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Numerous models to predict the shear strength of reinforced 
concrete structural walls have been proposed in the literature. 
Evaluation of the predictive performance of new models relative 
to existing models is often challenging because the models were 
created with different levels of complexity and calibrated using 
different databases. More complex models are expected to have 
less variance than simpler models, and target performance metrics 
for models of different complexity do not exist. In addition, a 
common, comprehensive database should be used to enable direct 
comparisons between different models. To address these issues, the 
present study applies statistical and machine-learning approaches 
to propose a five-step framework to establish target performance 
metrics for models with different levels of complexity. Application 
of the framework is demonstrated by addressing the problem of 
estimating wall shear strength using a comprehensive database of 
340 shear-controlled wall tests.

Keywords: machine learning; model performance; statistics; structural 
wall; wall shear.

INTRODUCTION
Over the last several years, researchers have assem-

bled  comprehensive component databases to enable the 
development of more complex capacity (for example, stiff-
ness, strength, and deformation) models using more sophis-
ticated statistical and machine-learning (ML) approaches. 
Evaluating and comparing the performance of different 
capacity models proposed in the literature is often challenging 
because: a) they were developed using different databases 
and a model may have substantially different performance 
(bias, variance) when evaluated against a different database; 
b) more complex models are expected to have less variance 
than a less-complex model—however, target performance 
metrics for models of different complexity do not exist; 
and c) optimal model performance is often not studied, so 
it is unknown whether a model with better performance is 
possible. In addition, many existing models were calibrated 
using relatively small databases—for example, less than 100 
or so tests—such that insufficient data existed to properly 
train and test model performance, or training and testing 
were not even considered as part of the model development 
process.

To address these challenges, a framework is proposed 
to apply statistical and ML approaches to establish target 
performance requirements for models with different levels 
of complexity based on the use of a common, comprehensive 
database. Application of the proposed framework requires 

training of ML models to establish specific model perfor-
mance requirements, where target errors are expressed in 
terms of the mean value and coefficient of variation (COV) 
of the true-to-predicted ratios. Once these metrics have been 
established, an additional study is required to develop a 
model that meets these requirements; this additional step is 
not addressed in this paper.

The methodology is demonstrated by addressing the 
problem of assessing wall shear strength using a comprehen-
sive database of 340 walls reported to have failed in shear. 
This database was extracted from a larger database of more 
than 1100 tests collected from more than 250 experimental 
programs recently compiled by Abdullah and Wallace (2018, 
2021) and Abdullah (2019). This application was picked 
because the wall shear strength equation in ACI 318-19 has 
remained essentially unchanged for the last 60 years despite 
a significant number of models being published in the litera-
ture. Although most of the published models (equations) are 
similar in complexity, significant model variance was noted 
when the models were assessed against a database that was 
different from the one used to develop and calibrate a given 
model (Gulec et al. 2009; Sánchez-Alejandre and Alcocer 
2010; Carrillo and Alcocer 2013; Kassem 2015). These 
issues arise because the databases typically are of different 
sizes (number of tests), do not include the same wall tests, 
and have different ranges of parameters (for example, walls 
with rectangular cross sections versus walls with rectangular 
and flanged cross sections). Most of the studies also did 
not address the trade-off between underfitting versus over-
fitting (Höge et al. 2018) to examine the possibility that a 
model of equivalent complexity might have better predictive 
performance. The number of tests included in the wall shear 
database (340) and the number of variables for each test are 
expected to be typical of engineering problems that would 
benefit from the proposed methodology. Finally, none of the 
models met the set of performance requirements established 
in this paper for the given level of model complexity.
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RESEARCH SIGNIFICANCE
Evaluating and comparing the performance of models 

used to estimate structural component capacities is often 
challenging because the models were created with different 
levels of complexity and calibrated using databases with 
different numbers of tests and parameters. In addition, suffi-
cient data may not have existed to properly train and test 
model performance, or training and testing were not consid-
ered. To address these challenges, a framework is proposed 
to apply statistical and ML approaches to establish model 
performance requirements for models of different complex-
ities by training ML models to establish target errors 
expressed in terms of the mean value and COV of the true-
to-predicted ratios. Application of the proposed framework 
is demonstrated by assessing the problem of estimating rein-
forced concrete (RC) wall shear strength.

