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Abstract 

Fault fracture zones are rock formations commonly encountered in submarine tunnels, and the diffusion mechanism 
of slurry in fault fracture zones has a crucial impact on submarine tunnel reinforcement. Based on the seepage equa-
tion of Bingham fluid, the tortuosity parameter, fractal theory, and variable viscosity equation are introduced to estab-
lish a spherical permeation grouting model of Bingham fluid considering the slurry diffusion path and viscosity time 
variability. The viscosity variation law with time of sulfur aluminate cement slurry under different seawater admixture 
conditions was tested, and the time-varying equation of viscosity of sulfur aluminate cement slurry was obtained 
by fitting. A set of fault fracture zone permeation grouting test system was developed, and a fault fracture zone 
grouting simulation test was carried out. The study shows that the diffusion distance calculated without considering 
the influence of slurry diffusion path and seawater is 1.63–1.91 times of the test value, which obviously overestimates 
the diffusion distance; the diffusion distance calculated with considering the influence of diffusion path and seawater 
is 1.06–1.35 times of the test value, which is in good agreement with the test value. The research results can provide 
some theoretical support for the design of grouting in seawater environment.
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1 Introduction
In the submarine tunnel construction project, fault frac-
ture zone is a common engineering geology, which often 
induces sudden water and mud disasters. At present, 
grouting method is generally used at home and abroad 
to reinforce the fractured rock body, and grouting refers 
to injecting the slurry that can gel and solidify into the 

stratum or rock gap through a certain pressure to achieve 
the purpose of reinforcing the stratum or preventing 
seepage (Kuang et al., 2001; Zhang et al., 2019; Xu, 2022; 
Li, 2017). Fault fracture zone rocks are more fragmented, 
the pore size is generally larger, and the diffusion of 
slurry is mostly in the form of osmotic diffusion (Zhang 
et al., 2019). As early as 1938, Maag derived the equation 
for the permeation diffusion of Newtonian fluids in sand 
layers(Kuang et  al., 2001), and with the development of 
the theory of permeation grouting, scholars at home and 
abroad have carried out a lot of research on the time-var-
ying characteristics of the viscosity of grouting materials 
and the diffusion mechanism of slurry in porous media.

Kim & Whittle, 2009; Zhang, 2011 studied several 
grout diffusion mechanisms after assuming and simpli-
fying some of some limited known conditions such as 
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geological conditions and construction process param-
eters, which can be divided into two categories: grout 
diffusion mechanisms without considering fluid time var-
iability and grout diffusion mechanisms considering fluid 
time variability. At present, in terms of the time-varying 
properties of slurry viscosity not considered, Yang et al., 
2005; Yu & Li, 2001 derived the formulae for the pene-
tration diffusion radius of Bingham and power-law type 
slurries in geotechnical soils based on the generalized 
Darcy’s law and spherical diffusion theory model, and 
analyzed the influence of slurry performance parameters 
on the grouting pressure and diffusion radius; Baker, 
1974 derived the maximum diffusion radius of Bingham 
and Newtonian fluids for grouting in fractures of rock 
bodies. Bouchelaghem & Vulliet, 2001 studied the flow–
solid coupling phenomenon and filtration effect of satu-
rated porous media during the injection of mixed-phase 
slurry and established a corresponding theoretical model; 
Zhu et al., 2020 used the particle deposition probability 
model to establish a column permeation grouting model 
considering the percolation effect; Tekin & Akbas, 2010 
established a model that can be used to estimate the per-
colation effect considering the slurry Saada et  al., 2005, 
2006 conducted an indoor test to analyze the diffusion 
and reinforcement mechanism of ultrafine cement slurry 
in sandy soil layer with the variation parameters of com-
pactness, grouting pressure, water–cement ratio, slurry 
solidification degree and grouting rate; Zhang et al., 2011 
developed the Herschel–Bulkley slurry diffusion and 
reinforcement model. Bulkley slurry diffusion model, and 
explored the influence of parameters such as grouting 
time, grouting pressure, rheological index and fracture 
dip angle on slurry diffusion radius.

