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Abstract 

The contribution of shear resisted by flanges of T-beams is usually ignored in the shear design models even though it 
was proven by many experimental studies that the shear strength of T-beams is higher than that of equivalent rec-
tangular cross-sections. Ignoring such a contribution result in a very conservative and uneconomical design. There-
fore, the aim of this research is to investigate the capability of machine learning (ML) techniques to predict the shear 
capacity of reinforced concrete T-beams (RCTBs) by incorporating the contribution of the flange. Five machine learn-
ing (ML) techniques, which are the Decision Tree (DT), Random Forest (RF), Gradient Boosting Regression Tree (GBRT), 
Light Gradient Boosting Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), are trained and tested 
using 360 sets of data collected from experimental studies. Among the various machine learning models evaluated, 
the XGBoost model demonstrated exceptional reliability and precision, achieving an R-squared value of 99.10%. The 
SHapley Additive exPlanations (SHAP) approach is utilized to identify the most influential input features affecting 
the predicted shear capacity of RCTBs. The SHAP results indicate that the shear span-to-depth ratio (a/d) has the most 
significant effect on the shear capacity of RCTBs, followed by the ratio of shear reinforcement multiplied by the yield 
strength of shear reinforcement ( ρvfyv ), flange thickness ( hf ), and flange width ( bf ). The accuracy of the XGBoost 
model in predicting the shear capacity of RCTBs is compared with established codes of practice (ACI 318-19, BS 8110-
1:1997, EN 1992-1-2, CSA23.3-04) and existing formulas from researchers. This comparison reinforces the superior reli-
ability and accuracy of the machine learning approach compared to traditional methods. Furthermore, a user-friendly 
interface platform is developed, effectively simplifying the implementation of the proposed machine-learning model. 
The reliability analysis is performed to determine the value of the resistance reduction factor (φ) that will achieve 
a target reliability index ( βT  = 3.5).

Keywords  Reinforced concrete T-beams, Shear strength, Machine learning (ML), Extreme Gradient Boosting model 
(XGBoost), Decision tree model (DT), Random forest model (RF)

1  Introduction
RC beams with T-cross sections are utilized in a vari-
ety of construction applications, including bridge decks, 
building floors/slabs, retaining walls, and parking garages 
(Ayensa et al., 2019; Ramadan et al., 2022; Ribas González 
et al., 2017). The advantage of T-sections lies in the fact 
that a portion of the slab acts integrally with the beam, 
bending along with it under the loads to effectively resist 
straining actions. On the contrary, the shear resistance 
of RCTBs is typically assessed solely based on the area 
of the beam web. The contribution of the flanges to the 

Journal information: ISSN 1976-0485 / eISSN 2234-1315.

*Correspondence:
Saad A. Yehia
saad_yehia@kfs-hiet.edu.eg
1 Civil Engineering Department, Higher Institute of Engineering 
and Technology, Kafrelsheikh 33511, Egypt
2 Civil Engineering Department, Faculty of Engineering, Kafrelsheikh 
University, Kafrelsheikh 33511, Egypt

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40069-024-00690-z&domain=pdf
https://orcid.org/0009-0002-1331-7157


Page 2 of 26Yehia et al. Int J Concr Struct Mater           (2024) 18:52 

shear strength is commonly overlooked in shear design 
models (Zararis IP et  al., 2006). Nevertheless, recent 
studies have demonstrated a notable contribution of the 
flanges to the shear strength of T-beams (Amna & Mon-
staser, 2019; Ayensa et  al., 2019; Bresler & MacGregor, 
1967; Elgohary et al., 2019; Giaccio et al., 2011; Hawileh 
et al., 2022; Mhanna et al., 2020, 2021a, 2021b; Ramadan 
et al., 2022; Samad et al., 2016, Sarsam et al., 2018; Swamy 
et al., 1974; Thamrin et al., 2016).

In the study by Ramadan et  al., (2022), the authors 
conducted a study on the shear behavior of T-beams, 
highlighting the impact of the beam flange area on shear 
strength. The results of the experiment showed that 
T-beams had a higher shear strength compared to rec-
tangular beams with the same web size. Furthermore, 
the research discovered that elevating the ratio of flange 
thickness-to-beam depth from 0.3 to 0.5 within the 
examined range of variables caused an increase in shear 
strength of up to 54%. Likewise, increasing the ratio of 
flange width-to-web width from 3 to 5 led to an escala-
tion in shear strength of up to 19%. Ayensa et al., (2019) 
displayed that the significance of the flange can result in 
considerable cost savings during the construction of new 
structures. It can also be a critical factor when assess-
ing the shear strength of existing systems. Test results 
of a study by Bresler and MacGregor, (1967) concluded 
that the geometry of the beam, particularly for I and 
T-sections, has a significant impact on the shear strength 
and behavior due to the varying magnitudes of shearing 
stress developed in the web. This variation also affects 
the propagation of diagonal cracking. Also, Amna et al., 
(2019) presented an experimental and numerical model 
to investigate the shear behavior from using lightweight 
concrete beams. The research findings indicated a nota-
ble rise in the ultimate load as the shear span to depth 
ratio decreased. Conversely, there was an inverse rela-
tionship between the failure load and the shear span to 
depth ratio. Sarsam et  al., (2018) conducted a literature 
review to investigate how flanges impact the shear capac-
ity of RCTBs. Based on their analysis, they developed an 
equation to predict the shear capacity of RCTBs. Swamy 
and Qureshi, (1974) developed a procedure for determin-
ing the maximum shear strength of the compression zone 
in T-beams. This procedure was created based on Mohr’s 
theory of failure and the biaxial stress criteria concept. 
However, this strategy requires a series of calculations 
and is complicated to implement into practice. The shear 
mechanism of RCTBs with simply supported subjected 
to a 4-point bending test was examined by Samad et al., 
(2016). The study encompassed similar variables and 
parameters, such as a shear span-to-effective depth ratio 
(a/d) of 3.5 and a longitudinal reinforcement of ρ = 2.15%. 
Results indicate significant differences between EC2 

and ACI318-08 design codes when calculating the shear 
capacity Vn , and concrete shear resistance Vc of T-beams. 
In their study, Thamrin et al., (2016) found that the shear 
capacity of the T-beams tested was notably influenced 
by both the ratio of longitudinal reinforcement, and the 
size of the flange. Where the shear capacity of T-beams is 
generally reported to be 5–20% higher than that of beams 
with a rectangular cross-section, and current codes are 
using conservative empirical equations to calculate the 
shear capacity of beams. Elgohary et al., (2019) presented 
an experimental test of RCTBs without stirrups, where 
the flange width-to-web width ratio was varied. The test 
results indicated that the shear strength was improved by 
10–30% owing to the involvement of the flange. Further-
more, some theoretical models, as demonstrated in the 
references (Bairan Garcia & Mari Bernat, 2006; Cladera 
et al., 2015; Kotsovos et al., 1987; Moayer & Regan, 1974; 
Tureyen & Frosch, 2003; Wolf & Frosch, 2007; Zararis IP 
et al., 2006), have considered the contribution of flanges 
to shear strength. Based on prior literature, it is evident 
that existing design formulas cannot accurately forecast 
the shear capacity of flanged sections, primarily due to 
the intricate nature of shear failure in T-sections. This 
underscores the growing necessity for more accurate pre-
diction methodologies that account for the augmented 
shear capacity resulting from the inclusion of flanges in 
T-sections.