REVIEW OF EXISTING WALL SHEAR STRENGTH 
MODELS

Models calibrated using statistical inference
Rojas-León (2022) presented a detailed literature review 

of existing models used in building codes and standards to 
predict the shear strength of RC walls (Appendix A,* Table 
A.1). The review reveals that all models use a Vn = Vc + 
Vs format, where Vc and Vs are the concrete and reinforce-
ment contributions, respectively; however, the parameters 
considered vary between the models. For example, the NZS 
3101-06 (1995) and ASCE/SEI 43-05 models consider the 
influence of axial load on Vc (ACI 318 does not), the EC8-04 
and ASCE/SEI 43-05 models include the impact of the 
vertical web reinforcement, and the detailed model of NZS 
3101-06 (1995) uses M/(Vlw) instead of hw/lw, which is used 
by ACI 318-19, ASCE/SEI 43-05, and AIJ 1999.

The literature review by Rojas-León (2022) also includes 
an evaluation of wall shear strength equations reported in 
the literature, along with a description of the databases used 
in the calibration/validation of the models (Appendix A, 
Table A.2). For most of these studies, wall shear strength 
relations were developed by identifying relevant parameters 
based on a literature review, investigating the mechanics of 
the problem, and using statistical analysis of a data set or 
data sets. Subsequently, a calibration process was employed 
to fit the coefficients of the proposed model to the data; 
however, the performance of these equations was not typi-
cally checked against unseen data. Results presented in 
Table 1 enable a comparison of models analyzed in four 
studies (Sánchez-Alejandre and Alcocer 2010; Carrillo and 
Alcocer 2013; Kassem 2015; Looi and Su 2017) in terms of 
their mean and COV. As noted previously, the models are 
typically valid and perform well only when the parameters 
are within the ranges of the parameters used to calibrate the 
model. Because different databases were used and these 
databases used different criteria to determine which wall 
tests to include in the database, as well as different numbers 
of tests, different test parameters, and different ranges of test 

*The Appendix is available at www.concrete.org/publications in PDF format, 
appended to the online version of the published paper. It is also available in hard copy 
from ACI headquarters for a fee equal to the cost of reproduction plus handling at the 
time of the request.

parameters, a model developed with a given database can be 
biased when it is evaluated with another database. Even if 
the ranges of relevant parameters are comparable, the size 
of the databases influences the reported means and COVs 
(Tanaka 1987). In addition, as databases become large, it 
often becomes infeasible to completely interpret the data 
using statistical models. In such cases, the application of ML 
is valuable (Dey 2016).

ML models
Although ML models can be powerful, they tend to be 

complex, challenging to use, and difficult to interpret (Bzdok 
et al. 2018). Several recent studies developed ML models 
to estimate wall shear strength (Chen et al. 2018; Moradi 
and Hariri-Ardebili 2019; Keshtegar et al. 2021; Feng et al. 
2021); Appendix A, Table A.3 provides a summary of the 
databases, variables, and error indicators used in some of 
these studies. The results reported in Table A.3 demonstrate 
the potential and significant predictive power of ML models 
relative to other models (Table 1); however, these models 
suffer drawbacks, as described in the following paragraphs.

