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Abstract 

Supplementary cementitious materials (SCMs) play an essential role in sustainable construction due to their potential 
to reduce carbon emissions, promote circular economy principles, and enhance the properties of concrete. How-
ever, the inherent diversity of SCMs makes it challenging to predict their degree of reaction (DOR). This study applies 
machine learning techniques to predict DOR while exploring key parameters affecting it. Five machine learning mod-
els are utilized: linear regression, Gaussian process regression (GPR), decision tree regression, support vector machine 
and extreme gradient boosting, with GPR providing the most accurate and adaptable prediction. The study delves 
into the impact of various parameters on DOR, revealing their significance. Silica content emerges as the most criti-
cal, followed by particle size distribution, specific gravity, and water-to-cement (W/C) ratio. Optimizing DOR requires 
extending curing time, reducing particle size distribution, and considering optimal silica content and W/C ratio. This 
research emphasizes the importance of understanding the relationships between parameters and the DOR of SCMs, 
providing insights to enhance the efficiency of SCMs in cementitious systems through machine learning and data-
driven analysis.
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1 Introduction
Sustainable construction has emerged as a pressing con-
cern in recent years due to the heightened scrutiny of the 
environmental consequences of the construction sector. 
One solution that can ensure sustainability is the use of 

supplementary cementitious materials (SCMs). SCMs 
are binding materials used to partially replace Portland 
cement in the production of concrete and other cement-
based products. Their usage plays a vital role in sustain-
able construction since they can considerably impact 
resource consumption and carbon emissions (Rahla et al., 
2019; Samad & Shah, 2017). In addition, SCMs help to 
promote a circular economy by ensuring the recycling 
of waste materials that would otherwise end up in land-
fills (Diaz-Loya et al., 2019). Furthermore, incorporating 
SCMs can enhance the properties and performance of 
cementitious matrices, such as increasing their strength, 
durability, and workability (Gupta & Chaudhary, 2022; 
Juenger & Siddique, 2015; Juenger et al., 2019). However, 
attaining a consistent and predictable degree of reaction 
(DOR) may be difficult owing to the complex and vari-
able nature of SCMs (Scrivener et al., 2015). Factors such 
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as water-to-cement (W/C) ratio, chemical composition, 
physical characteristics, and curing conditions can sig-
nificantly impact the reactivity of SCMs, leading to vari-
ations in the properties and performance of cementitious 
matrices (Pacewska & Wilińska, 2020; Skibsted & Snell-
ings, 2019). Therefore, comprehending the main proper-
ties of SCMs in hydrated cement is imperative in material 
selection and performance optimization within cementi-
tious matrices.

SCMs are added to concrete to increase their perfor-
mance and sustainability. Determining the DOR of SCMs 
is essential in foreseeing the characteristics and perfor-
mance of the final products. Several key properties of 
SCMs influence their extent of dissolution in concrete. 
The properties of SCMs, such as particle size, specific 
surface area, amount of SCMs being used to replace Port-
land cement, chemical composition, W/C ratio, curing 
temperature, and curing time, can significantly impact 
their performance in cementitious matrices. For instance, 
the particle size and specific surface area of SCMs can 
affect the rate and extent of their reaction with cemen-
titious materials. Smaller particle sizes and larger spe-
cific surface areas increase the contact area between the 
SCM and the cementitious materials, leading to a more 
significant DOR (Hallet et al., 2020; Mirzahosseini & Rid-
ing, 2015; Ndahirwa et al., 2022; Sanjuán et al., 2015). The 
chemical composition of SCMs also affects their com-
patibility with other materials in the matrix (Sabir et al., 
2001; Sanjuán et  al., 2015; Tironi et  al., 2013). Suraneni 
et. al. (2019) reported that SCMs with high silica, alu-
mina, and calcium exhibit distinct characteristics regard-
ing their utilization of calcium hydroxide and the amount 
of heat released. Additionally, the W/C ratio and curing 
conditions of the system can influence the DOR (Phung 
et  al., 2021). Generally, a higher W/C ratio increases 
DOR (Escalante et al., 2001; Snellings et al., 2022). How-
ever, surpassing a certain level of W/C ratio can result in 
a more dilute cementitious system with increased parti-
cle distance, reducing the DOR (Navarrete et  al., 2020). 
Finally, proper curing conditions, such as temperature 
and humidity, can improve the DOR by providing the 
necessary environment for chemical reactions to occur 
(de Azevedo Basto et  al., 2022; Lothenbach et  al., 2011; 
Snellings et al., 2022). The formation and development of 
hydration products within the cement matrix are influ-
enced by its water content. As hydration progresses, the 
consumption of water decreases the internal relative 
humidity of the cement matrix, causing capillary pressure 
and shrinkage. Consequently, when the relative humid-
ity is low, incomplete hydration may occur, leading to a 
lower DOR (Skibsted & Snellings, 2019).