In considering the time-varying viscosity charac-
teristics of slurry, Ruan, 2005 proved the existence of 
time-varying viscosity of cement-based slurry through 
a large number of experiments and established a stable 
slurry injection diffusion model for rock fractures; Yang 
et  al., 2011, 2021 established corresponding spheri-
cal and columnar infiltration diffusion models based 
on the rheological equations of power-law fluid and 
Bingham fluid with time-varying viscosity equations, 
respectively; Zhang et al., 2017, 2022a, b established a 
one-dimensional permeation grouting diffusion model 
under constant grouting rate conditions based on the 
viscosity time-varying Bingham fluid constitutive 
model, taking into account the inhomogeneity of the 
spatial distribution of slurry viscosity. The above schol-
ars have not considered the influence of the tortuos-
ity of the injected medium on the slurry diffusion path 
when studying the permeation–diffusion mechanism 
of grouting. With the further development of permea-
tion grouting theories, some scholars have carried out 

a lot of research in considering the diffusion path of 
slurry in porous media, and Zhou et  al., 2016 derived 
the tortuosity effect equation of the pore channel based 
on fractal theory and derived the slurry diffusion model 
considering the pore through the power-law fluid con-
stitutive equation. Pisani, 2016 studied the dependence 
of tortuosity on the geometrical structure of a porous 
medium is studied. Geometrical expressions for the 
tortuosity as a function of the porosity, of shape fac-
tors characterizing the geometry of the solid objects 
and of the orientation of the flow with respect to the 
object axes are derived. Lala, 2020 Development of a 
new model for sample tortuosity using micromechanics 
theory and then the model with a sand-pack flow labo-
ratory experiment was verified to obtain tortuosity var-
iation with porosity indicates an inverse relationship or 
a negative power-law regression approximation. Zhang 
et al., 2018 established a model of permeation grouting 
in porous media considering the diffusion path of slurry 
by analyzing the diffusion path of slurry infiltration in 
porous media based on the equation of motion of seep-
age of Newtonian fluid. These studies promoted the 
further development of permeation grouting theory.

For coastal areas, if the use of seawater mixing to pre-
pare cement slurry can greatly reduce the project cost, 
relevant scholars have carried out research on this. 
Zheng, 2023 studied the effect of seawater mixing on 
the mechanical strength of different types of cement, 
and the results showed that seawater mixing increased 
the generation of ettringite during sulfoaluminate salt-
ing, thus improving the late compressive strength of 
sulfoaluminate cement mortar, but had no effect on the 
flexural strength. Meanwhile, seawater mixing reduced 
the mechanical strength of Portland cement. Li, 2023 
studied the effect of seawater mixing on the work-
ing performance of ordinary Portland cement, and the 
research showed that seawater mixing would acceler-
ate the early hydration of ordinary Portland cement, 
shorten the setting time of cement, but reduce the 
mechanical strength of cement. Yu et al., 2023 studied 
the influence of different water mixing on the work-
ing performance of sulfoaluminate cement and added 
nanomaterials into the cement system for modification. 
The results showed that the compressive strength of 
sulfoaluminate cement paste after adding seawater was 
higher than that of sulfoaluminate cement paste mixed 
with fresh water, and the addition of nanomaterials 
would further improve the mechanical properties of 
cement. Zhang et  al., 2022a, 2022b found through the 
test that seawater mixing would prolong the hydration 
time of magnesium phosphate cement grouting mate-
rial, improve the early viscosity of the slurry, but reduce 
its spillability in the sand layer.
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In summary, scholars at home and abroad have made 
abundant research results on the diffusion law and mech-
anism of permeation grouting, but most of the results 
are established based on the viscosity characteristics of 
slurry in freshwater environment, however, in practical 
engineering, seawater will have certain influence on the 
viscosity of slurry, and then affect the diffusion of slurry. 
Therefore, this paper takes sulfoaluminate cement slurry 
as the research object and establishes a theoretical model 
of grout diffusion considering seawater environment, to 
provide some theoretical support for the actual grouting 
project.

