE on the training 
set but the highest on the test set. This proves that 
the model is overfitted to the training data, so it is not 
suitable for use on the actual testing data set. The SVM 
achieves the highest MAE on the training set; however, 
this model exhibits the smallest MAE difference 
between the training and testing sets. Thus, it could be 

Fig. 8 Comparison between the true and predicted TETD calculated by a multiple regression, b SVM, c DT, and d DNN.
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possible to expect the highest robustness from the SVM. 
Researchers and engineers will input the collected field 
data to the model suggested in this study, and they will 
acquire the predicted TETD in return. Therefore, the 
SVM is recommended because of its low MAE on the 
test data set represented by the field data. However, there 
are still too minor differences in the prediction errors to 
choose the best model distinctively. If candidate models 
show similar prediction errors, then the most robust 
model is the best for practical use, and this will be a great 
benefit to prospective users. Therefore, more refined 
studies, such as noise sensitivity analysis, are additionally 
introduced to quantify the robustness of each model. 
Moreover, the MAE calculates the actual difference value 
(degree, °C) between the true and predicted values along 
with all ranges of the TETD, which is meaningful in this 
study to intuitively provide the actual TETD differences.

It is mathematically proven that the machine learning 
model’s approximation error to the true system is 
bounded. This means that the prediction performance 
is near-optimum when a rich enough data set is used for 
training. Therefore, the indistinguishable performance 
difference between the machine learning algorithms 
in Table  2 is natural. It also implies that all models 
converge to some level, so our data set is rich enough 
for analysis. However, the actual level of convergence 
to the true system can differ between models. In other 
words, the required richness of the training data set for 
each machine learning model is different. Therefore, the 
model that requires the smallest richness is the best for 
practical use since the cost is directly proportional to the 
number of data points.

4.2  Noise Sensitivity Analysis using Gaussian Noise‑Added 
Adversarial Samples

This study pursues the noise-sensitivity analysis to 
evaluate the machine learning models based on this point 
of view. Since all models are equally trained on the same 
data set, it is possible to directly compare each model in 
terms of its robustness on the adversarial samples. The 
most converged model produces the smallest error on 
the adversarial samples. In brief, the most robust model 
can be considered the most efficient as well as the most 
practical model for future use.

In this analysis, Gaussian noise is added to generate 
adversarial samples. Perturbations are applied on 
only twelve vertical surface responses from deflection 
basins 1 and 2. The reason that surface responses are 
selected for this analysis involving added noise is the 
susceptibility of the nondestructive FWD test to signal 
noise and/or user error more than other features, which 
is assumed to correspond to aleatoric measurement 
errors, and thus, the twelve noises are considered 

statistically independent under this assumption. This 
study defines the q% level noise for the ith vertical 
displacement εi ∼ N (0, σi), i = 1, . . . , 12 , where 
σi = 0.01 · q · µi

/

�−1(0.975) ; µi is the mean value of 
the ith vertical displacement, and �−1(·) is the inverse 
cumulative distribution function of the standard normal. 
The standard deviation of the ith noise, σi , is designed 
to ensure that the ith noise, εi , is less than q% of the ith 
mean value (= 0.01 · q · µi) with a probability of 95%. A 
total of 1179 random samples from Gaussian noise are 
generated and added to the original data set to produce a 
set of adversarial samples. This procedure, which creates 
a random data set, repeats until 100 sets of adversarial 
samples are generated. A total of 1179 multiplied by 
100 adversarial samples (a total of 117,900 samples) are 
input into the trained models, and the same number of 
predicted TETDs is then produced.

Fig. 9 shows a plot of the 5–95%-tile prediction band—
the interval from the 5%-tile to the 95%-tile predicted 
TETD out of 100 sets of adversarial samples—of three 
models. A noise-sensitivity analysis with different noise 
levels, i.e., 5%, 10%, and 15%, is performed. It is indicated 
that the DNN is the most noise-insensitive model and, 
therefore, it is the most robust model for prospective 
users. In addition, an average MAE from the 100 sets of 
adversarial samples is measured according to three mod-
els with three noise levels of 5%, 10%, and 15%. Overall, 
the MAE increase as the level of noise increases for all 
models. As proven in Fig. 9, the DNN is the most efficient 
model at all ranges of noise levels, and the MAE is meas-
ured at a degree of less than 1 °C. Conversely, the SVM 
has a high MAE, which is approximately 5 °C. To analyze 
the effect of the calculated MAE (e.g., 0.6 °C for the DNN 
and 4.5 °C for the SVM) on a concrete slab, the supple-
mental FE study addresses the effect of various TETDs 
on the residual stress of concrete pavement in the next 
section.