Improving the efficiency of cementitious systems 
hinges on a profound understanding of their properties. 

Consequently, gaining insights through data-driven anal-
ysis becomes crucial, particularly in comprehending the 
fundamental properties of SCMs that influence the DOR. 
Leveraging large datasets from diverse sources offers the 
opportunity to uncover correlations between key SCM 
properties and their performance within cementitious 
matrices. Harnessing the power of machine learning 
(ML) methods further allows for thorough examination 
and comprehension of extensive data sets, thereby pro-
viding deeper insights into the underlying correlations 
between crucial SCM features and their performance 
in cementitious matrices. Previous research has already 
demonstrated the efficient utilization of ML models for 
parametric investigations, enabling accurate estimations 
of primary material properties that impact carbonation 
and compressive strength (Abuodeh et  al., 2020; Chen 
et al., 2022). By adopting this approach, the predictabil-
ity of SCM influence in hydrated Portland cement can 
be significantly enhanced by focusing on the major SCM 
properties affecting the DOR, ultimately resulting in an 
optimized model.

While several investigations on the DOR of SCMs have 
been conducted by employing microstructural analysis 
techniques such as X-ray diffraction (XRD) (Durdziński 
et al., 2017), scanning electron microscopy (SEM) (Pfing-
sten et al., 2018), and nuclear magnetic resonance (NMR) 
(Walkley & Provis, 2019), as well as different testing 
methods (i.e., selective dissolution (Kocaba et  al., 2012) 
and modified R3 test (Ramanathan et  al., 2022)), the 
existing research still has significant limitations. One 
of the primary concerns is the substantial variability in 
DOR observed due to factors such as the source and pro-
duction process of the SCMs, necessitating independent 
investigation for reliable conclusions (Ndahirwa et  al., 
2022). Moreover, the lack of consensus on an appropriate 
testing method and a standard for evaluating the DOR 
of SCMs makes it challenging to compare results across 
studies (Durdziński et al., 2017; Li et al., 2018). Addition-
ally, previous studies predominantly focused on specific 
characteristics of SCMs, such as their pozzolanic activ-
ity (Donatello et  al., 2010; Snellings & Scrivener, 2016) 
or ability to improve concrete durability (Anurag et  al., 
2021; Ndahirwa et  al., 2022), without a comprehensive 
assessment of their overall reactivity. Thus, further study 
is essential to highlight the DOR of SCMs in different 
contexts and develop robust methodologies for evaluat-
ing their performance.

This study aimed to identify the essential parame-
ters that affect the DOR of SCMs. Accordingly, five ML 
methods were employed for predicting the DOR: linear 
regression, Gaussian process regression (GPR), decision 
tree (DT) regression, support vector machine (SVM) and 
extreme gradient boosting (XGBoost). The performance 
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of each model was evaluated using various statistical 
methodologies. Subsequently, the most accurate, adapt-
able ML model was selected for a parametric investiga-
tion encompassing 22 parameters. The influence of input 
parameters was studied using the Shapley value. Moreo-
ver, the fundamental parameters were set and analyzed 
with existing theories to determine their potential effect 
on the DOR. These findings offer valuable insights for 
optimizing the DOR of SCMs in various applications.

2  Methods
2.1  Data Collection and Description
The experimental data collected to study the DOR in 
hydrated Portland cement considered various types of 
binders, encompassing a range of SCMs such as slag, 
fly ash, metakaolin, limestone, calcium sulfoaluminate 
cement, silica fumes, magnesia-based cement, glass pow-
der, calcined clay, calcium aluminate cement, and rice 
husk ash. Several factors affect the DOR, such as the 
W/C ratio, the oxide composition and proportions of 
Portland cement and SCMs, curing time and tempera-
ture, and physical properties such as particle size distri-
bution, surface area, and specific gravity.