2  Theoretical Model of Viscosity Time‑Varying 
Fluid Permeation Grouting Considering 
Diffusion Path

2.1  Analysis of the Diffusion Mechanism of Slurry 
in Porous Media

To study the diffusion mechanism of slurry in porous 
media, the following hypothesis was made:

(1)  The slurry is homogeneous, incompressible, and 
gravity is ignored during the grouting process;

(2) The slurry is Bingham fluid and the flow pattern 
remains constant in the grouting process, and the 
slurry is laminar in the diffusion process;

(3) Ignore the percolation effect of slurry in the process 
of permeation and diffusion in porous media, and 
the flow process does not produce precipitation;

(4) The slurry is spherical diffusion with the end of the 
grouting pipeline as the point source(Fu et al., 2019; 
Liu et al., 2021);

(5) The porous medium is homogeneous and isotropic.

The slurry does not flow forward in a straight line when 
flowing in porous media formations, the complexity of 
the pore channels causes the slurry to form a tortuous 
flow path.Fig. 1 shows a schematic diagram of slurry flow 
in porous media, the actual length of the porous media 
pore channel is recorded as lt, and the straight length of 
the pore channel is recorded as l.

The tortuosity of pore channels in porous media can be 
expressed as (Dai et al., 2021):

where φ is the porosity;α is the hindrance parameter with 
values between 0 and arctan(1/2); m is the anisotropy 
parameter with values greater than 0; m and α can be 
determined by sampling analysis methods.
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In the case where the porous medium is isotropic, 
m = 1,α = 0, then Eq. (1a) can be simplified as:

According to the fractal theory (Yu & Li, 2001), the 
porosity of porous media can be expressed as:

where rmax and rmin are the maximum and minimum 
radii of the pore channels in porous media, respectively; 
Df  is the fractal dimension of the pore channel size.

Meanwhile, according to the research results of Yu, 
2004, the relationship between the porosity of porous 
media and rmin/rmax can be expressed by the following 
equation:

where d+ is generally taken as 24.
Combining Eq. (2a) and Eq. (3), the fractal dimension 

Df  , which represents the size of the pore channel, can 
be expressed as:
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Fig. 1 Schematic diagram of slurry flow in porous media
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The pore channel tortuous curvature fractal dimension 
Dt can be expressed as (Xu & Yu, 2008):

where η is the length ratio of pore channels of porous 
media,η = l/r.

According to the literature (Xu & Yu, 2008; Yu, 2004; Yu 
& Li, 2001), the length ratio of pore channels in porous 
media can be obtained as:

2.2  Fractal Theory of Porous Medium Time‑varying 
Viscosity Slurry Seepage Equation Considering 
Diffusion Path

The equation for the flow velocity of a Bingham fluid in a 
single pipe can be expressed as (Kong, 1999; Yang et al., 
2004):

where v is the fluid percolation velocity in the pore chan-
nel;K  is the permeability of the porous medium; µp is the 
viscosity of the slurry;−dp/dl0 is the pressure gradient in 
the direction of slurry percolation;� is the initiation pres-
sure gradient of the slurry ( � = 2τ0/r,τ0 is the yield stress 
of Bingham fluid).

The process of viscosity change in viscous time-varying 
slurries follows the following pattern (Cai et  al., 2006; 
Ruan, 2005; Ye et al., 2013):

where µp is the viscosity of the slurry; a,b is the constant 
to be determined; t is the time after the slurry is mixed.

