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Abstract 

Fly ash (FA) is the most commonly used supplementary cementitious material in the world. However, the reactivity 
of FA varies substantially. In this study, new machine learning (ML) model has been developed to efficiently predict 
the amorphous content in FA type F. Compared to the existing ML model using types F and C of FA from different 
countries, this study more focused on the improved prediction of FA type F only produced from South Korea. It was 
found that the contents of CaO and  SiO2 impact high in predicting the amount of aluminosilicate glass. However, the 
contribution of  Al2O3 and  Fe2O3 are ranked differently. The improved model algorithm was proposed as a combina‑
tion of three ensemble techniques of bagging, boosting, and stacking. As a result of the test, the final model shows R2 
of 0.80 in predicting the amount of aluminosilicate glass in FA type F.
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1 Introduction
Limestone  (CaCO3) is used as a raw material in the 
manufacturing of cement, a main binding component 
of concrete.  CaCO3 completely decomposes at around 
800  ℃, emitting a large amount of  CO2. In producing 
1 ton of cement, approximately 0.8 ton of  CO2 is emit-
ted. This amounts to about 5–8% of global  CO2 emis-
sions (Hasanbeigi et  al. 2012). As carbon neutrality has 
emerged as a global concern, there has been a growing 
interest in researching supplementary cementitious 
materials (SCMs) as substitutes for ordinary Port-
land cement (Paris et al. 2016). Due to its abundance as 
an industrial byproduct and its ability to enhance the 

quality of concrete, FA has become a popular material 
as an SCM, offering significant economic benefits. How-
ever, the quality of FA varies greatly depending on the 
facilities and operating conditions of coal-fired power 
plants, and on the types of raw coal (Xu and Shi 2018). 
Since the quality of FA has a significant impact on con-
crete performance (Chancey et al. 2010; Oey et al. 2017), 
it is critical to judge the material properties of FA before 
being used in cement-based materials. However, accord-
ing to ASTM standards, FA is simply classified as C-class 
or F-class according to the CaO content. Many studies, 
however, have found that such classifications are inac-
curate (Göktepe et al. 2008; James and Maria 2001; John 
2017; Suárez-Ruiz et al. 2017). These claims can be also 
supported by a recent research showing that the strength 
development of concrete is more influenced by the com-
plex reactivity of FA, rather than solely by its CaO con-
tent (Donatello et al. 2010; Snellings and Scrivener 2016).

Although the chemical composition of FA significantly 
varies depending on the raw coal type, the mineral com-
position of the crystalline phase primarily consists of 
quartz  (SiO2) and mullite  (3Al2O32SiO2). Meanwhile, 
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the amorphous (noncrystalline) phase exists in the range 
of 40–80 wt.% in FA (Vassilev and Vassilev 1996). FA’s 
reactivity is generally governed by its amorphous phase, 
because the crystalline phase does not actively partici-
pate in the reaction (Ward and French 2006; Williams 
and Riessen 2010). It is recognized that the component 
with the greatest reactivity in the amorphous content is 
aluminosilicate glass, which is a combination of alumina 
 (Al2O3) glass and silicate  (SiO2) glass (Brouwers and 
Eijk 2002; Moomen and Siddiqui 2022; Pietersen et  al. 
1989; Sindhunata et al. 2006). As a result, estimating the 
quantity of aluminosilicate glass (amorphous alumino-
silicate) is critical in predicting the strength of FA con-
tained concrete. The amorphous component of FA could 
be indirectly analyzed using quantitative x-ray diffrac-
tion (QXRD). This analysis applies the partial or known 
crystal structures (PONKCS) method, which defines an 
unknown mineral phase as a virtual crystal structure and 
quantitatively analyzes its mixture with other minerals 
using the Rietveld method (Kim et al. 2018). The chemi-
cal composition of FA, on the other hand, can be simply 
obtained by quick XRF analysis.