Modern machine learning (ML) algorithms present 
a promising solution to address these concerns, as they 
excel at handling complex problems with multiple vari-
ables without relying on assumptions. In the past decade, 
data-driven approaches including various ML techniques 
have had an increasing presence and importance in a 
wide range of civil engineering applications, including 
geotechnical (T. Q. Huynh et  al., 2022; Vadyala et  al., 
2022), structural (Le-Nguyen et  al., 2022; H. D. Nguyen 
et  al., 2021a, 2021b, 2022; Shahin et  al., 2023), material 
perspectives (J. Schmidt et  al., 2019; J. Wei et  al., 2019; 
Nguyen-Sy et al., 2020; Wang et al., 2020), etc. Moreover, 
ML techniques have demonstrated significant success 
in estimating the shear strength of RC beams. Several 
studies have utilized ML methods to predict the shear 
strength of RC beams, yielding promising results. For 
example, Goh (Goh, 1995) was among the pioneers in uti-
lizing Artificial Neural Networks (ANNs) to predict the 
ultimate shear strength of deep beams. Similarly, Zhang 
et  al., (2022) applied random forest (RF) in conjunction 
with an optimization technique to predict the RC beams 
shear strength, including the stirrup’s effect on beam 
strength. Cladera and Mari, (2004) and Jung and Kim, 
(2008) utilized experimental data to train and test an arti-
ficial neural network (ANN)-based model for estimating 
the shear strength of RC beams. Additionally, Ashour 
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et al., (2003) and Alshboul et al., (2022) introduced a gene 
expression (GEP)-based model designed to calculate the 
shear strength of RC beams. Also, a variety of ML algo-
rithms have been employed to predict the shear strength 
of steel fiber-reinforced concrete and ultra-high-perfor-
mance fiber-reinforced concrete beams. Support Vec-
tor Machine (SVM), Artificial Neural Networks (ANN), 
k-Nearest Neighbor (k-NN), Gene Expression Program-
ming (GEP), Decision Tree (DT), Random Forest (RF), 
XGBoost, AdaBoost, Gradient Boosting Regression Tree 
(GBRT), and CatBoost models (Abambres & Lantsoght, 
2019; Chaabene & Nehdi, 2020; Jiang & Liang, 2021; 
Keshtegar et  al., 2019; Rahman et  al., 2021; Sarveghadi 
et  al., 2019; Shahnewaz & Alam, 2020; Shatnawi et  al., 
2022; Solhmirzaei et  al., 2020; Xiangyong Ni & Kang-
kang Duan, 2022; Yaseen et al., 2018; Ye et al., 2023) have 
been extensively utilized for this purpose. These models 
offer diverse approaches to accurately predict the shear 
strength of RC beams, contributing to advancements in 
structural engineering research and design.

While machine learning (ML) proves highly beneficial 
in enhancing metamodels and enjoys widespread popu-
larity among researchers, its implementation in struc-
tural engineering applications presents two significant 
challenges. The primary hurdle lies in the crucial initial 
step of converting input features into numerical data 
suitable for the algorithm’s consumption. Meanwhile, 
the secondary challenge involves determining the opti-
mal technique to address the prediction problem (Kes-
htegar et  al., 2019). The current study investigated five 
prominent ML techniques, which are DT, RF, GBRT, 
LightGBM, and XGBoost. The primary objective was to 
ascertain the most suitable technique for predicting the 
shear capacity of RCTBs. DT algorithm provide inherent 
interpretability, enabling visualization of decision-mak-
ing processes and identification of key influential fea-
tures impacting predicted shear capacity (Sutton, 2005). 
By strategically combining multiple DT, RF algorithm 
achieve enhanced prediction accuracy compared to indi-
vidual DT. This ensemble learning approach reduces 
prediction errors and fosters the development of more 
generalizable models that are less susceptible to overfit-
ting the training data (Breiman L, 2001). GBRT algorithm 
exhibit remarkable proficiency in managing complex rela-
tionships between input features and the target variable 
(such as shear capacity). Their adeptness enables effec-
tive capture of non-linear effects within the data. More-
over, GBRTs often achieve high accuracy across diverse 
datasets (Jerome H. Friedman, 2001). LightGBM (Ke G 
et al., 2017) and XGBoost (Chen & Guestrin, 2016) algo-
rithms are efficiency in computational speed and mem-
ory usage, making them ideal for handling large datasets 
common in structural engineering. They integrate robust 

regularization techniques to prevent overfitting, enhanc-
ing model generalizability to new data. Additionally, both 
algorithms can handle missing values and categorical 
data.

2 � Research significance
Despite the promising outcomes demonstrated by ML 
algorithms in diverse domains, there is a notable lack of 
literature focused on their application in estimating the 
shear capacity of RCTBs. This highlights the need for 
further research and improvement of ML techniques 
specifically within this area of study. Furthermore, from 
the previous literature, it can be determined that cur-
rent design formulas cannot accurately predict the shear 
capacity of RCTBs, due to the complex nature of shear 
failure in T-sections. Hence, this study explores the 
potential of five ML algorithms—Decision Trees (DT), 
Random Forest (RF), Gradient Boosted Regression Trees 
(GBRT), LightGBM, and XGBoost—to predict the shear 
capacity of RCTBs. The models are trained and tested 
using experimental data consisting of 360 data points. 
The SHAP method was utilized to determine the sig-
nificance of input features and illustrate their positive or 
negative impacts on the predicted outcomes. Further-
more, sensitivity analysis is conducted to assess the ML 
models’ capacity to capture the influences of geometric 
and material parameters on their predictions. The devel-
oped ML model is compared against established codes of 
practice and existing empirical formulas. Furthermore, 
a user-friendly interface platform is developed, effec-
tively simplifying the implementation of the proposed 
machine-learning model. Reliability analysis is performed 
to determine the value of the resistance reduction factor 
(φ) that will achieve the specified target reliability index.