Substituting Eq. (8) into Eq. (7a):

The above formula is the seepage movement equation 
of viscosity time-varying slurry.
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During the grouting process, the grouting pressure is 
much higher than the slurry starting pressure, and the 
quartic term of Eq. (9) can be ignored:

The total volume flow of fluid through a given cell can 
be expressed as:

where A is the slurry diffusion cross-sectional area.
Combining Eqs. (10) and (11) yields:

Separating the variables for Eq. (12) yields:

For spherical permeation grouting: A = 4π l2,combin-
ing η = l/r,� = 2τ0/r and Eqs. (1b) and (13) yields:

Integrating Eq. (14) yields:

From the boundary conditions at the time of grout-
ing l = l0,p = p1;l = l1,p = p0 substituting into Eq. (15) 
yields:

where l0 is the radius of the grouting pipe,l1 is the slurry 
diffusion radius,p0 is the groundwater pressure, and p1 is 
the grouting pressure.

Due to grouting volume Q = qt = 4
3
φπ l31,,substituting 

it into Eq. (16) yields:

where t is the grouting time required for the slurry to dif-
fuse to l1.

In the actual grouting project, the l1 ≫ l0,then 
1/l0 − 1/l1 ≈ 1/l0 , then Eq. (17) can be simplified as:
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Equation  (18) is the theoretical model of viscous time-
varying slurry permeation grouting considering the diffu-
sion path.

When the slurry diffusion path and viscous time-varying 
are not considered, the spherical osmotic diffusion equa-
tion of the slurry is:

where µp0 is the plastic viscosity value of the fluid, that 
is, the initial viscosity value of the viscous time-varying 
fluid.

2.3  Formula Application Scope
Equations  (18) and (19) are derived on the basis of the 
assumption that the slurry flow regime is laminar and are 
not applicable to slurries where the fluid flow regime is 
turbulent. The Reynolds number  Re is the main basis for 
discriminating the slurry flow state, and according to the 
literature (Li & Yuan, 2008),  Re = 2000 is the critical value 
for the transition of the flow state of Bingham fluid from 
laminar to turbulent flow, and when  Re < 2000, the permea-
ble diffusive flow pattern of Bingham fluid in porous media 
belongs to the laminar flow state.

The generalized Reynolds number  Re is determined using 
the following method:

where ρ is the density of the fluid; ν is the flow velocity of 
the fluid; d is a characteristic length (in this paper is the 
diameter of the pore channel of porous media); µp is the 
viscosity of the fluid.

The flow rate of slurry is the key to determine the fluid 
Reynolds number, but the flow rate of slurry in the forma-
tion is not easy to determine, and it is difficult to determine 
the slurry flow state by the above method. According to the 
study of Liu et al., 2008, the slurry belongs to laminar flow 
state when it diffuses by permeation in the formation, and 
it may change to turbulent flow only when splitting diffu-
sion occurs. Therefore, it can be assumed that the slurry 
flow pattern is laminar during the permeation and diffu-
sion of sulfur aluminate cement slurry.
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3  Fault Fracture Permeation Grouting Simulation 
Test

3.1  Viscosity Test of Sulfur Aluminate Cement Slurry Under 
Seawater Environment

(1)Test Materials, Programs, and Equipment

The viscosity of sulfur aluminate cement as a com-
mon grouting material for submarine tunnel fault frac-
ture zone is influenced by chloride ions. By reviewing the 
data, we learned that the salinity of natural seawater var-
ies with the region, season and water depth, and artificial 
seawater with 35% salinity was prepared by dissolving sea 
salt in tap water. The sulfur aluminate cement used in the 
test is 42.5R ordinary sulfur aluminate cement produced 
by Shandong Zibo Yunhe Color Cement Company, and 
the quality of the cement conforms to “sulfur aluminate 
cement” (GB/T 20472-2006).

Configure the sulfur aluminate cement slurry with 
water–cement ratio of 0.8:1, 1:1 and 1.25:1 under com-
plete seawater, 50% seawater and complete freshwater 
environment respectively, and choose NDJ-5S rotary vis-
cometer (see Fig. 2) to test the viscosity of sulfur alumi-
nate cement slurry, the specific testing scheme is shown 
in Table 1, the range of viscometer is from 10 to 100,000 
mPa · s.