The dataset comprised 247 examples, with 22 input 
features and DOR as the output. Table 1 summarizes the 
statistical analysis of these inputs, detailing the units, 
minimum, maximum, average values, and standard devi-
ations, which offers an essential insight into the range 
and variability of the features. Moreover, the accompany-
ing histograms aim to illustrate the distribution density 
of each input, providing a preliminary, straightforward 
overview of the characteristics of the data. The full data-
set is provided as a supplementary material for reference 
(Additional file 1).

However, the data collected for median particle size 
diameter (Dv50) were insufficient. To address this limita-
tion, four techniques were employed to compensate for 
the missing Dv50 values, as described in Table 2. These 
techniques allowed for a thorough analysis of the impact 
of missing Dv50 values in machine-learning models.

2.2  Machine Learning Algorithms
Predicting the DOR of SCMs is crucial for optimizing 
their use in various applications. A range of advanced 
ML algorithms were utilized to achieve this, including 
GPR, linear regression, DT, SVM and XGBoost. Before 
the model development, the collected dataset was ran-
domly divided into training and test groups at a ratio of 
80:20 to ensure the robustness and validity of the mod-
els. Comprehensive descriptions of each of the ML mod-
els employed in this study are provided in the following 
subsections.

2.2.1  Linear Regression
Linear regression is a statistical analysis tool that is used 
to describe the relationship between one or more inde-
pendent variables and a dependent variable. The best-fit 
line or hyperplane representing the relationship between 
these variables is determined through linear regression. 
Equation (1) shows the general formula for linear regres-
sion models.

where Y is the dependent variable, xn values are inde-
pendent variables, βn is the regression coefficient, and ε 
denotes an error (Chou et al., 2014).

2.2.2  Gaussian Process Regression
A Gaussian process refers to a collection of random 
variables whose joint distribution follows a Gaussian or 
normal distribution, such that any finite subset of the 
variables has a joint distribution that is also Gaussian. 
This is a stochastic process with vector-defined mean and 
covariance functions expressed as a matrix, as indicated 
in Eq. (2).

where f(x) represents the output variable, µ(x) represents 
the mean function, k

(

x, x′
)

 represents the covariance 
function, and GP represents the Gaussian Process (Ras-
mussen, 2003; Shi & Choi, 2011).

2.2.3  Decision Tree Regression
DT regression is a supervised learning approach that 
learns basic decision rules based on data characteristics 
to predict the value of a continuous target variable (Char-
buty & Abdulazeez, 2021). This method constructs a 
tree-structured model with a root node, branches, inter-
nal nodes, and leaf nodes. The root node contains the 
entire dataset and has no incoming branches. The inter-
nal nodes reflect the characteristics of the data set, while 
the branches represent the decision criteria. The leaf 
nodes reflect the various outcomes of the target variable 
(Song & Lu, 2015). The method recursively partitions the 
data into subsets based on their characteristics until the 
subsets are more homogenous with regard to the target 
variable. The model then predicts the target variable by 
averaging the values of the training data in each leaf node 
of the tree (Pal & Mather, 2001).

2.2.4  Support Vector Machine
SVM is a machine-learning approach that can learn 
from data and produce predictions based on that data. 
It can handle regression and classification problems 

(1)Y = β0 + β1x1 + β2x2 + · · · + βnxn + ε,

(2)f (x) ∼ GP
(

µ(x), k
(

x, x′
))

,
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Table 1 Statistical parameters of the dataset