3 � Experimental Database
3.1 � Database Preparation and Description of Parameters
A literature survey was conducted to gather experimen-
tal data on the shear capacity of RCTBs with and without 
shear reinforcement. The survey yielded 360 experimen-
tal results from the reviewed literature, as illustrated in 
Table 1. The input parameters that affect the shear capac-
ity of RCTBs are web width of beam ( bw ), effective depth 
of beam (d) (the distance between the steel rebar and the 
compression fiber’s edge), flange width ( bf ), flange thick-
ness ( hf ), compressive strength of concrete ( f ′c ) (conven-
tional normal concrete), shear span-to-depth ratio (a/d), 
longitudinal steel ratio (ρ), and ratio of shear reinforce-
ment multiplied by the yield strength of shear reinforce-
ment ( ρvfyv ). The output variable is maximum shear 
capacity ( Vexp ). Moreover, Table 2 displays the descriptive 
statistics for every parameter contained within the data-
set, where descriptive statistics refer to the numerical 
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values that can be used to describe a dataset, such as 
its measures of central tendency (mean) and variability 
(standard deviation).

Figure  1 displays a histogram of the data distribu-
tion and features. It displays the frequency of both input 
and output features within a specific range. The out-
comes indicate that the web width ( bw ) spans from 50 to 
200 mm, and the effective depth (d) of the beams varies 
between 200 and 400 mm, with a notable concentration 
around 300  mm. Additionally, the flange width ( bf ) lies 
within 200–600 mm, accompanied by a flange thickness 
( hf ) around 85  mm. The a/d ratio predominantly cent-
ers on a value of 3. The concrete compressive strength 
stands approximately at 30  MPa, while the longitudi-
nal steel ratio (ρ) hovers around 0.025%. Moreover, the 
product of the shear reinforcement ratio and the yield 
strength of shear reinforcement ( ρvfyv ) approximates 
1 MPa. The maximum shear capacity ( Vexp ) of the beam 
encompasses a range of 10–400 kN, with a primary peak 
around 150 kN. Finally, the histogram highlights the need 
for future experimental programs to address the gaps in 
the dataset.

3.2 � Pearson Correlation Analysis
The Pearson correlation coefficient (PCC) is a statistical 
metric used in sensitivity analysis to measure of the sig-
nificance of a linear relationship between two variables 
It is also known as Pearson’s r or the Pearson coefficient 
for product–moment correlation (PPMCC) (Schober 
& Schwarte, 2018). The PCC has a value between −  1 
and + 1, with 1 representing a perfect positive linear 
relationship between the variables, −  1 denotes a per-
fect negative linear relationship, while 0 denotes no 
linear relationship. In addition, the PCC evaluates the 
strength and directionality of a relationship between 
two variables. Figure 2 shows the results of the Pearson 

correlation analysis of nine parameters ( bw , d,bf ,hf  , 
a/d, f ′c  , ρ,ρvfyv , Vexp ). The degree of correlation between 
bw and bf  reaches 0.75, while the degree of correlation 
between d and hf  reaches 0.70, which indicated that 
features have a strong relationship. Among all the input 
features, it appears that the effective depth of the beam 
(d) has the greatest effect on the output, with a correla-
tion coefficient of 0.63. Furthermore, it can be observed 
that the flange dimensions (thickness ( hf  ) and width ( bf )) 
positively affect the shear capacity of RCTBs, with cor-
relation coefficients of 0.57 and 0.50, respectively. This 
highlights the significance of the flange in predicting the 
shear capacity of RCTBs. These results indicate that vari-
ations in these variables may have a significant impact on 
the output, while changes in the other input parameters 
may have a comparatively smaller effect.

4 � Machine Learning Models
4.1 � Overview of Machine Learning Models
The utilization of machine learning has gained promi-
nence within the field of structural engineering, enabling 
the analysis and prediction of complex structural behav-
iors with improved accuracy and efficiency. Machine 
learning algorithms can identify patterns and relation-
ships within the data, aiding in the modeling and simu-
lation of structural systems. These algorithms can be 
applied to various aspects of structural engineering, 
including structural optimization, damage detection, and 
structural health monitoring. For instance, researchers 
have successfully utilized machine learning techniques to 
predict the behavior of structures under different load-
ing conditions, optimize structural design parameters, 
and detect and classify structural damage. Figure 3 dem-
onstrates a standard ML workflow employed in predic-
tive modeling. Using a learning algorithm and an initial 

Table 2  Input and output parameters distribution

STD standard deviation, Min minimum, Max maximum, and Q1, Q2, Q3: 25th, 50th, and 75th percentiles

Description Input parameter Mean STD Min Max Q1 Q2 Q3

Geometrical dimensions bw(mm) 144.11 55.85 50 380 100 150 190.5

d (mm) 297.88 108.17 95.25 580 254 298 359

bf (mm) 505.21 210.82 150 960 300 500 610

hf (mm) 85.69 46.37 25.40 300 60 80 97.5

a/d 3.25 1.55 0.69 10.4 2.92 3.06 3.6

Concrete properties f ′c(MPa) 27.59 8.92 7.94 57 23 28.8 32.25

Internal reinforcement ρ% 2.57 1.23 0.49 8.34 1.64 2.58 3.52

ρv fyv(MPa) 1.03 1.17 0 5.56 0 0.76 1.55

Shear capacity Vexp(kN) 167 102.59 11.25 408 76.8 165 252.45
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dataset, computer systems can be trained to continu-
ally improve and learn until they reach the desired per-
formance level. Therefore, the ML model accuracy is 
dependent on the nature and characteristics of the ini-
tial data, as well as the effectiveness and efficiency of the 
learning algorithm employed.

4.2 � ML Algorithms
The current study investigated five ML algorithms 
commonly used in the field of structural engineering 
(Thai, 2022). As these algorithms have been previously 
explained in detail in other publications, the subsequent 
sections will simply emphasize their key features.