The viscosity variation data of the designed proportion 
of sulfur aluminate cement slurry under the conditions 
of complete seawater, 50% seawater, and freshwater were 
measured, respectively, and the test data were fitted and 
analyzed as shown in Fig. 3.

As can be seen from Fig. 3, the viscosity of sulfur alu-
minate cement slurry grows nonlinearly with time, and 
its viscosity growth rate is also increasing; the viscosity 
of sulfur aluminate cement slurry is negatively correlated 
with the water–cement ratio, and the smaller the water–
cement ratio, the greater the viscosity; the influence of 

Fig. 2 NDJ-5S rotational viscometer
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seawater environment on the viscosity of sulfur alumi-
nate cement slurry is more obvious, and the viscosity of 
sulfur aluminate cement slurry changes relatively slowly 
under the seawater environment, and seawater inhibits 
the viscosity growth of sulfur aluminate cement.

According to the experimental data, the viscosity vari-
ation curve of sulfur aluminate cement slurry with time 
is consistent with the characteristics of exponential func-
tion, so µ(t) = Aet/B + C is used for fitting, and the time-
varying equations of viscosity of sulfur aluminate cement 
slurry with representative ratios in different water envi-
ronments are fitted separately in Table  2, and the fitted 
curves are shown in Fig. 3b.

Table 1 Viscosity testing scheme for sulfur aluminate cement 
slurry

Test number Water to ash ratio Seawater environment

A1 0.8:1 Complete seawater

A2 50% seawater

A3 Complete fresh water

B1 1:1 Complete seawater

B2 50% seawater

B3 Complete fresh water

C1 1.25:1 Complete seawater

C2 50% seawater

C3 Complete fresh water

Fig. 3 Viscosity test data and fitting curve of sulfate aluminate cement slurry. a Test data; b Fitting the curve

Table 2 Time variation equation of viscosity of sulfate aluminate cement slurry

where µ(t) is the apparent viscosity of the slurry, unit mPa·s

Water–cement ratio Seawater environment Fitting equation R2

0.8:1 Complete seawater µ(t) = 15.38e
t/599.44 + 7.23 0.99776

50% seawater µ(t) = 38.24e
t/850.67 − 22.90 0.99844

Complete fresh water µ(t) = 42.62e
t/746.86 − 32.13 0.99639

1:1 Complete seawater µ(t) = 52.06e
t/2659.98 − 41.14 0.99714

50% seawater µ(t) = 44.27e
t/1726.55 − 35.05 0.99285

Complete fresh water µ(t) = 37.14e
t/1325.20 − 30.42 0.99004

1.25:1 Complete seawater µ(t) = 2.55e
t/1167.86 + 4.94 0.99812

50% seawater µ(t) = 0.70e
t/555.02 + 7.07 0.99074

Complete fresh water µ(t) = 2.50e
t/717.93 + 3.99 0.99852
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3.2  Fault Fracture Zone Permeability Simulation Test

(1) Test Equipment

The fault fracture zone permeation grouting simula-
tion test system mainly includes slurry making device, 
pressure stabilization grouting device and visualization 
stratigraphic simulation device.

EWS200 air compressor is used to provide power for 
the grouting system. The air supply volume of the air 
compressor is 0.3m3/min, air pressure:0.5 ± 0.02  MPa, 
and the rotational speed is 1400 revolutions per min-
ute. The slurry making device is composed of mixer, 
mixing barrel and pneumatic grouting pump. The 
mixer adopts TJ3 pneumatic mixer, the rotation speed 
is 50 ~ 400  rpm; the volume of mixing barrel is 200  L; 
the pneumatic grouting pump adopts ZBQ-2771.5 coal 
mine pneumatic grouting pump, the grouting volume is 
0–30 L/min, the maximum grouting pressure is 3 MPa; 
the maximum withstand pressure of high-pressure 
grouting pipe is 20 MPa, the inner diameter is 12.5 mm.