According to certain studies, the amorphous phase 
composition of FA is correlated with (but not identical 
to) chemical compostion of bulk FA (i.e., cystalline and 
amorphous phase) (Aughenbaugh et  al. 2016; Xu and 
Shi 2018). However, mapping results between the amor-
phous phase composition and chemical composition of 
bulk FA remains uncertain. Such linkages could be pro-
posed by machine learning (ML) technique. QXRD anal-
ysis of mineralogical phase composition has limits in that 
a skilled experimenter is needed and the process is rather 
difficult considering the easy implementation of XRF 
test. Thus, the fact that such mapping can be produced by 
ML is significant in and of itself. Furthermore, even in the 
absence of an exact solution about this mapping, ML has 
a potential to rapidly predict the amoutn of amorphous 
phase from the quick XRF data.

Meanwhile, most FA-related research focuses solely 
on concrete compression strength and durability, which 
definitely vary according to the content or type of FA. 
There has been little research on the ML to forecast the 
chemical reactivity or structure of FA. This attempt was 
recently reported by Song et al. (2021). This paper firstly 
attempted to predict the chemical component of amor-
phous phase (i.e., calculated by the QXRD) from the 
XRF-based chemical compositions of FA. However, con-
sidering the number and characteristics of used FA data, 
application of ANN(artificial neural network) algorithm 
may have certain limitations as they concluded so in the 
paper. The motivation of this study is from the inaccruate 
prediction result of exising ML model on the FA type F 
from Korea. FA itself has high complexity and it property 

(i.e., chemical compatibility with cement-based mate-
rials) should be greatly influenced by its geographical 
origin and the operational conditions of thermal power 
plants (Cho and Lee 2019). Therefore, it is not surprising 
that the existing ML established based on interntional 
database of FA both F and C was not able to accurately 
predict the reactivity of FA type F from a certain country. 
Furthermore, it is well known that the hydration mecha-
nism of FA type F and C is different in cementitious mate-
rials (Shon 2004; Sumer 2012; Wardhono 2017; Yoon 
et al. 2022). Therefore, it is rational to separate the type 
F and C for constructing reliable ML model. This study 
aims to propose a modified ML to tackle the issue. The 
performance of the new ML model is evaulated by how 
accurately the target value (aluminosilicate glass content 
estimated by QXRD) of the given data set (the test set) 
was predicted (i.e., R2 value). First, we recreated the ML 
model (ANN) of Song et al. (2021). The model was made 
using FA from various countries (i.e., the United States, 
India, Canada, the Netherlands, Spain, Greece, and Italy). 
Then, Korean FA was added as new data set to validate 
the model’s applicability in Korea. Second, another ML 
model was built using only Korean FA type F. Third, this 
new model has been refined and validated.

2  Materials and Methods
2.1  Data Materials
2.1.1  ML Model A
To make an ML model, data is required from which a 
machine learns and can then test a trained model. The 
first model was built based on FA from various coun-
tries. It will be referred to as model A. As data for model 
A, 90 FA samples from 13 papers were used (Abualrous 
2017; Aughenbaugh et  al. 2014; Bhagath Singh et  al. 
2016; Chancey et  al. 2010; Durdziński et  al. 2015, 2017; 
Fowler 2013; Moreno et  al. 2005; Mukhopadhyay et  al. 
2019; Oey et al. 2017; Saraber 2017; Sheare 2014; Singh 
and Subramaniam 2018). These papers cover a wide vari-
ety of FA from 7 countries. Each FA samples has several 
features. Features are divided into input and target (out-
put) features. The goal of ML is to derive a data-driven 
function of input features through given data, and then 
to predict output features of the test data using only 
its input features. In model A, each FA sample has six 
input features and one output feature. Inputs comprise 
of the chemical composition (wt.%) of six major oxides: 
(1)  Al2O3, (2) CaO, (3)  Fe2O3, (4)  SiO2, (5) MgO, and (6) 
 Na2O + 0.658K2O (i.e., total alkali content). The output 
is the aluminosilicate glass content. Fig. 1 shows the dis-
tribution of model A dataset, and variations of the six 
selected input features are summarized in Table 1. All of 
the 90 FA samples are compliant with the ASTM C618 
requirement; That is, the sum of the  Al2O3,  SiO2,  Fe2O3 
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chemical compositions exceeds 50% (ASTM C168 2019; 
Song et al. 2021). In input features, the oxide component 
of the highest fraction and variance is  SiO2, followed by 
 Al2O3, and CaO. The values for each feature and the rel-
evant references for model A can be found in the Addi-
tional file 1.