Fig. 1  Histogram with a normal distribution fit for both input and output features



Page 7 of 26Yehia et al. Int J Concr Struct Mater           (2024) 18:52 	

4.2.1 � Decision Tree (DT)
DT (Sutton, 2005) is a type of tree-based model used for 
visualizing the decision-making process. It is also com-
monly known as CART (Classification and Regression 
Tree), which refers to the model’s capability to perform 
both classification and regression tasks. Figure  4 illus-
trates that a decision tree is composed of four essential 
components: a root node, decision nodes, leaf (termi-
nal) nodes, and two or more branches. The root node is 
positioned at the top of the tree and serves as the chief 
decision node, reflecting the goal of the decision tree. 

The decision node, on the other hand, is where a condi-
tion is established that splits the dataset, while the leaf 
node denotes the conclusion of a branch, demonstrating 
a decision to be performed. In a decision tree, the root 
node represents the source data, and this data is recur-
sively divided into smaller subsets using splitting condi-
tions according to several metrics such as MSE (in the 
case of regression problems). The process of splitting 
is repeated for each subset that is derived until no fur-
ther splits can be made that reduce the chosen metric 
or until the tree reaches its maximum allowable depth. 

Fig. 2  Pearson correlation analysis of nine parameters

Fig. 3  Typical workflow of ML
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This iterative process continues until the resulting tree is 
deemed satisfactory for the problem at hand.

4.2.2 � Random Forest (RF)
Leo Breiman, (2001) developed RF algorithm, which 
used decision trees (DTs) as its base or weak learners and 
combines them to enhance the model’s performance. DTs 
are prone to overfitting and instability but using ensem-
ble learning with multiple DTs can help overcome these 
issues. In RF, several decision trees are trained on distinct 
random subsets of the dataset and features to improve 
the model’s performance and robustness, and the final 
prediction is generated by voting on the outputs of these 
individual trees, as shown in Fig. 5. Random Forest can 
be advantageous over DT when dealing with large data-
bases with many input variables, as it can handle them 

more efficiently by employing a large number of trees. 
While RF may train faster than a single DT, it can take 
longer to develop predictions due to the need to combine 
results from multiple trees. The default parameters of RF 
are frequently sufficient to generate acceptable outcomes, 
but hyperparameter tuning can be used to enhance the 
model’s accuracy or speed. Overall, RF is a strong tech-
nique that inherits many of the merits of decision trees 
while also being more robust and adaptable for certain 
types of datasets and problems.

4.2.3 � Gradient Boosting Regression Tree (GBRT)
Gradient Boosting Regression Tree (GBRT) was devel-
oped by Friedman, (2001). It is based on the AdaBoost 
algorithm with two modifications to the weak learners. 
In the first modification, decision trees (DTs) were used 
as weak learners. The second modification is that weights 
are updated based on the residual errors of the previous 
weak learner, rather than its classification errors. GBRT 
has become a popular ML technique for regression 
tasks due to their ability to handle complex interactions 
between variables and the flexibility to learn non-linear 
relationships. Figure 6 illustrates that the training of the 
next tree considers the residual error from the previous 
tree. After the initial weak learner, each subsequent tree 
is trained. The final model can capture the residual errors 
of the weak learners and improve the accuracy of predic-
tions. GBRT also offer flexibility by enabling the tuning 
of hyperparameters, including the number and depth of 
trees, and the learning rate to control the model’s conver-
gence and training speed.

Fig. 4  Example of a Decision Tree (DT)

Fig. 5  Flowchart of RF (parallel training)
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4.2.4 � Light Gradient Boosting Machine (LightGBM)
Ke et  al., (2017) developed Light Gradient Boosting 
Machine algorithm with a focus on computational effi-
ciency without sacrificing accuracy, boasting a speed that 
can up to 20  times more rapid than Gradient Boosting 
Machine. Light word refers to its impressive speed com-
pared to other boosting algorithms, including XGBoost, 
which can be slow to train with large datasets. The pri-
mary distinction between LightGBM and other boosting 
algorithms lies in the method of its expanded tree. Light-
GBM uses a leaf-wise tree growth strategy to select the 
leaf with the largest loss (see Fig. 7) to reduce additional 
loss and improve accuracy than depth-first strategies 
used by other boosting algorithms when developing trees 
on the same leaf. This is in contrast to level-wise tree 
growth strategies used by many other gradient boosting 
algorithms, which may be less effective in reducing loss 
on individual leaves. LightGBM relies on two key features 
to achieve exceptional speed when compared to other 
boosting frameworks: (1) gradient based one-side sam-
pling (GOSS) and (2) exclusive feature bundling (EFB). 
The use of GOSS and EFB can speed up training time for 

gradient boosting decision trees by reducing computa-
tional complexity. While the search results include infor-
mation on LightGBM’s design and performance.

4.2.5 � Extreme Gradient Boosting (XGBoost)
XGBoost was developed by Chen et  al., (2016), where 
XGBoost is considered to be one of the most efficient 
machine learning methods as it enhances the efficiency 
of Gradient Boosting Machines. XGBoost is a machine 
learning algorithm that employs several advanced tech-
niques to train a high-dimensional data in a timely and 
precise manner. The algorithm uses a compressed col-
umn to store input dataset, which reduces the sorting 
cost and speeds up the training process. Additionally, it 
leverages a randomization technique to minimize over-
fitting and increase generalization. Lastly, XGBoost uses 
parallel and distributed computing techniques to fully 
utilize all available CPU cores during training and split 
finding. This enhances the scalability and performance of 
the algorithm, making it possible to train models on very 
large datasets with a large number of features.

Fig. 6  Illustration of the GBRT model
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4.3 � Development of ML Models
The ML models proposed in this paper, comprising eight 
input parameters, are selected to identify the optimal 
model with the most influential parameters for predict-
ing the target variable (shear capacity). To address chal-
lenges associated with low learning rates at extreme 
parameter values and enhance the accuracy and speed of 
modeling, the collected database is normalized to a range 
of [− 1, 1]. The four common statistical metrics, specifi-
cally mean absolute error (MAE), root mean square error 
(RMSE), mean absolute percentage error (MAPE), and 
correlation coefficient ( R2 ), are frequently utilized to 
assess the efficacy of prediction models. A reduced value 
for MSE, RMSE, and MAE corresponds to improved 
model performance, whereas R2 values within the range 
of 0–1 quantify the concurrence between projected and 
actual values. Consequently, elevated R2 values signify 
enhanced model effectiveness. The formulations for these 
four parameters are as follows (Wakjira et al., 2022):

(1)MAE =

1

N

∑N

i=1

∣

∣yi − ŷi
∣

∣,

(2)MAPE =

1

N

∑N

i=1

∣

∣

∣

∣

yi − ŷi
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yi − ŷi
)2
,

(4)R2
= 1−
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(

yi − ŷi
)2

∑N
i=1

(

yi − y−i
)2

where ŷ represents the predicted value, y is the corre-
sponding actual value, y̅ is the mean of all y values in the 
data set, and N is the sample size.