Feature Units Histogram Min. Max. Mean Standard 
deviation

Water-to-cement ratio – 0.2 2 0.54 0.28

Curing time Days 57 1310 140.33 162.73

Curing temperature °C 5 60 27.28 13.15

SiO2 content in PC wt% 0 51.89 11.58 10.37

Al2O3 content in PC wt% 0 22.93 3.3 3.91

Fe2O3 content in PC wt% 0 7.29 1.33 1.17

CaO content in PC wt% 0 74.82 27.82 22.63

MgO content in PC wt% 0 40 2.09 4.48

SO3 content in PC wt% 0 8.26 1.2 1.35

Na2O content in PC wt% 0 1.71 0.16 0.28

K2O content in PC wt% 0 2.36 0.37 0.44

SiO2 content in SCMs wt% 0 62.53 20.54 14.81

Al2O3 content in SCMs wt% 0 67.68 9.35 8.62

Fe2O3 content in SCMs wt% 0 29.8 1.86 3.36

CaO content in SCMs wt% 0 45.81 14.31 13.19

MgO content in SCMs wt% 0 57.3 3.84 8.44

SO3 content in SCMs wt% 0 20.82 1.34 3.62

Na2O content in SCMs wt% 0 9.97 0.48 1.21

K2O content in SCMs wt% 0 2.67 0.43 0.47

Dv50 µm 1.5 130 12.68 11.93

Surface area m2/gm 0.3 395 11.29 57.09

Specific gravity g/cm3 2.17 3.3 2.68 0.26
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by determining the optimum function to match the 
data while minimizing errors. The function is often a 
linear combination of the input variables, but it may 
alternatively be a nonlinear transformation based on a 
kernel function. The kernel function enables the SVM 
to translate the input into a higher-dimensional space 
where a linear separator may be found. A linear sepa-
rator is a hyperplane that splits data into two or more 
classes with the largest margin attainable. The margin 
is the distance between the hyperplane and the nearest 
data points, known as support vectors. The shape and 
location of the hyperplane are determined by the sup-
port vectors (Gholami & Fakhari, 2017; Noble, 2006).

2.2.5  eXtreme Gradient Boosting
XGBoost is a scalable end-to-end tree-boosting sys-
tem, which is effective for both regression and classi-
fication tasks (Chen & Guestrin, 2016). Rooted in the 
Gradient Boosting (Friedman, 2001) framework, an 
ensemble learning method, XGBoost harnesses the 
collective wisdom of multiple weak learners, often rep-
resented as simple decision trees, to enhance predic-
tive accuracy. Its iterative approach involves training 
weak models sequentially, with each subsequent model 
dedicated to correcting the errors of its forerunners. 
Beyond its core functionality, XGBoost offers a range 
of essential features, including integrated regulariza-
tion for guarding against overfitting, robust handling 
of missing data, streamlined parallel processing for 
efficient computation, customizable objective func-
tions to adapt to specific use cases, and the incorpora-
tion of tree pruning techniques for fine-tuning model 
complexity control.

2.3  Evaluation Method
Three independent statistical measures were used to 
assess the efficiency of the ML models: the root mean 
square error (RMSE), the mean absolute error (MAE), 
and the coefficient of determination  (R2). These indica-
tors were used to assess and compare the accuracy and 
reliability of the performance of the models. Employ-
ing these three separate statistical measures provides an 
advantage in obtaining a fair estimation of accuracy. For 
instance, RMSE is sensitive to outliners and penalizes 
large errors, thus facilitating their removal from the data-
set (Chai & Draxler, 2014). On the other hand, MAE is 
more suitable for datasets containing outliers (Willmott 
& Matsuura, 2005), and  R2 offers more information with-
out being subject to the interpretability limitations of 
RMSE and MAE (Chicco et al., 2021; Zhang, 2017). The 
RMSE, MAE, and  R2 equations are expressed below in 
Eqs. 3, 4, and 5, respectively.

For Eqs. (3), (4) and (5), Xi is the predicted value, Yi is 
the actual value and Ym is the mean value.

K-fold cross-validation was applied to overcome 
the problem of overfitting. It involves splitting the 

(3)RMSE =

√

√

√

√

1

m

m
∑

i=1

(Xi − Yi)
2,

(4)MAE =
1

m

m
∑

i=1

|Xi − Yi|,

(5)R2 = 1−

∑m
i=1 (Xi − Yi)

2

∑m
i=1 (Ym − Yi)

2
.