To train an ML model, a more extensive database is 
required; however, it also is critical to carefully screen the 
tests included in the database to ensure that they are aligned 
with the goals of the model being developed. For example, 
if the study is related to assessing wall shear strength, then 
the tests used in the database should include only walls that 
failed in shear, and outliers should be carefully reviewed 
to ensure that the data should be included (for example, 
inconsistent results are reported; an additional test variable 
is included that would impact results, such as corrosion; 
and the test variables satisfy code-minimum requirements, 
such as material properties). Model performance should be 
reported, including a well-known error indicator such as the 
mean and COV of the true-to-predicted ratio, to facilitate 
comparisons. Also, if an ML model is compared with other 
models (for example, Table 1), then the comparison should 
also include results of other (adequately trained) ML models 
to judge the performance of the ML model. ML models are 
more complex than models developed based on a (simple) 
equation; therefore, better performance is expected. If this 
is not the case, it implies that a complex model has similar 
(or worse) performance than a simple model; therefore, the 
added complexity is redundant because the simple model 
already captures the relevant patterns and relationships in 
the data.

A vast majority of structural tests reported in the literature 
were conducted at less than full-scale (for example, one-fifth 
to three-quarters); therefore, it is essential to develop models 
using dimensionless and/or mechanics-based normalized 
variables (for example, aspect ratio versus wall height and 
wall length, stress versus force) such that the database and 
model results are representative of both reduced-scale tests 
and full-scale components (for example, walls). The need 
for this step becomes clear when the relationship between 
the predicted variable and the error indicator selected for 
the optimization problem is evaluated. For example, if shear 
strength is the variable being estimated and an error such 
as the root-mean-squared error (RMSE) is used to train the 
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model, then the direct difference between the observed value 
(or true value, Vtrue) and the predicted shear strength value 
(Vpred) is minimized (that is, not a percentage error), which 
can lead to large errors for lower values of Vtrue. Another 
option is to use an error indicator equal to the difference in 
the true-to-predicted value; however, this does not address 
the issue of reduced scale tests. Finally, the coefficient of 
determination (R2 ϵ [0,1]) is another error indicator that is 
commonly used; however, results can be misleading because 
this approach compares a given model to the null model, 
and larger R2 values can be obtained for less precise models 
(Barret 1974).

For ML models, it is common to use two data sets: a 
training set and a testing set. The training set is used to train 
(calibrate) the model, and the testing set is used to verify that 
the trained model will perform similarly when predicting 
unseen data. Acceptable performance is achieved where the 
value of the error obtained for the testing set is comparable to 
that obtained for the training set. Although this comparison 
should be carefully addressed and ideally verified in terms of 
the error used in the optimization process and other mean-
ingful error indicators to demonstrate model robustness, this 
added step is often not adequately considered.

FRAMEWORK
The proposed framework uses statistical and ML 

approaches to establish target performance requirements 
for component capacity models (for example, models for 
column and wall shear strength, beam flexural strength, 
reinforcement development length, and so on), or other 
models with similar characteristics, with different levels 
of complexity based on the use of a common, comprehen-
sive database. The framework overcomes the limitations 

highlighted in the Introduction by allowing the user to define 
model performance requirements based on the desired level 
of model complexity.

The proposed framework adopts the generic steps of 
ML—that is, collection and preparation of data, feature 
selection,  selection of ML algorithms, selection of model 
and hyper-parameters, model training, and model perfor-
mance evaluation (Alzubi et al. 2018)—but also requires 
specific sub-steps to: a) define relevant (starting) features 
based on the mechanics of the problem; b) address the issue 
of using reduced-scale tests to predict capacities of full-scale 
specimens; c) develop an iterative sensitivity analysis to 
train the ML model; and d) train Elastic Net Models (ENMs) 
using engineered features defined from the starting features. 
Each of these steps is described in detail in the following 
subsections.