4.3.1 � Hyperparameter Tuning and Cross‑Validation
There are multiple techniques that can improve the per-
formance of ML models, and one effective strategy is to 
fine-tune the hyperparameter. Performance of a model 
can be greatly affected by the choice of hyperparameter 
values, and a systematic approach to variating the val-
ues and evaluating performance for each combination 
is called hyperparameter optimization. The grid search 
method is widely employed for hyperparameter tuning 
purposes. In order to address concerns related to over-
fitting during the hyperparameter optimization process, 
the approach of K-fold cross-validation is employed. The 
dataset is first partitioned into a training set and a testing 
set. Specifically, 80% of the entire dataset is for the train-
ing set, and the remaining 20% is for the testing set. The 
K-fold cross-validation involves carrying out the follow-
ing steps:

a)	 For the intention of cross-validation, it is custom-
ary to divide the training dataset into K-equivalent 
groups or folds.

b)	 In each iteration, use K–1 folds for training and the 
remaining fold for validation.

c)	 Repeat this process until every fold has been used 
for validation at least once. This approach allows for 
comprehensive validation of the model and reduces 
the risk of overfitting.

For hyperparameter optimization in this study, 
grid search technique was used together with tenfold 

Fig. 7  Outline representation of LightGBM and another Bas
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cross-validation (K = 10). During each iteration of the 
tenfold cross-validation, 90% of the training dataset is 
used to train the model while the remainder 10% is used 
a validation dataset. Figure 8 depicts the K-fold cross-val-
idation used in this work for training and for the hyper-
parameter selection of the model.

For example, the effectiveness of the XGBoost algo-
rithm depends on the initial setup of hyperparameters 
like the number of trees (n_estimators) and the learning 
rate (H. Nguyen et al., 2021a, 2021b). The optimization of 
XGBoost hyperparameters using tenfold cross-validation 
can be represented through four charts, each presenting 
the R2 score for a different number of estimators (100, 
200, 300, 400). In each chart, there are four lines indicat-
ing various maximum depths (4, 8, 12, 16). According to 
Fig. 9, the R2 score exhibits its optimal fit when the learn-
ing rate reaches 0.5, the number of estimators equals 300, 
and the maximum depth equals 4. Moreover, with a high 
learning rate, the number of estimators shows no influ-
ence on the R2 score. Conversely, when the learning rate 
drops below 0.2, a greater number of estimators is neces-
sary for the R2 score to achieve a stable maximum value. 
Furthermore, Table  3 synthesizes the optimal hyper-
parameter values for the DT, RF, GBRT, LightGBM and 
XGBoost models, which were all subjected to hyperpa-
rameter optimization.

5 � Results and Discussion
5.1 � Model Prediction Results
This section explores the predictive capacity of the devel-
oped ML models. After identifying the most effective 
hyperparameters for each ML algorithm. Figure 10 pre-
sents scatter plots illustrating the relationship between 
predicted and actual (experimental) shear capacity val-
ues of RCTBs using various ML models. The developed 
ML models demonstrate a strong alignment between 
predicted and experimental shear capacity, with R2 val-
ues exceeding or equaling 98%. Among these models, 
the XGBoost model demonstrated superior predictive 
performance, yielding an R2 value of 0.9914 and minimal 
values for RMSE, MAE, and MAPE, which were 9.53, 
3.75, and 0.03, respectively. In contrast, the RF model 
recorded the lowest R2 value of 98.20 and higher values 
for RMSE (13.80), MAE (5.80), and MAPE (0.0422), as 
depicted in Table  4. Importantly, across all ML models, 
the predicted shear capacity values cluster closely around 
the 45° diagonal line, indicating a precise correlation 
between the experimental and forecasted shear capac-
ity values. Additionally, Fig. 11 illustrates the residuals of 
predicted shear capacity of RCTBs, depicted as the differ-
ence between Vexp and Vpred on both training and testing 
datasets. It is noteworthy that the residuals for all models 
are centered around zero. Therefore, it can be concluded 

Fig. 8  Hyperparameter tuning using K-fold cross-validation
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that the models demonstrate high efficiency in predicting 
the shear capacity.

To facilitate comparison of the performance of the 
presented ML models, Fig.  12 displays the Taylor dia-
gram (Taylor, 2001) for the ML models. Taylor diagram 
represents predicted model values in comparison to the 
original data by plotting correlation (r) and standard 

deviation against a reference dataset. In Fig.  12 the 
XGBoost model directly lies near the reference line 
of the original dataset. The Taylor diagram can also 
explain the reliability and precision of the ML mod-
els. Moreover, to visualize the outcomes of the mod-
els, graphical representations of the experimental and 
predicted shear capacity values versus the experiment 

Fig. 9  XGBoost hyperparameters optimization

Table 3  Optimal hyperparameter values for each ML model

Model Parameters

DT criterion = ’squared_error’, splitter = ’best’, max_depth = 10, max_features = None, max_leaf_nodes = None, min_impurity_
decrease = 0,ccp_alpha = 0.08, min_samples_leaf = 1, min_samples_split = 2, min_weight_fraction_leaf = 0.0, random_state = 27

RF bootstrap = ’False’, max_depth = 80, max_features = 3, min_samples_leaf = 1, min_samples_split = 2, n_estimators = 1000

GBRT learning_rate = 0.2, max_depth = 10, max_features = ’log2’, min_samples_leaf = 4, min_samples_split = 3, n_estimators = 100

LightGBM boosting_type = ’gbdt’, learning_rate = 0.9, max_depth = -1, n_estimators = 300, num_leaves = 31, objective = ’regression’

XGBoost learning_rate = 0.5, max_depth = 4, min_child_weight = 1, subsample = 1, colsample_bytree = 0.5, n_estimators = 300, gamma = 25, 
objective = ’reg:squarederror’
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Fig. 10  Experimental versus predicted shear capacity of RCTBs for a DT, b RF, c GBRT, d LightGBM, and e XGBoost models
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number are provided, as depicted in Fig. 13. Addition-
ally, error data are employed to enhance the visibility of 
the generated models. It can be observed that, among 
all models, the XGBoost model demonstrates that most 
of the predicted points are closer to the experimental 
points. It also indicates that the predicted errors in the 
XGBoost model are lower than those in other mod-
els. However, one potential reason for the occurrence 
of predicted errors is the scarcity of experimental data 
points available in this region, emphasizing the neces-
sity for future experimental programs to address this 
gap. Finally, the superior performance of the XGBoost 
model in predicting the shear capacity of RCTBs 
leads to a focus on this methodology in subsequent 
investigations.