Table 1 (continued)

Feature Units Histogram Min. Max. Mean Standard 
deviation

DOR % 3 100 44.04 26.42

Table 2 Approaches for representing Dv50

Approach Description

1 Missing values were predicted based on general material characteristics

2 GPR machine learning was used to predict missing values using other available data

3 Predictions were made solely for samples with available Dv50 data

4 Predictions were made without considering the effect of Dv50 to explore 
the potential impact of missing data on the models
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dataset into K subsets or “folds” of roughly similar 
size. The model is then trained and assessed K times, 
with each fold acting as the validation set once and the 
remaining folds serving as training folds. This technique 
contributes to a more robust estimation of the perfor-
mance of the model by minimizing reliance on a sin-
gle train-test split (Hastie et  al., 2009). Considering the 
limited size of the dataset, K has been set at 5 to find a 
balance between evaluating model performance and uti-
lizing the available data.

2.4  Feature Selection
ML predictions can often suffer from the limitation of 
not being able to recognize the effects of input parame-
ters on the outcome. However, understanding these rela-
tionships is crucial as they provide valuable insights into 
the roles of the input parameters and serve as a founda-
tion for future predictions. In this study, the ML model 
with the highest prediction performance was utilized, 
and the order of significance of input features on the 
desired outcome, which was the DOR, was determined 
using the Shapley value. The Shapley value is an  idea 
developed from cooperative game theory that allocates a 
fair distribution of total costs across players of the game 
(Merrick & Taly, 2020). In the context of ML, the Shap-
ley value can be utilized to quantify the contribution 
of each feature to a prediction for a given instance. The 
Shapley value of a parameter is the weighted mean of the 
marginal contributions of the feature, averaged across all 
possible feature subsets. The marginal contribution is the 
difference between the prediction with and without the 
feature (Cohen et al., 2005).

3  Results and Discussion
The accuracy of ML models for DOR predictions was 
assessed and summarized in Table  3. It is worth noting 
that XGBoost produced the most accurate results. How-
ever, compared to actual findings, this model produced 
very inconsistent outputs, which may be attributed to the 
structure of the dataset. The dataset had a limited num-
ber of observations compared to the independent vari-
ables. For XGBoost, this imbalance might lead to subpar 
model performance, possibly stemming from reduced 
generalization, computational intensity, and overfit-
ting (Barnwal et  al., 2022; Ma et  al., 2021). As a result, 
the subsequent analysis utilized the next most accurate 
model: GPR. GPR demonstrated comparable accuracy 
to XGBoost while generating interpretable results. Spe-
cifically, GPR exhibited outstanding performance with 
an RMSE of 12.46, an MAE of 8.88, and an  R2 value of 
0.79. In contrast, linear regression yielded less favorable 
results, showcasing an RMSE of 20.24, an MAE of 15.12, 
and an  R2 value of 0.42.

The substantial improvement observed in the predic-
tion accuracy of GPR can likely be attributed to the inte-
gration of complete data. Conversely, alternative models 
showcase superior performance when not considering 
Dv50 values (DT regression and SVM) or eliminating 
rows with null Dv50 values (Linear regression).

The experimental and modeled DOR using GPR is 
compared in Fig.  1. Following the identification of the 
optimal ML model for capturing the DOR, the sig-
nificance of the features was further assessed using the 
Shapley value. Fig.  2 extensively elucidates the relative 
importance of each feature, providing profound insights 
into their criticality. Notably, the top five features, listed 
in order of significance, encompass curing time,  SiO2 
content of the SCM, Dv50, specific gravity, and the W/C 
ratio. Subsequent subsections delve into the detailed 
descriptions of these features, providing a thorough 
understanding of their significance and implications.

3.1  Curing Conditions and Their Effect on SCMs Reactivity
Efficient control of the curing process is of paramount 
importance as it directly impacts the desired mate-
rial properties and quality. Among the various factors 
that influence the curing process, curing time and tem-
perature are widely recognized as crucial parameters. 
Gaining a comprehensive understanding of the relative 