Step 1: Collection and preparation of data
A data set of walls with reported flexure-shear (F-S),  

diagonal-tension (D-T), or diagonal-compression (D-C) 
failure modes was obtained using the UCLA-RC Walls 
Database, which includes detailed and parametrized infor-
mation on more than 1100 RC wall tests (Abdullah and 
Wallace 2018, 2021; Abdullah 2019). Tests with incomplete 
material test information were excluded because this infor-
mation is required to define the variables used in this study. 
The reduced data set included a total of 412 wall tests. The 
dataset was further evaluated resulting in the removal of 
72  tests because: a) test walls included artificial cracks to 
study corrosion (six tests, Zheng et al. [2015]); b) reported 
lateral load readings did not match the values reported in 
figures provided in various papers or reports (nine tests, Li 
and Li [2002]); c) test walls had asymmetric cross-sectional 

Table 1—Wall shear strength model comparisons reported in different studies: Vtrue/Vpred

Model

Sánchez-Alejandre and 
Alcocer (2010) Carillo and Alcocer (2013) Kassem (2015) Looi and Su (2017)

Mean COV Mean COV Mean COV Mean COV

ACI 318-19, Ch. 18* 1.43 0.26 0.82 0.24 1.65 0.37 1.01 0.37

ACI 318-11, Ch. 11 —† — 0.90 0.21 — — — —

ACI 318-14, Ch. 11 — — — — — — 0.96 0.37

AIJ (1999) 1.00 0.27 — — — — — —

CSA A23.3-14 — — — — — — 1.35 0.44

EC8 (2004) — — — — 2.54 0.71 — —

Barda et al. (1977) — — — — 1.39 0.47 — —

Wood (1990) 0.99 0.24 — — 0.78 0.32 — —

Hwang and Lee (2002) 1.06 0.22 — — 1.26 0.56 — —

Sánchez-Alejandre and Alcocer (2010) 1.00 0.13 0.79 0.12 1.91 0.29 0.84 0.35

Gulec and Whittaker (2011) — — 1.06 0.09 1.34 0.24 0.89 0.31

Carrillo and Alcocer (2013) — — 1.00 0.08 — — — —

Kassem (2015) — — — — 1.00 0.21 — —

Looi and Su (2017) — — — — — — 1.04 0.27

*Sánchez-Alejandre and Alcocer (2010) use ACI 318-08 Ch. 21; Carrillo and Alcocer (2013) and Kassem (2015) use ACI 318-11 Ch. 21; Looi and Su (2017) use ACI 318-14, Ch. 
18. These equations are same as those in ACI 318-19 Ch.18.
†Model not included in comparison.
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shapes such as T-shape, L-shape, half barbell, and wing 
walls (20 tests); or d) reported values for tested compressive 
strength of concrete fc′ were less than the limit of 20.7 MPa 
(3.0 ksi) given in ACI 318-19 for special seismic systems 
(37 tests). Asymmetric walls were excluded because the 
number of walls with these cross-sectional shapes was low 
(20) compared to the number of rectangular, barbell, or 
flanged walls. Thus, if these tests are incorporated into the 
larger dataset of symmetric walls, the optimization process 
will likely overlook the inherent differences between asym-
metric and symmetric walls. A more appropriate approach 
in this case, as implemented by Rojas-León (2022), is to 
develop a model excluding asymmetric wall cross sections 
and then evaluate whether simple changes to the model 
could be implemented to address shear strength estimates 
for the asymmetric walls.

Based on the aforementioned filters, a final (clean) dataset 
of 340 symmetric wall tests was obtained (refer to the 
Appendix) and randomly split into a training set with 80% 
of the tests (272) and a testing set with 20% of the tests (68) 
to verify the performance of the models. Figure 1 compares 
histograms for various database parameters of the entire data 
set and the testing set, where fc′ is the specified compressive 
strength of concrete; ρbe is the boundary region longitudinal 
reinforcement ratio; fybe is the specified yield strength of the 

boundary region longitudinal reinforcement; ρwh and fywh 
are the ratio and specified yield strength of the horizontal 
web reinforcement, respectively; ρwh and fywv are the ratio 
and specified yield strength of the vertical web reinforce-
ment, respectively; Pu, Mu, and Vu are the measured axial 
load, moment, and shear, respectively; lw is the wall length 
in the direction of the applied shear force; hw is the total wall 
height; Abe is the cross-sectional area bounding the longitu-
dinal reinforcement at a wall boundary; Acv is the cross-sec-
tional area bounded by the wall length and the web thickness 
(tw); Ag is the gross cross-sectional area; c is the neutral axis 
depth; and ytrue is the normalized shear stress (introduced 
later).