2.1.2  ML Model B
Because of the variation in FA both type F and C across 
countries, the second ML model was made using FA type 
F from Korea. This will be referred to as model B. As data 
for model B, 62 FA samples from 17 papers were col-
lected (Cho and Lee 2019; Cho et al. 2016a, b, 2019; Jang 
and Lee 2016; Jeon et al. 2015, 2018; Jung-Il et al. 2020; 
Kang et al. 2013; Kim et al. 2017, 2018; Moon et al. 2016; 
Oh et al. 2014, 2015; Park and Choi 2019; Suh and Park 
2019; Suh et al. 2019). The model B data, like the model 
A data, comprises the XRF chemical composition of bulk 
FA as input features, and the amount of aluminosilicate 
glass determined by QXRD as the output feature. Fig. 2 
shows the distribution of model B dataset, and variations 
of the six input features are summarized in Table 2. All 
of the 62 FA samples are also compliant with the ASTM 
C618 requirement. Similar to the existing model A data-
base, the Korean 62 samples show the highest fraction 

and variance in  SiO2, followed by  Al2O3, and CaO. Model 
B dataset can be also found in the Additional file 1

But, some of the Korean FA samples in model B data-
set cannot predict the target feature. Then, model B data-
set has been reconstructed by removing outlier samples. 
43 Korean FA types selected from 13 papers were used 
as data, while 19 FA types were excluded. An ML model 
has been made as part of the data pre-processing process 
to determine outliers from the original model B dataset. 
This model is called the pre-processing model. The pre-
processing model used a tree-based ensemble model to 
prevent biased judgment of outliers for certain models. 
The description of the outlier(removed) sample and the 
selected sample determined by the pre-processing model 
is desbribed in below.

The material property of FA varies considerably, 
depending on a lot of factors. Even if all input feature val-
ues are similar, target feature values can differ drastically 
if other factors (especially particle size or geographical 
region) differ from those of typical FA. This can be seen 
in Fig.  3. The ternary plot consists of network modifi-
ers (i.e., 2Ca + Na + K + 2Mg) and two network formers 
(i.e., Al and Si) as axes. 3-dimension elemental atomic 
composition of possible network modifiers and network 
formers are calculated from 6-dimension input features 
(i.e., chemical composition of XRF). According to the 

(a) XRF input features (b) an QXRD output feature
Fig. 1 Histogram, density curve and rug plot of model A dataset

Table 1 Statistical information on the chemical composition (wt.%) of six input features of model A as determined by XRF

Statistical information Chemical composition (wt.%)

Al2O3 CaO Fe2O3 SiO2 MgO Na2O + 0.658K2O

Minimum 15.77 0.10 2.20 27.10 0.20 0.49

Maximum 35.60 29.20 16.00 70.80 7.80 8.66

Mean 23.75 10.15 6.51 48.88 2.51 1.97

Standard deviation 4.77 9.05 2.21 9.41 1.72 1.28
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network theroy (Zachariasen 1932), the higher content of 
network modifiers tend to generate a higher amorphous 
phase content in FA (Diamond 1983; Oh et al. 2015; Shi 
and Zheng 2007). But, the ternary plot shows that there 
is little of this tendency in the used dataset herein. It is 
considered to be due to different partical size, geographi-
cal difference or experimental error that are not included 
in the input features (but important factors for material 

property). In this study, these are considered as outliers 
of type 1. In addition, different ranges of samples among 
dataset were viewed as type 2 outliers. Thus, 19 samples 
that cannot be predicted in the pre-processing model are 
classified as outliers, and the remaining 43 samples are 
finally used as data for Model B. This selected FA samples 
and the relevant references can be found in the Addi-
tional file 1.