The pressure stabilization grouting device consists of 
slurry storage tank, liquid level indicator, air pressure 
regulator and pressure gauge. The maximum withstand 
pressure of slurry storage tank is 1.5 MPa, and the pres-
sure gauge range is 0.3  MPa. AR4000-04 air pressure 
regulator is used, and the pressure adjustment range is 

0.05–0.85  MPa, which can pressurize or depressurize 
the pressure stabilization grouting device.

The visualized stratigraphic simulation device is com-
posed of Plexiglas panels and supporting steel fixtures, 
with filling size of 1000  mm × 800  mm × 800  mm. The 
steel fixtures are bolted together for easy disassembly and 
installation. To restore the stratigraphic conditions more 
realistically, the simulation device is filled with sandstone 
of different grain sizes as the injected medium, and the 
two ends are fixed with fixing devices, and a grouting 
hole is set at the top of the device.

The schematic diagram of the fault fracture zone per-
meation grouting test setup is shown in Fig. 4.

(2) Test Program

In this test, sulfur aluminate cement was selected as 
the grouting material, and a total of five groups of test 
schemes were designed, and the specific grouting test 
schemes are shown in Table 3.

When conducting the test, the rock samples are first 
sieved and combined, and the high-pressure grout-
ing pipes, air compressors, and grouting pumps are 
connected. Then, the formation simulation device is 
assembled and filled, before filling, grease is applied to 
the inner wall of the model to ensure the sealing of the 
model, and the permeability coefficient and porosity of 

Fig. 4 Schematic diagram of the permeation grouting test device for fault fracture zone

Table 3 Permeation grouting simulation test scheme

Test number Seawater environment Water–cement 
ratio

Grouting pressure/
MPa

Porous media 
porosity

Permeability coefficient 
of porous media (cm/s)

1 Complete seawater 1 0.06 49.96% 8.25

2 Complete seawater 0.8 0.06 49.96% 8.25

3 Complete seawater 1.25 0.06 49.96% 8.25

4 50% seawater 1 0.06 49.96% 8.25

5 Complete fresh water 1 0.06 49.96% 8.25
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the rock samples inside the model are tested after the 
filling is completed. The sulfur aluminate cement slurry 
is prepared in the mixing barrel according to the design 
ratio, and then pumped into the storage tank through the 
pneumatic grouting pump, and through the air pressure 
regulator to make the grouting pressure to the test design 
pressure, and the permeation grouting is started after the 
pressure is stabilized.

After the initial setting of the slurry, the formation sim-
ulation device was opened and excavated to observe the 
slurry diffusion, which was basically spherical in shape 
and was measured. The test results of fault fracture zone 
permeation grouting test are shown in Table 4.

4  Analysis of Test Results and Comparison 
of Experimental and Theoretical Models

The theoretical model considering the slurry diffu-
sion path and viscosity time-varying, and the theoreti-
cal model without considering the slurry diffusion path 
and viscosity time-varying are compared and analyzed 
with the test results, respectively, to verify the theoretical 
model proposed in this paper. The calculated parameters 
of the theoretical model (see Table 5) with Eq.  (18) and 
Eq.  (19) lead to the curve of the slurry diffusion radius 
with time (as shown in Fig. 5).

According to Fig. 5, with the increase of grouting time, 
the slurry diffusion radius of the theoretical model con-
sidering slurry diffusion path and Viscosity time-varying 
and that without considering slurry diffusion path and 

Viscosity time-varying both show nonlinear growth, and 
the growth rate of slurry diffusion radius is decreasing 
with time; the theory without considering slurry diffu-
sion path and viscosity time-varying is larger than the 
diffusion distance considering slurry diffusion path and 
viscosity time-varying theory, and the difference between 
them is increasing with time.