Table 3 Performance of ML predictions

a The representation techniques for Dv50 are detailed in Table 2

ML model Dv50 
representation 
 techniquesa

RMSE MAE R2

Linear regression 1 20.24 15.12 0.42

2 19.51 14.8 0.46

3 17.71 7.98 0.49

4 19.13 14.21 0.48

GPR 1 12.46 8.88 0.79

2 12.66 8.94 0.77

3 12.78 5.62 0.74

4 12.88 9.17 0.77

DT regression 1 17.07 10.91 0.6

2 16.48 11.09 0.63

3 16.63 6.74 0.57

4 16.82 10.92 0.63

SVM 1 20.15 15.04 0.42

2 18.48 13.76 0.51

3 19.16 8.74 0.4

4 12.69 8.99 0.78

XGBoost 1 12.99 8.72 0.73

2 11.67 8.41 0.79

3 12.37 8.95 0.72

4 14.21 10 0.7
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Fig. 1 DOR of modeled versus experimental findings (%). The symbols and lines indicate the experimental results and linear fit of the SCMs 
modeled results, respectively

Fig. 2 Quantification of feature importance using Shapley value
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significance of these factors can provide valuable insights 
for optimizing the curing process and enhancing its effi-
ciency. According to the Shapley values, curing time 
accounts for most of the observed variation in the DOR.

It is important to note that the DOR of SCMs tends to 
increase as the curing time progresses (Haha et al., 2010; 
Kocaba et  al., 2012). However, it is imperative to differ-
entiate the effect of curing time on DOR from its effect 
on the rate of DOR. This distinction is essential because 
the rate of DOR is highly dependent on the type of SCM, 
exhibiting both increasing and decreasing trends (Skib-
sted & Snellings, 2019). The curing period of SCMs can 
be broadly categorized into three main stages to examine 
the fundamental relationships regarding DOR. Initially, 
during the early stage, the DOR of SCMs is relatively 
low as most of the available water is consumed by Port-
land cement (Skibsted & Snellings, 2019). At the same 
time, the filler aspects of the SCMs play a significant 
role (Lothenbach et al., 2011; Schöler et al., 2017). In the 
intermediate curing stage, the DOR of SCMs gradually 
increases due to improved water availability and poz-
zolanic reaction, which contributes significantly to the 
strength and durability of the concrete (Ahmed, 2019). 
Finally, the concrete reaches its maximum DOR in the 
long-term curing stage. However, since curing time is an 
inherent property of concrete that cannot be altered dur-
ing the initial formulation of SCM in hydrated Portland 
cement, greater emphasis should be placed on optimizing 
other adjustable parameters. In contrast, the influence of 
curing temperature is relatively less pronounced, indicat-
ing that variations in temperature within the considered 
range do not significantly affect the DOR. While temper-
ature variations can accelerate or retard early-age hydra-
tion and affect the stability of specific phases (de Azevedo 
Basto et  al., 2022; Snellings et  al., 2022), their impact is 
minor when compared to other parameters affecting 
DOR.

3.2  Chemical Composition of Cementitious Matrices 
and its Effect on SCMs Reactivity

The main oxide compositions of SCMs affecting the DOR 
in cementitious systems are silica, alumina, and calcium 
oxide, particularly when exploring viable replacements 
that can enhance or maintain performance. The pres-
ence of silica and alumina generally contributes to the 
formation of additional hydrates of the form C–A–S–H 
(Simonsen et al., 2020).

Silica holds high importance (i.e., ranked 2nd), primar-
ily due to silica-based SCMs possessing a high specific 
surface area and fine particle size. The increased sur-
face area offers more reaction sites,  leading to a higher 
DOR. Silica-based SCMs have higher calcium hydrox-
ide consumption than alumina- or calcium-based SCMs 

(Suraneni et al., 2019). Additionally, the C–S–H formed 
from excess silica exhibits a propensity for aluminum 
uptake, which occurs at the bridging sites within the 
silicate chains (Lothenbach et  al., 2011). Fig.  3a illus-
trates the relationship between DOR and  SiO2 content 
of SCM. The DOR generally exhibits an upward trend 
as the  SiO2 content of SCM increases until it reaches an 
optimal replacement level. Beyond this point, as depicted 
in Fig.  3a, additional  SiO2 content becomes redundant, 
yielding no further changes.