2.2  Data Sampling: Stratified Sampling
To make an ML model, the data set should be split into 
two parts twice. It should first be separated into input val-
ues and a target value (or several target values). Second, 
train-data and test-data must be separated. This second 
process is called data sampling. Random sampling is the 
ordinay sampling method, but if there is not enough data, 
this method may generate a bias. To prevent the problem 
of insufficient the number of data, stratified sampling was 
applied in this study. Stratified sampling is a technique 
in which a target feature is broken into n-layer based 
on frequency and then a similar amount of data is sam-
pled for each layer (see Fig. 4). So, the sampled data has 
a ratio for each layer equivalent to the ratio in the whole 
dataset. By doing this, the dataset is split into train-data 
and test-data, each with a distribution that is similar to 
the distribution of the entire dataset. The effect of the 

(a) XRF input features (b) an QXRD output feature
Fig. 2 Histogram, density curve and rug plot of model B dataset

Table 2 Statistical information on the chemical composition (wt.%) of six input features of model B as determined by XRF

Statistical information Chemical composition (wt.%)

Al2O3 CaO Fe2O3 SiO2 MgO Na2O + 0.658K2O

Minimum 17.70 1.60 3.70 48.30 0.70 0.80

Maximum 28.40 11.40 10.80 65.30 2.50 3.30

Mean 21.32 4.53 6.97 58.22 1.53 1.80

Standard deviation 2.07 1.90 1.61 4.81 0.41 0.54

Fig. 3 Triangular compositional plot of original model B dataset 
(atomic %)



Page 5 of 13Park and Moon  Int J Concr Struct Mater           (2023) 17:58  

stratified sampling is shown in Fig.  5. In model A, 85% 
(76) and 15% (15) were selected for test-data and train-
data, respectively. In pre-processing model, train-data 
accounts for 80% (49) and test-data 20% (13). In model 
B, outliers 19 types of FA are excluded from the original 
model B dataset; the remained samples are divided into 
80% (34) train-data and 20% (9) test-data.

2.3  Data Transformation: Feature Scaling
Well-organized data is the basic foundation of good pre-
diction model. Any artifacts, missing values, or outliers 
in the acquired data should be properly handled to create 
a good ML model. Also, data should be transformed into 
a form suitable for modeling. This belongs to the data 
transformation step of data preprocessing. This is called 
feature scaling, a process that unifies each range of data 
features by normalization or standardization. Standardi-
zation of feature scaling is to transform the range of each 

feature into distributions with a mean of 0 and a vari-
ance of 1. It follows the Eq. 1 below, which can be auto-
matically done using the ‘standardscaler’ function in the 
‘sklearn’ library.

In this study, dataset is commensurable (wt.%) but 
greatly diverges in terms of the distribution of features. 
The weight fractions of  SiO2 and  Al2O3 are significantly 
higher than those of other oxides. For instance, the CaO 
weight fraction is 0.1–29.2 wt.%, and the  SiO2 weight 
fraction is 27.1–70.8 wt.% (in the case of model A). The 
impact of variation in the CaO value on aluminosilicate 
content can be underestimated since the CaO value is 
relatively low. On the other hand, the impact of  SiO2 may 
be overestimated. As a result, the feature scaling tech-
nique (i.e., standardization) was used in the data preproc-
essing step to ensure that ML models do not exhibit a 
bias toward particular features of the data set.

2.4  Algorithms
2.4.1  Artificial Neural Network.
Model A was made based on ANN algorithm. The struc-
ture of an ANN corresponds to the structure of a biologi-
cal neural network. The ANN is a network of numerous 
perceptrons (artificial neurons), as shown in Fig.  6. The 
ANN procedure is as follows (Matias et  al. 2014): (1) 
In the input layer, nodes (i.e., perceptrons) determine 
whether to consider each input value using the binary 
variables si of each input variables. (2) In the hidden layer, 
nodes transmit their output value to the posterior nodes 
when input values from the input layer (or output val-
ues of prior nodes, in the case of multiple hidden layers) 
are multiplied by their synaptic weight w and the result 
exceeds their threshold θ (bias). The weight represents 