5.2 � Comparison with Shear Design Models
In this section, the accuracy of the XGBoost model is 
evaluated by comparing its predictions of the shear 
capacities of RCTBs with those calculated using the 
American Concrete Institute (ACI 318-19) (2019), Brit-
ish Standard (BS 8110-1:1997) (1997), European Stand-
ard (Eurocode EN 1992-1-2),(2004), Canadian Standards 
Association (CSA23.3–04) (2004) design guidelines, and 
existing formulas from researchers. The existing formulas 
suggested by Sarsam et al., (2018), Thamrin et al., (2016), 
and Zararis et al., (2006) are presented in Table 5.

The shear capacity of RCTBs was determined using 
shear design models. It should be noted that all shear 
design models were applied to all specimens, except for 
the Thamrin et  al. model, which predicted the capacity 
of specimens without steel stirrups. Figure 14 illustrates 
the experimental versus predicted shear capacity based 
on shear design models and the XGBoost model. The 
solid line denotes the best fit between the experimental 
and predicted responses. Furthermore, the assessment 
of both the six models and XGBoost model based on the 
mean, standard deviation (STD), and coefficient of vari-
ation (COV) of the VExp to VPred ratio is demonstrated 
in Table 6. It can be clearly indicated from Table 6 that 
all shear design provisions significantly underestimated 
the shear capacity of RCTBs, where the average ratio of 
experimental to predicted shear values for all the codes 
was above 1.0 (in the range of 1.87–2.94). Furthermore, 
the CSA23.3–04 (2004) code provided the most accu-
rate predictions for the shear capacity of RCTBs, with 
an average ratio of  VExp to VPred  shear capacity of 1.87. 
Among the three existing formulas developed to predict 
the shear capacity of RCTBs, Table  6 indicates that the 
Zararis et  al.,’s model (2006) offered the most accurate 
predictions for the shear capacity of RCTBs overall. Par-
ticularly, the average ratio of VExp to VPred shear capacity 
is 1.71. The accuracy of the Zararis et  al. model comes 
from its incorporation of the whole area of the T-beam 
and its determination of an effective width that is suitable 
for predicting the shear capacity. Following that, the pre-
dictions of the Sarsam et  al., model (2018) also explore 
the influence of flanges on the shear capacity of RCTBs 
(average ratio of VExp to VPred = 1.78). Finally, despite 
Thamrin et al.,’s (2016) equation being developed to pre-
dict the shear capacity of RCTBs without internal stir-
rups, it failed to accurately estimate the true capacity and 
provided conservative results. In particular, the mean 
ratio of VExp to VPred was 1.65 with COV of 32%.

In conclusion, the contribution of the flange to shear 
capacity is significant and should not be neglected 
when determining the shear capacity of RCTBs. Unfor-
tunately, most existing design guidelines overlook this 
aspect, resulting in inaccurate estimations of the true 
shear capacity. With respect to the models proposed 
in the literature, the model presented by Zararis et  al., 
(2006) offered accurate estimations of the shear capac-
ity of RCTBs and could be safely utilized for designing 
RCTBs in shear. Furthermore, the XGBoost model dem-
onstrated better predictive capability in contrast with the 
shear design models, with an average ratio of VExp to VPred  
was 1.0045 ± 0.0596 and COV of 5.93%, as observed in 
Fig. 14h and Table 5.

Table 4  Performance metrics of ML models

Model Data set Performance measures

RMSE (kN) MAE (kN) MAPE (%) R2(%)

DT Training 
dataset

13.38 6.71 4.76 98.30

Test dataset 19.41 13.91 8.96 96.35

All 13.70 5.80 4.22 98.20

RF Training 
dataset

13.68 8.35 6.00 98.22

Test dataset 21.27 13.65 8.65 95.61

All 13.80 5.80 4.22 98.20

GBRT Training 
dataset

7.12 3.12 2.00 99.50

Test dataset 27.31 16.45 13.11 93.96

All 13.79 5.80 4.22 98.20

LightGBM Training 
dataset

9.68 3.96 2.78 99.11

Test dataset 22.64 15.82 14.21 95.03

All 13.33 6.33 5.08 98.30

XGBoost Training 
dataset

7.23 1.97 1.52 99.50

Test dataset 15.63 10.84 9.03 97.63

All 9.53 3.75 3.025 99.14



Page 15 of 26Yehia et al. Int J Concr Struct Mater           (2024) 18:52 	

Fig. 11  Residual of the predicted shear strength in both the training and test datasets for a DT, b RF, c GBRT, d LightGBM, and e XGBoost models
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5.3 � Explainability of XGBoost Model Using SHAP Approach
In this study, a unified SHAP method was utilized to 
explain the output of an XGBoost model and to identify 
the most variables and their interactions that impact 
the shear capacity of RCTBs. The most significant fac-
tor is determined through the absolute SHAP value. 
The x-axis position of each point represents the Shapley 
value for the corresponding factor, indicating its impact 
on the shear capacity. The y-axis displays a list of fac-
tors arranged according to their level of importance, as 
shown in Fig.  15a. The SHAP results indicate that the 
shear span-to-depth ratio (a/d) has the most signifi-
cant effect on the shear capacity of RCTBs. This is fol-
lowed by the ratio of shear reinforcement multiplied by 
the yield strength of shear reinforcement ( ρvfyv ), flange 
thickness ( hf ), and flange width ( bf ). The SHAP sum-
mary plot, shown in Fig. 15b, was used to evaluate the 
influence of input features on prediction results. Each 
point on the plot represents a prediction instance, with 
positive and negative SHAP values indicating the cor-
relation between input features and outputs. Further-
more, the color of each point indicates the value of the 
input feature, varying from low (blue) to high (red). 
In general, it is observed that all input features show 
positive Shapley values (red points) except a/d, suggest-
ing that higher values of these parameters result in an 
increase in the ultimate shear capacity of RCTBs.