3.3  Physical Properties of Cementitious Matrices and Their 
Effect on SCMs Reactivity

The physical properties investigated in this research 
included Dv50, surface area, and specific gravity. The 
Shapley values indicate that Dv50 and specific gravity 
possess higher significance. Dv50 measures the particle 
size distribution of a material, representing the size at 
which 50% of particle volumes are smaller than the given 
diameter (Arvaniti & De Belie, 2014). A smaller Dv50 
(finer particle size distribution) can improve the DOR of 
SCMs by providing a larger surface area for interaction 
between the SCMs and the surrounding cementitious 
phases, such as calcium hydroxide. Additionally, finer 
particles facilitate more efficient diffusion and reactant 
adsorption, leading to improved DOR (Lothenbach et al., 
2011; Skibsted & Snellings, 2019). These aspects are also 
supported by Fig.  3b, which illustrates the decreasing 
DOR trend with increasing particle size. Similarly, Liu et. 
al. (2018) demonstrated the increased hydration rate for 
lower Dv50 values.

In contrast, Fig. 3c shows a direct relationship between 
DOR and specific gravity. However, establishing a 
straightforward correlation between the two is challeng-
ing since multiple factors influence it. This complexity 
arises from the diverse physical and chemical transfor-
mations within the hydrated cement matrix. Therefore, 
while the modeled observations give vital insights into 
the collected dataset, it is crucial to remember that spe-
cific gravity can wield positive and negative effects.

3.4  Water‑to‑Cement Ratio and its Effect on SCMs 
Reactivity

The W/C ratio can influence the DOR of SCMs through 
various mechanisms. However, an optimal quantity of 
these materials must be added to leverage its benefits 
fully. Attaining an ideal W/C ratio is crucial for effec-
tive hydration. A lower ratio may lead to inadequate 
water supply for cementitious materials, diminish-
ing their reactivity (Snoeck et  al., 2014). Conversely, 
excessive water content can occupy space that should 
be filled by hydration products, resulting in adverse 
effects. Workability is another crucial consideration. 
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While surplus moisture can enhance the placement 
and finishing processes (Reddy & Rao, 2014), it can 
also contribute to the obstruction of spaces meant for 
reaction products (Navarrete et al., 2020). Additionally, 
the W/C ratio impacts the curing process. Lower ratios 
enhance moisture retention during the initial stages of 
hydration while negatively influencing the hydration 
process (Patil & Dubey, 2023).

Moreover, higher W/C ratios are known to increase 
the porosity of the hydrated cement matrix, yet their 
optimal utilization remains crucial, as both exces-
sive and inadequate additions can yield adverse effects 
(Wong et al., 2020). These factors mentioned above col-
lectively wield the potential to  significantly influence 

the DOR of SCMs. Hence, a meticulous selection of 
the W/C ratio becomes imperative. Fig.  3d shows the 
effect of the W/C ratio on the DOR of SCMs. For the 
given W/C ratio ranges, the DOR of SCMs increases as 
the W/C ratio increases in agreement with previously 
published papers (Escalante et al., 2001; Snellings et al., 
2022).

4  Conclusions
This study focused on investigating the factors that 
influence the DOR of SCMs in cementitious matrices 
to optimize their performance. Five different ML mod-
els were used: linear regression, GPR, DT regression, 
SVM, and XGBoost. The model with the best accuracy 

Fig. 3 Influence of key factors on the DOR: a  SiO2 content of the SCM, b Dv50, c specific gravity, and d W/C ratio, evaluated based on average oxide 
composition and physical properties. Conditions: W/C ratio = 0.5, curing time = 180 days and temperature = 25 °C
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is further used to analyze the importance of the param-
eters that affect the DOR. The following conclusions 
were drawn from the obtained results:

• The GPR model exhibited superior accuracy and 
interpretability in its predictions compared to other 
ML models, with RMSE values demonstrating an 
improvement of more than four units compared to 
other models, except XGBoost.

• Among the parameters subject to initial adjust-
ments, SCM  SiO2 content was identified as the 
most critical parameter influencing DOR, followed 
by Dv50, specific gravity, and W/C ratio.

• Enhancing the DOR of SCMs entails prolonging 
curing time and reducing Dv50 while simultane-
ously necessitating optimized values for  SiO2 con-
tent of the SCMs and the W/C ratio.

• These findings highlight the importance of a holis-
tic approach to understanding the intricate inter-
play between various factors affecting the DOR of 
SCMs. They provide valuable insights into the rela-
tionships between the properties of SCMs and their 
performance in cementitious matrices.
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