(1)xi,new =

xi,old − x

σ

Fig. 4 Visual representation of stratification of a target feature 
(pre‑processing model)

(a) Random sampling (b) Stratified sampling
Fig. 5 Density curve of train test data (pre‑processing model)
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the impact of the value variation of one node on another. 
The activation function f (i.e., rectified linear unit, ReLU) 
is applied in this step. (3) In the output layer, a node 
yields a target value, which is the output value from the 
last hidden layer times a synaptic weight. This step is 
taken by the function g (i.e., linear) instead of the activa-
tion function. Steps (1) to (3) of this process are collec-
tively called the “feedforward” approach; this process is a 
unit of epoch (iteration). (4) The errors between the tar-
get value and the actual value are set as the cost function, 
and through the derivative of a cost function using chain 
rule, the ANN returns to step (1) and repeats the epoch 
until the error is no longer low and a more appropriate 
weight and threshold are found. This process is referred 
as the “backpropagation” approach. Finally, model A was 
developed using the multiple hidden layer perceptron 
regressor (MLPRegressor) library, ReLU as an activation 
function, and MSE as a cost function.

Model A, which corresponds to the preceding study 
(Song et  al. 2021), used the ANN model. Considering 
the number and characteristics of FA data, the selected 
algorithm may not be appropriate. The ANN algorithm 
requires at least hundreds of data (Schocken 1991), and 
the fly ash data may require even more data because of 
its intrinsic complexity. If it learns less than 100 pieces of 
data and has high predictions for test data, it is likely that 

the given data does not represent the whole data avail-
able globally. Therefore, as a solution to resolve this issue, 
a tree-based ensemble model for F-class FA was created 
in this study.

2.4.2  Ensemble
Ensemble algorithm was used in pre-processing model 
and model B. The ensemble is a multiple learning algo-
rithm. The ANN described above creates one strong 
learner (optimal model) with a network of numerous 
perceptrons, while the ensemble method is to create 
multiple weak learners and synthesizes them to make 
a more powerful learner. The advantage of this method 
is that it can solve a trade-off relationship between bias 
and variance. Bias increases when the model is not suf-
ficiently trained (i.e., underfitting model). On the other 
hand, variance increases when the model is overlearned 
and its applicability to new data decreases (i.e., overfit-
ting model) (Geman and Doursat 1992). Therefore, if 
the bias is lowered, the variance may increase (and vice 
versa), resulting in a trade-off problem (Doroudi 2020). 
The best way to solve this problem is to collect and train 
a lot of data, but it is difficult to obtain a large amount 
of XRD data of Korean FA. Here, we tried to solve this 
problem using ensemble algorithms and reveal the non-
linear structure of the dataset.

Fig. 6 Schematics of ANN (Tangri et al. 2008)
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Most popular ensembles are boosting, bagging, and 
stacking ensembles. The purpose of the bagging ensem-
ble is to lower the variance (Derbeko et  al. 2022). The 
boosting ensemble aims to further reduce bias by fitting 
data, which could not be fitted even through bagging 
(Schwenk 2000). The stacking ensemble attempted to 
solve the trade-off problem by blending ensemble mod-
els (e.g., bagging and boosting) (Breiman 1996; Doroudi 
2020; Wolpert 1992). In pre-processing model, all three 
ensembles were used, and model B used one boosting 
ensemble. The boosting technique was chosen to better 
fit the data from which outliers have been removed.

First, a bagging is an ensemble that combines several 
weak learners in parallel. In this study, RandomForestRe-
gressor library was used as a bagging ensemble. As the 

name suggests, numerous individual trees (i.e., weak 
learners) are combined to produce a forest (i.e., a strong 
learner). In the case of the regressor problem, the aver-
age of the predicted values of each tree is used as the pre-
dicted value of a forest. Fig. 7a shows the process of the 
bagging algorithm. (1) Extract the subset of the train-data 
for each learner at random with replacement (There are 
overlapping samples between learners). (2) Train models 
using the same algorithm but different sample data. So, 
the predicted values are different. (3) These predicted val-
ues are aggregated as averages to generate a target value y 
of the final strong learner (bagging model). This method 
avoids overfitting noise and outliers because the results 
of each weak learner come up with one mean value. It 
was the algorithm used for pre-processing model.