4.3  Effect of TETD Errors on Concrete Pavement
The presence of the TETD as the degree of total curling 
leads to residual stress on the concrete pavement 
before being subjected to the vehicle load. Thus, the 
accurate measurement of the TETD should be pursued 
to properly diagnose the structural condition of the 
concrete pavement. Through the noise-sensitivity 
analysis, the regression models TETD estimation errors, 
ranging from 0.6 °C for the DNN to 4.5 °C for the SVM. 
Therefore, it is prudent to determine the acceptable 
limits of miscalculated TETD to greatly benefit field 
design engineers and researchers. To accomplish this, the 
residual stress of the FE model is computed concerning 
the TETD. Since the structural design maintains the 
concrete stress to ensure a value below its strength 



Page 12 of 15Han et al. Int J Concr Struct Mater  (2024) 18:71

Fig. 9 Plots of 5–95%-tile prediction band—the interval from the 5%-tile to the 95%-tile predicted TETD out of 100 sets of adversarial samples 
generated using a a Gaussian noise of 5% level, b Gaussian noise of 10% level, and c Gaussian noise of 15% level.
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multiplied by the designed safety factors, high-level 
residual stress could lead to the failure of the structural 
system or misjudgment during the structural analysis.

Fig.  10 shows the calculated residual stresses in the 
mid-transverse direction of the concrete slab from the FE 
models after applying two TETDs, 0.7 °C from the DNN 
with a noise level of 15% and 4.5 °C from the SVM with a 
noise level of 15%. These TETDs are chosen to consider 
conservative cases. Moreover, the analyzed FE mod-
els have three different slab depths, 15  cm, 23  cm, and 
30 cm, because the depth of the slab plays a critical role 
in impacting the curling behavior. Therefore, more levels 
of residual stresses can be expected at each depth of the 
concrete slab. The degree of the TETD from the DNN 
yield unelevated maximum residual stresses ranging 
from 0.09 MPa to 0.14 MPa; however, the SVM not only 
produces maximum residual stresses between 0.62 MPa 
and 1.02 MPa but also exhibits an enormous gap of devel-
oped maximum stresses among the three different depths 
of FE models. This indicates that the error of the DNN 
has an insignificant influence on calculating stresses and 
is largely reliable for applying the various conditions of 
concrete pavement. However, the above is not true for 
the SVM. Although more parameters, such as the con-
crete mix and boundary conditions, are not investigated 
in this study, the result is still sufficient to provide insight 
into the outstanding performance of DNNs. Due to the 
limited scope of this study, only the slab depth is studied. 
However, further meta-studies should be performed to 
determine the refined level of error acceptance.

5  Conclusion and Recommendations
In this paper, we recommend the deep neural network 
as the most robust machine learning model to predict 
the TETD. Note that this result cannot be generalized 
to other civil engineering applications. To use the 

DNN, we need enough data to train, validate, and 
test. For some civil applications, collecting such data 
sets may be impossible due to the expensive and time-
consuming experimental procedures involved. The 
required size of the data depends on the complexity of 
the applications, a larger database is needed to learn the 
complex relationships between the input variables and 
the target variable. Without knowing the complexity of 
the problem, training the deep neural network involves 
understanding the black box nature of the model, and 
there is a risk of overfitting, rending it impractical for 
real-world use. This limitation can only be overcome 
by combining our traditional understanding of 
civil applications into machine learning models, as 
practiced in this paper (Lunderg & Lee, 2017). As 
long as the DNN is trained, validated, and tested as 
demonstrated in this paper, the model will be fast and 
reliable in the field. For other civil applications, the 
model learning should be rigorously cross-validated 
based on a thorough fundamental understanding of the 
application, as introduced in this paper.

The main findings are summarized as follows:

• The created data set is used to successfully train 
prominent machine learning models, such as the 
SVM, DT, and DNN, with satisfactory levels of the 
MAE.

• Through the Gaussian noise-sensitivity analysis, 
the DNN is found to be the most robust model to 
predict the TETD of concrete pavement based its 
cost-effective and error-tolerant performance.

• The DNN with a noise-added level of 15% leads 
to negligible residual stress in all depths of con-
crete slabs. Based on all of the analyses, such as the 
Gaussian noise sensitivity and residual stress analy-

Fig. 10 Comparison of residual stress from the computed TETD with the designed FE models: a a slab depth of 15 cm, b 23 cm, and c 30 cm.
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ses, the DNN is the most robust model to be rec-
ommended.

• The proposed methodology will allow users to 
determine the total curling of concrete slabs from 
conveniently collected field data that can be directly 
applied to the in-service road.

• Given the nature of civil engineering, structural 
design and testing data inherently come with a 
certain degree of uncertainty. This can affect the 
reliability of this methodology, which depends 
on the data sets for machine learning training. To 
address this, we have introduced noise sensitivity 
across varying noise levels, ranging from 5 to 15%, 
to address such uncertainty.

For future improvements of this methodology, the 
following aspects should be considered:

• In this paper, we introduce a pioneering methodology 
for determining the total curling intensity of concrete 
slabs of JPCP. Since curling is present the CRCP and 
PPCP, future studies should extend the scope of the 
concrete pavement system to check the applicability 
of this methodology. In this paper, the FE model is 
crucial for simulating the nondestructive FWD test. 
To better represent real-life situations, the FE model 
can be improved by applying the dynamic loading 
and actual size of the dowel bar at the joint.

• In this paper, we maintain a consistent number of 
input parameters for the data set. For future studies, 
it is strongly advised to segment data sets based on 
varying counts of input parameters.
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