Water–cement ratio and slurry diffusion radius are 
positively correlated, with the increase of water–cement 
ratio, the diffusion radius of slurry increases; seawater 
admixture and slurry diffusion radius are negatively cor-
related, with the increase of seawater admixture, the dif-
fusion distance of slurry tends to decrease.

When the grouting pressure is 0.06 MPa, the diffu-
sion distance calculated without considering the slurry 
diffusion path and viscosity time variability is 1.63–1.91 
times of the experimental value, and the diffusion dis-
tance calculated with considering the slurry diffusion 
path and viscosity time variability is 1.06–1.35 times of 
the experimental value, which is obviously closer to the 
experimental value. Therefore, the Bingham fluid per-
meation grouting mechanism considering diffusion path 
and slurry viscosity time variability better reflects the 
diffusion pattern and law of Bingham fluid permeation 
grouting in porous media than the spherical diffusion 
mechanism of Bingham fluid permeation grouting with-
out considering diffusion path and slurry viscosity time 
variability.

The main reasons for considering the theoretical value 
of slurry diffusion path and viscous time variability 
greater than the test value are as follows: (1) the slurry in 
the porous media pore channel during the injection pro-
cess may occur precipitation, blockage and other percola-
tion effects; (2) there are problems such as pressure loss 
in the grouting pipeline, and the performance index of 
the cement slurry prepared in the test is unstable, and the 
precipitation rate often exceeds the standard, while the 
theoretical formula uses the stability slurry performance 
index, which leads to large results of the theoretical cal-
culation of the diffusion radius; (3) the size and shape 
of the particles of the crushed rock block selected to be 
injected into the medium are difficult to be completely 

Table 4 Results of permeation grouting simulation test

Test number Grouting 
pressure p/
MPa

Grouting 
time t/s

Measured value of 
diffusion radius/cm

1 0.06 26.8 20.6

2 0.06 22.5 16.5

3 0.06 30.5 27.9

4 0.06 27.6 22.5

5 0.06 29.8 24.8

Table 5 Calculated parameters of the theoretical model

Test number Grouting pressure
(MPa)

Initial viscosity 
of slurry µp0

(mPa • s)

Slurry yield 
stress τ0
(Pa)

Porous media porosity Permeability coefficient 
of porous media (cm/s)

Pore channel length 
ratio η

1 0.06 10.92 1.397 49.96% 8.25 24.15

2 22.61 2.635

3 7.49 0.764

4 9.22 1.023

5 6.72 0.953
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uniform, and cannot fully meet the assumption of isot-
ropy; and (4) the test results are also affected by the test 
environment (such as: temperature factors, gravity fac-
tors, etc.), test personnel operation, and many other fac-
tors, resulting in small test results.

5  Conclusion

(1) Based on the seepage equation of Bingham fluid, 
the tortuosity parameter of porous media, the frac-
tal theory and the time-varying viscosity of slurry, 
a spherical permeation grouting model of Bingham 
fluid considering the diffusion path of slurry and 
the time-varying viscosity is established.

(2) The viscosity of sulfur aluminate cement slurry 
under seawater environment was tested, and the 
equation of its viscosity variation with time was 
obtained, and the seawater environment showed an 
obvious inhibitory effect on the viscosity of sulfur 
aluminate cement slurry. A fault fracture zone per-
meation grouting test system was developed, and 
sulfur aluminate cement was used for fault fracture 
zone grouting simulation tests.

(3) The diffusion distance calculated without consider-
ing the influence of slurry diffusion path and sea-
water is 1.63–1.91 times of the experimental value, 
and the diffusion distance calculated with consider-
ing the influence of slurry diffusion path and sea-
water is 1.06–1.35 times of the experimental value; 

the theoretical model considering the influence of 
diffusion path and seawater can better describe the 
dynamic process of slurry diffusion.
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