(a) Random forest (bagging ensemble) 
[66]

(b) Gradient boosting machine (boosting ensemble)

(c) Stacking ensemble
Fig. 7 Schematics of ensembles (Yang et al. 2019)
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Next, a boosting ensemble is a model that combines 
several weak learners in sequential. The GradientBoost-
ingRegressor library was used as the boosting ensemble. 
Gradient boosting machine (GBM) is error (residual) fit-
ting, unlike target value fitting. What leaner predicts is 
not a value itself, but a residual. It focuses on problems 
that were difficult for previous learners to solve. Fig. 7b 
is the process of the GBM algorithm according to bag-
ging ensemble illustration form of Yang et al. (2019). (1) 
The first learner is trained with a subset of train-data. 
The residual of the first learner becomes input data of 
the next learner. (2) Since the current learner has learned 
the residual of the prior learner, it predicts the residual 
value, not the value itself. The residual reconstructs in a 
decreasing direction iteratively up to the last learner. (3) 
The predicted values of each weak learner are added to 
obtain a target value y of the final strong learner (boost-
ing model). The algorithm was used for pre-processing 
model and model B.

Thirdly, a stacking ensemble is used to solve the trade-
off problem. The aforementioned bagging and boost-
ing ensembles are methods of synthesizing each learner, 
which is trained with different data on the same algo-
rithm, whereas stacking is a technique of synthesizing 
each model (base model) with the same data on different 
algorithms to create a new model (meta-model) (Breiman 
1996). Fig. 7c shows the process of the stacking algorithm 
according to bagging ensemble illustration form of Yang 
et al. (2019). (1) In level 1, several different types of base 
models are trained with the same input data. (2) In Level 
2, The meta-model is trained with the results of each 
model as the input data. In other words, each base model 
creates new input features, and the meta-model learns 
them. (3) Finally, the prediction of the meta-model is a 
target value y of the final meta-model (stacking model). 
In this work, bagging and boosting ensembles were used 
as base models and StratifiedKFold library is used to cre-
ate a stacking ensemble. This corresponds to pre-pro-
cessing model.

3  Results and Discussion
3.1  Model A
Fig. 8a shows that obtained R2 for the train-data is 0.63 
for exising database of both fly ash F and C from vari-
ous countries. R2 is a metric for measuring how much of 
a target feature’s variation can be predicted from inde-
pendent variables using a trained model. It normally 
ranges from 0 to 1. The closer R2 is to 1, the better the 
input features can explain the target feature. Model A has 
an explanatory power of 63%. Not all samples of model A 
is highly predictable. Therefore, it can be suggested that it 
is necessary to use an algorithm that is more suitable for 

the used FA dataset than the ANN algorithm suggested 
by Song et al. (2021).

Model A was applied to FA type F from Korea. When 
accuracy was assessed using 62 types of Korean FA type F 
as new data, negative value of R2 was obtained. Negative 
R2 means that the prediction accuracy is worse than that 
predicted by the average. It simply means that the model 
fits the new data really poorly (Barten 1987). It can be a 
result of biased data used to train the model A. Biased 
data does not include new data, and the model trained 
only with such data are less common. Fig. 8b shows that 
one sample of existing model A database and one Korean 
sample (12 FA type F) have similar XRF input features, 
but a QXRD output feature is very different. The qual-
ity of FA varies significantly depending on the location 
of coal-fired power plants, as well as their infrastruc-
ture and operational circumstances, and the types of raw 
coal. Therefore, rather than using FA both type F and C 
from various countries, it is more economical and accu-
rate to develop an individual model for a specific coun-
try in order to uncover the uncertain linkage between 
the XRF input features and a QXRD target feature of FA, 

(a) Existing dataset of FA type F and C from various countries

(b) Prediction result of FA type F from Korea
Fig. 8 Relationship between predicted and actual values of model A
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especially considering the high undertainty that FA mate-
rial intrinsically has.