5.4 � Sensitivity Analysis
The sensitivity analysis of the XGBoost model involves 
varying one parameter at a time while keeping the rest 

Fig. 12  Taylor graph of DT, RF, GBRT, LightGBM, and XGBoost models

Fig. 13  Experimental versus predicted shear capacity of RCTBs 
with errors of a DT, b RF, c GBRT, d LightGBM, and e XGBoost models
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constant to identify the effects of parameters in mod-
eling. the sensitivity analysis in this study is focused on 
parameters: web width ( bw ), effective depth of beam 
(d), flange width ( bf ), flange thickness ( hf ), compres-
sive strength of concrete ( f ′c  ), shear span-to-depth 
ratio (a/d), Longitudinal steel ratio (ρ), and ratio of 
shear reinforcement multiplied by the yield strength of 
shear reinforcement ( ρvfyv ). The result of the sensitivity 
analysis is presented in Fig. 16. In general, an increase 
in all input features results in an increase in the ulti-
mate shear capacity of RCTBs, except for the increase 
in a/d, which decreases the ultimate shear capacity of 
RCTBs, as shown in Fig.  16f. This also indicates that 
increasing the flange dimensions enhances the shear 
capacity RCTBs, as shown in Fig. 16c, d. Furthermore, 

the predicted outcomes from sensitivity analysis of the 
XGBoost model for the shear capacity of RCTBs with 
diverse geometric and material properties align with 
the findings reported in references (Ayensa et al., 2019; 
Hawileh et al., 2022; Kadr et al., 2019; Ramadan et al., 
2022) concerning the structural behavior of RCTBs.

5.5 � Noise sensitivity analysis
Noise, defined as unwanted or irrelevant information 
in data, can significantly impact the performance of 
machine learning algorithms. Understanding the effects 
of noise on model performance is crucial for ensur-
ing the robustness and reliability of predictive models. 
The impact of noise on XGBoost model performance 
was analyzed by comparing the performance metrics 

Table 5  Existing design models for estimating the shear capacity of RCTBs
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Fig. 14  Comparison of predicted shear capacities by shear design models and XGBoost model. a ACI 318–19, model (2019). b BS 8110–1:1997, 
model (1997). c Eurocode EN 1992–1-2, model (2004). d CSA23.3–04, model (2004). e Sarsam et al., model (2018). f Thamrin et al. model (2016). g 
Zararis et al., model (2006). h XGBoost model
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obtained under different noise levels. Trends and pat-
terns in model behavior were identified to understand 
how noise influences predictive accuracy and gen-
eralization capabilities.The XGBoost model demon-
strates robust performance with an R-squared value of 
98% in the absence of noise. However, as sample noise 
increases by 100%, the model exhibits a notable decline 
in R-squared by 23.50%, resulting in a value of 75%. 
This decreasing trend persists with each successive 10% 
increase in sample noise from the noise-free condition, as 
illustrated in Fig. 17a. Similarly, concerning mean abso-
lute error (MAE) and root mean squared error (RMSE), 
the XGBoost model achieves 10.9 kN and 15.6 kN, 
respectively, in the absence of noise. Nevertheless, with 
a 100% increase in sample noise, both MAE and RMSE 
experience a substantial uptrend, increasing by 60%. This 
increasing trend continues steadily with each 10% incre-
ment in sample noise from the noise-free condition, as 

depicted in Fig.  17b, c. Moreover, concerning the mean 
absolute percentage error (MAPE), the XGBoost model 
exhibits a similar trend with an increase in sample noise. 
With a 100% increase in noise, the XGBoost experiences 
a 55% MAPE rise. The graphical illustration of the MAPE 
trend is presented in Fig. 17d. As a result, the XGBoost 
model exhibited a decrease in predictive accuracy with 
increasing levels of noise, indicating its sensitivity to 
noisy inputs.

5.6 � Graphical User Interface
The study developed a graphical user interface (GUI) 
platform utilizing the most precise model, namely 
XGBoost, to enhance accessibility for both practical engi-
neers and the research community. This platform pro-
vides an easy-to-use interface to input data and obtain 
predictions of the shear capacity of RCTBs. The use of 
this GUI platform eliminates the need for users to have 
extensive knowledge of machine learning techniques, 
making the research more accessible to a wider audi-
ence. Python library allowed the research team to build 
an interactive UI for the machine learning model. Users 
can provide input feature values and quickly obtain the 
corresponding shear strength value through this inter-
face. The GUI platform is accessible via reference (Yehia, 
2024). It is important to note that this GUI is exclusively 
applicable for RCTBs with geometric and material prop-
erties outlined in Table 1, as the XGBoost algorithm was 
trained using these specific ranges.

Table 6  Assessment of shear design models and XGBoost 
model based on  VExp to VPred ratio

STD standard deviation, COV coefficient of variation

Model Mean STD COV

ACI 318-19, model (2019) 2.31 1.67 0.73

BS 8110-1:1997, model (1997) 2.94 2.17 0.74

Eurocode EN 1992-1-2, model (2004) 2.82 1.55 0.55

CSA23.3-04 model (2004) 1.87 1.40 0.75

Sarsam et al., model (2018) 1.78 0.95 0.54

Thamrin et al., model (2016) 1.65 0.53 0.32

Zararis et al., model (2006) 1.71 1.10 0.64

XGBoost model 1.0045 0.0596 0.0593

Fig. 15  a Overall importance of the input features, and b summary plot of the input feature effects
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Fig. 16  Sensitivity analysis results for: a) web width (bw), b) effective depth of beam (d), c) flange width (bf), d) flange thickness (hf), e) 
compressive strength of concrete (fc), f) shear span-to-depth ratio (a/d), g) longitudinal steel ratio (ρ), and h) ratio of shear reinforcement multiplied 
by the yield strength of shear reinforcement (ρv fy v)



Page 21 of 26Yehia et al. Int J Concr Struct Mater           (2024) 18:52 	

6 � Reliability Analysis for Shear Capacity of RCTBs
Reliability analysis in structural engineering is a pro-
cess of evaluating the probability of failure of a struc-
ture. It is used to ensure that structures are designed to 
meet their intended function and performance require-
ments, and that they are safe under all anticipated load-
ing conditions To ensure safety, structures are designed 
such that their capacity (R) exceeds the demand (Q). 
The load and resistance factor design (LRFD) method 
is a common approach for calculating the limit state of 
a structure. In LRFD, the limit state is defined as the 
point at which the structure fails to meet its intended 

function. The LRFD equation for the limit state in the 
resistance factor format is:

where the nominal resistance ( Rn ) was reduced by the 
capacity reduction factor (φ) to account for uncertainties 
in the material properties and loading conditions. The 
load effect due to each type of load ( Qi ) was multiplied by 
the load partial safety factor ( γi ) to account for the varia-
bility of the loads. The load combination of 1.2DL + 1.6LL 
as specified in ACI 318 (ACI Committee 318, 2014) was 

(5)φRn ≥

∑

γiQi,

Fig. 17  Noise level versus a R2 , b MAPE, c RMSE, and d MAPE of XGBoost model
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used in the reliability analysis, where DL is the dead load 
and LL is the live load.