Step 2: Defining ML models and features
This step involves identifying the potentially relevant 

parameters based on a literature review and studying rela-
tively simple mechanics-based models and appropriate free-
body diagrams. For this application—that is, RC wall shear 
strength—a free-body diagram of a wall with a diagonal crack 
was used. Based on these considerations, the following rela-
tionships were derived (Rojas-León 2022).

	​ ​V​ u​​ ​ ​ ~​ ∝ ​   ​A​ g​​ ​​f​ c​​ ′ ​​	 (1)

Fig. 1—Histograms of relevant parameters. (Note: 1 ksi = 6.895 MPa; 1 kip = 4.448 kN.)
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	​ ​V​ u​​ ​ ​ ~​ ∝ ​   ​ρ​ wh​​ ​f​ ywh​​ ​h​ w​​ ​t​ w​​​	 (2)

	​ ​V​ u​​ ​h​ eff​​ ​ ​ ~​ ∝ ​   ​ρ​ wv​​ ​f​ ywv​​ ​​(​l​ w​​ − c)​​​ 2​ ​t​ w​​​	 (3)

	​ ​V​ u​​​h​ eff​​ ​ ​ ~​ ∝ ​   ​ρ​ be​​ ​f​ ybe​​ ​A​ be​​ ​l​ w​​​	 (4)

	​ ​V​ u​​ ​h​ eff​​ ​ ​ ~​ ∝ ​  ​(​​f​ c​​ ′ ​ + ​ P _ ​A​ g​​ ​)​ ​t​ w​​ ​c​​ 2​​	 (5)

	​ ​V​ u​​ ​h​ eff​​ ​ ​ ~​ ∝ ​  ​(​​f​ c​​ ′ ​ − ​ P _ ​A​ g​​ ​)​ ​t​ w​​ ​​(​l​ w​​ − c)​​​ 2​​	 (6)

Based on these relationships, and to address the use 
of reduced-scale test specimens, the following 10 non- 
dimensional variables are selected and are named the “starting 
features.” These variables can be identified by normalizing 
Vu by Agfc′ in Eq. (1) through (6) and by applying reasonable 
approximations in some cases (for example, considering c as 
a fraction of lw, and neglecting constants because the model 
calibration process will address this).

	 x1 = ρwh(fywh/fc′)	 (7)

	 x2 = ρwv(fywv/fc′)	 (8)

	 x3 = ρwbe(fybe/fc′)	 (9)

	 x4 = 1 + Pu/(Agfc′)	 (10)

	 x5 = c/lw	 (11)

	 x6 = Mu/(Vulw)	 (12)

	 x7 = tw/lw	 (13)

	 x8 = tw/hw	 (14)

	 x9 = hw/lw	 (15)

	 x10 = Abe/Ag	 (16)

The predicted variable is the normalized shear strength 
defined as

	 ytrue = Vtrue/(Agfc′)	 (17)

Between (1 + Pu/(Agfc′)) and (1 – Pu/(Agfc′)), only one 
option is considered because they are related to the same 
parameters in Eq. (5) and (6), and because the presence of a 
constant (that is, “intercept” or equivalent) in the calibration 
process would suggest dropping one of the terms because it 
is linearly dependent on the other. The height of the wall used 
to define the effective flange width according to ACI 318-19 
Section 18.10.5.2 was estimated as hw ≈ effective height 
(heff)/0.7, where heff corresponds to the shear span, defined as 
Mu/Vu. It is well established that flanged walls have a larger 
shear strength (Gulec et al. 2009; Gulec and Whittaker 2011; 
Kassem 2015; Kim and Park 2020); thus, cross-sectional 
area Ag is used instead of Acv in Eq. (17).