To explain the result of model A, shapley additive 
explanations (SHAP) analysis is used. The high-dimen-
sional ML model is called a black box model because the 
exact solution between the input features and the target 
features is unknown. However, SHAP analysis can quan-
titatively determine the impact of each input feature 
on the prediction of a target feature. Fig.  9 shows the 
SHAP analysis of model A. The SHAP value indicates 
the importance of each feature based on game theory 
(Antwarg et  al. 1903; Lee and Lundberg 2017); That is 
the averaged change in prediction according to the pres-
ence or absence of each feature by forming a combination 
of several features (Mangalathu et  al. 2020). Fig.  9a is a 
SHAP value’s scatter plot. The horizontal axis represents 
SHAP values, while the color of the point indicates the 
value of the feature from low to high. Since the overlap-
ping points are scattered in the y-axis direction, the dis-
tribution of the SHAP values per input feature can be 
computed. The input features are arranged according to 
importance. If the SHAP value is negative, this means 
that it is a factor that lowers the value of a target feature. 
Positive value indicates that it is a factor that increases 
the value of a target feature. Fig.  9b is a bar plot of the 
mean of the absolute SHAP value. The larger this value, 
the more important feature in predicting the target fea-
ture. In model A, as the value of CaO,  SiO2, and  Al2O3 
increase, the SHAP value increases, and the impact 
increases in the negative direction. CaO feature has the 
highest importance, followed by  SiO2. While  Fe2O3 and 
 Na2O + 0.658K2O (i.e., total alkali content) have some 
impact on the target feature, it is low.

3.2  Pre‑Processing Model
A ML model was built using 62 types of FA type F all col-
lected from 17 studies reported in Korea case. This pre-
processing model used all three ensemble methods (i.e., 

bagging, boosting, and stacking). Using the boosting and 
the bagging ensemble as the base model, the meta-model 
(stacking ensemble) is pre-processing modelAs shown in 
Fig. 10, R2 of each ensemble are low at 0.38, 0.36, and 0.49 
respectively. As can be seen from Fig. 10, pre-processing 
modelmodel has R2 of 0.49, which is improved over the 
performance of the base model. However, it can still be 
seen that the target feature is not predicted with the given 
input features. Especially if the predicted value of the 
amorphous aluminosilicate content (the target feature) is 
55 (wt.%), pre-processing modelmodel cannot approxi-
mate the actual value. As shown in Fig.  3, the linkage 
between the input features and the target feature of some 
FAs that are not approximate differs from the overall FAs 
of pre-processing modelmodel. This is thought to be the 
difference in particle size and geographic location that 
did not be considered as input features. Since features 
other than the given input features were not covered in 
this study, these non-approximate FAs were removed to 
develop a new model (i.e., Model B) targeting only repre-
sentative FA type F from Korea.

3.3  Model B
For model B, 43 Korean FA type F from 13 papers were 
chosen as FA samples. Fig. 11 displays the performance 
of model B. R2 of the train-data is 0.80; Model B has an 
explanatory power of 80%. With the exception of a few 
samples, in most FA samples, aluminosilicate glass con-
tent can be precisely predicted from XRF input features.

Fig. 12 shows SHAP analysis of model B. As the value 
of CaO increases, the SHAP value increases, and the 
impact increases in the negative direction. CaO feature 
has the highest importance. While MgO,  Fe2O3, and 
 Na2O + 0.658K2O (i.e., total alkali content) have some 
impact on the target feature, it is low. Therefore, it can 
be proposed that the refined Model can be applicable to 
accruately predict the reactivity of FA type F produced in 
Korea with high accuracy of prediction.