The target reliability index is selected based on the 
consequences of failure (Wight JK, 2016). A higher tar-
get reliability index corresponds to a lower probability 
of failure. According to (Wight JK, 2016), the target 
reliability index is typically between 3.0 and 3.5. Sze-
rszen and Nowak, (2003) assumed a normal distribu-
tion for both the dead load and live load distributions. 
The bias of the dead load for cast-in situ concrete is 
1.05, and the coefficient of variation is 0.1. The bias of 
the 50 year live load is 1.0, and the coefficient of varia-
tion is 0.18.

The reliability index β was calculated for a range of 
capacity reduction factors φ = 0.75:0.95 and for each 

case of α = 0.0:0.10:1.00, where α is the ratio between 
live load to dead load. The results are plotted in Fig. 18. 
As expected, the value of β increased as φ decreased.

The resistance reduction factor was calibrated to 
achieve a target reliability index of 3.50. This was done 
using the least square method in Eq. (6):

A larger safety margin is associated with a smaller 
resistance reduction factor. Figure  19 shows how the 
LSM varies as the resistance reduction factor (φ) changes 
for a target reliability index of 3.5. Furthermore, Fig. 19 
shows that the minimum LSM corresponds to a capac-
ity reduction factor of 0.89, which is recommended for 
RCTBs to achieve a target reliability index of 3.5 based on 
the proposed XGBoost model.

7 � Conclusion
This paper has presented five machine learning (ML) 
models—Decision Trees (DT), Random Forest (RF), Gra-
dient Boosted Regression Trees (GBRT), Light Gradient 
Boosting Machine (LightGBM), and Extreme Gradient 
Boosting (XGBoost)—for predicting the shear capac-
ity of RCTBs. ML models were trained using extensive 
datasets of experimental data to comprehend the intri-
cate relationships between input parameters and the cor-
responding shear capacity. The accuracy of shear design 
models in predicting the shear capacity of RCTBs was 

(6)LSM =

1

n

∑n

i=1
(βi − βT )

2

Fig. 18  α versus β response

Fig. 19  Calibration of the shear strength reduction factor
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also assessed. A user-friendly GUI tool has been devel-
oped, enabling practicing engineers to calculate the shear 
capacity of RTCBs. A reliability analysis was performed 
to determine the value of the resistance reduction factor 
that achieves a target reliability index.

The study yielded the following outcomes:

1.	 The XGBoost model surpasses other ML models 
in predicting the shear capacity of RTCBs, achiev-
ing an R2 of 0.9914 and exhibiting the lowest val-
ues of RMSE (9.53 kN), MAE (3.75 kN), and MAPE 
(3.025%).

2.	 Among the existing design guidelines, the CSA23.3–
04 (2004) code provided the most accurate predic-
tions for the shear capacity of RCTBs, with an aver-
age ratio of VExp to VPred shear capacity of 1.87.

3.	 The model presented by Zararis et al. offered a higher 
degree of accuracy than other analysis models in 
determining the shear capacity of RCTBs, achieving 
an average ratio of VExp to VPred   of 1.71 and a COV 
of 0.64.

4.	 The relative importance of input parameters on the 
shear capacity of RCTBs, as ranked by SHAP, is as 
follows: the shear span-to-depth ratio (a/d), ratio of 
shear reinforcement multiplied by the yield strength 
of shear reinforcement ( ρvfyv ), flange thickness ( hf ), 
and flange width ( bf).

5.	 A graphical user interface (GUI) platform based on 
the XGBoost model is developed and can be accessed 
through the following reference (Yehia, 2024).

6.	 A capacity reduction factor φ = 0.89 is calibrated to 
achieve a reliability index ( βT = 3.5).

Furthermore, this study has potential limitations as 
the ML models provided were trained exclusively on the 
geometric and material properties of the experimental 
data gathered. Therefore, future research should expand 
beyond these specific ranges by conducting additional 
experiments. This approach will not only help address 
gaps in the dataset, but also enable multi-dimensional 
validation and refinement of the methodology employed 
in this study. Additionally, the current study neglected to 
consider the type of concrete when predicting the shear 
capacity of RCTBs. Therefore, future research should 
explore how different types of concrete affect shear 
capacity and focus on enhancing the existing ML models 
to incorporate this variable.

Abbreviations
Ag	� Gross area of the section (mm2)
As	� Longitudinal steel reinforcement area (mm2)
A′s	� Top longitudinal reinforcement (mm2)
Av	� Total cross-sectional area of vertical stirrups reinforcement (mm2)
b	� Flange width (mm)
bef 	� Effective width (mm)

bf 	� Width of the flange (mm)
hf 	� Flange height (mm)
Nu	� Factored axial load (N)
ρ′	� Ratio of top reinforcement = 

A′s/bwdβ	� Factor indicating ability of cracked concrete to transmit tension and 
shear

ρw	� Ratio of longitudinal reinforcement = 
As/bwd

ρt	� Depth ratio = 
hf /h

d′	� Distance from extreme compression fiber to the top reinforcement 
(mm)

λ	� Reduction factor for light weight concrete, taken as 1 for normal 
weight concrete

z	� Lever arm taken as 0.9 times the effective depth
CRd,c	� Coefficient for design shear resistance of concrete
MU	� Ultimate moment
bw	� Width of the web (mm)
c	� Distance from the extreme compression fiber to neutral axis (mm)
d	� Distance from extreme compression fiber to the bottom reinforce-

ment (mm)
f ′c	� Concrete compressive strength (MPa)
fct	� Tensile strength of concrete (MPa)
fy	� Yield strength of longitudinal reinforcement (MPa)
fyv	� Yield strength of stirrups (MPa)
VC	� Shear contribution of concrete (N)
Vn	� Nominal shear capacity of the member (N)
Vp	� Component in the direction of the applied shear of the effective pre-

stressing force
θ	� Angle of inclination of diagonal compressive stresses
ρb	� Width ratio = 

bf /bw
ρv	� Ratio of shear reinforcement
s	� Spacing of stirrups (mm)
γm	� Material partial safety factor
fck	� Characteristic cube strength of concrete
k	� Factor considering shear size effect
∅s	� Resistance factor for shear reinforcement
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