(a) Scatter plot (b) Bar plot
Fig. 9 Analysis of the impact of the six input features on the target feature in model A
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As a result, when the ML model was individually made 
only for type F FA from Korea, the prediction accu-
racy (a coefficient of determination, R2 ) is 0.8. This is a 
27% increase in performance, compared to the exist-
ing database of model A. This seems to be because the 
chemical composition and amorphous phase of FA 

varies depending on the regions and type (F or C) of FA, 
which causes the hydration mechanism to be different in 
cementitious materials. Therefore, it can be concluded 
that it is more effective and accurate to build ML model 
considering the specific region and specific type of FA.

4  Conclusion
Mapping XRF chemical composition of the six major 
oxides into the aluminosilicate glass content has been 
achieved by refinding existing ML model. The most 
recently proposed model is the ML model for FA type 
both F anc C from various countries. However, this 
model was not successful in prediction of reactivity of 
FA type F from Korea. To create an ML model for this 
specific targeted country, 43 FA type F from Korea were 
used to develop a final model (i.e., model B) with boost-
ing ensemble algorithm. R2 (i.e., a score of accuracy) of 
test-data is 0.80. It is possible to predict the amount of 
aluminum silicate glass of Korean FA using the proposed 
ML model. Additional conclusions can be draswn from 
the study are as follows:

Fig. 11 Relationship between predicted and actual values of model 
B (boosting ensemble)

(a) Scatter plot (b) Bar plot
Fig. 12 Analysis of the impact of the six input features on the target feature in model B

(a) Bagging ensemble (b) Boosting ensemble (C) Stacking ensemble
Fig. 10 Relationship between predicted and actual values of pre‑processing model
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1 The model A was built using the ANN algorithm for 
FA for both F and C collected from various countries 
of India, Japan, China, the United States, Canada, 
and Europe. Model A has R2 of 0.63, which means 
that the explanatory power of the input variable to 
the target variable is 63%. However, the amount of 
aluminosilicate glass calculated QXRD was not accu-
rately predicted for the Korean FA type F using the 
ML model. It shows a negative value of R2.

2 The pre- processing model applied the three ensem-
ble algorithms (i.e., bagging, boosting, and stacking) 
for the Korean FA. It shows the R2 of 0.49. Because, 
regardless of the actual target value, in some sam-
ples, a target variable was predicted to be the value 
in the range 52 to 58 (wt.%), the largest distribution 
on the entire dataset. It seems that the actual value 
was not approximated due to variations in particle 
size or geographic location that were not taken into 
consideration as input features. The model B has 
been developed using a boosting ensemble for the 
selected 43 FAs, excluding the 19 FAs deemed to be 
outliers. This is the final model of this study, with R2 
of 0.80 and an explanatory power of 80%. As shown 
in Fig.  11, in most FA samples, the content of the 
aluminosilicate glass phase is precisely predicted by 
the chemical composition of the six major oxides 
obtained by XRF.

3 This study shows that it is possible to predict the alu-
minosilicate glass content using XRF chemical com-
position (without the use of QXRD). The suggested 

ML model of this paper still has room to be improved 
if various FA samples are added in the future. In this 
sense, the current model can be specific which tar-
gets only certain quality of FA. Nevertheless, the 
high accuracy of the suggested ML model could be 
achieved by the conducted grouping selection using 
a pre-processing model before model optimization. 
Therefore, it can be concluded that the model can 
be more general once more data with various quality 
can be accumulated and tested.

4 Nevertheless, as shown in Figs. 9 and 12, it was found 
that model A and the final model B for Korean FA 
has something in common in that CaO content is 
the most important factor in predicting aluminosili-
cate glass content, followed by  SiO2 content. Further-
more, it is found that other chemical components 
also have a meaningful influence. Therefore, this 
study suggestes that the current ASTM standard for 
FA classicifaction may not be sufficient. That is, not 
only the content of each oxide but also the relation-
ship between each oxide content should be consid-
ered. But Al2O3 and Fe2O3 are ranked differently in 
models A and B, and there is significant variation in 
the SHAP values of SiO2 or lower factors between 
the two (Figs. 10 and 13). The obtained different con-
tribution of the elemental composition on the amor-
phous content can be due to the compositional vari-
ance of raw coal or operational condition.
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