The feature matrix X contains the 10 starting features 
defined in Eq. (8) through Eq. (17). The following feature 
matrixes (X̃, Xpoly, and X̃poly) are obtained by using feature 
engineering. Feature matrix X̃ contains 140 features because 
the following 14 functions were applied to the 10 original 
(starting) features: identity function, (·)–1, (·)2, (·)–2, (·)1/2, 
(·)–1/2, (·)3, (·)–3, (·)1/3, (·)–1/3, exp(·), exp(–·), log(·), and  
–log(1 + ·). Feature matrix Xpoly has 285 features (combining 
the 10 starting features with a cubic polynomial). Feature 
matrix X̃poly has 679 features that are obtained by combining 
the 14 more significant features of the X̃ matrix with cubic 
polynomial coefficients. Cubic polynomials were used 
because Eq. (1) through (6) can be formed by multiplying up 
to three starting features. Also, to reduce skewness or high-
light trends, other variations of the output variable y (refer 
to Eq. (17)) are defined as ​​3 √ 

_
 y ​​ and log(y). The subset of 14 

more significant features of X̃ is obtained after performing 
the sensitivity analysis (explained later) for ENM2 (intro-
duced later in Table 2).

The starting features will be the input parameters of one or 
more complex ML models, which will predict the normalized 
shear stress defined in Eq. (17). The selected complex ML 
models for this study are the artificial neural network (ANN) 
and Random Forest (RF) regression models because they are 
applicable for this study (the predicted parameter is a contin-
uous variable), and because they are well-known models that 
are not complicated to implement in programming languages 
(for example, Matlab, R, and Python, which have various 
built-in functions to simplify their implementation). The 
starting and engineered features are also used to create a suite 
of ENMs; a total of 10 ENMs are defined (refer to Table 2).

ENMs (Zou and Hastie 2005) are a simple and more inter-
pretable ML model type because they are a penalized linear 
modeling approach with a mixture of ridge regression (Hoerl 
and Kennard 1970) and Least Absolute Shrinkage and Selec-
tion Operator (LASSO) regression (Tibshirani 1996). Ridge 
regression reduces the impact of collinearity on the features, 
whereas LASSO reduces the dimension of the problem by 
shrinking some of the coefficients to zero (less significant 

Table 2—ENMs definition

Model
Short 

reference Long reference

ENM1 y ~ X ​       ​y​ j​​  ~ N​(​μ​ j​​ ,  σ)​,   ​μ​ j​​ = ​x​ j​ T​β,      ∀ j  ∈  ​{1,  2,  …,  n}​​

ENM2 y ~ X̃ ​       ​y​ j​​  ~ N​(​μ​ j​​ ,  σ)​,   ​μ​ j​​ = ​x̃​ j​ T​ β,      ∀ j  ∈ ​{1,  2,  …,  n}​​

ENM3 ​​3 √ 
_

 y ​  ~ X̃​      ​​3 √ 
_

 ​y​ j​​ ​  ~ N​(​μ​ j​​ ,  σ)​,   ​μ​ j​​ = ​x̃​ j​ T​ β,      ∀ j  ∈  ​{1,  2,  …,  n}​​

ENM4 log(y) ~ X̃ ​log​(​y​ j​​)​ ~ N​(​μ​ j​​ ,  σ)​,   ​μ​ j​​ = ​x̃​ j​ T​ β,      ∀ j  ∈  ​{1,  2,  …,  n}​​

ENM5 y ~ Xpoly ​        ​y​ j​​  ~ N​(​μ​ j​​ ,  σ)​,   ​μ​ j​​ = ​x​ ​poly​ j​​​ T ​     β,  ∀ j  ∈  ​{1,  2,  …,  n}​​

ENM6 ​​3 √ 
_

 y ​  ~  ​X​ poly​​​      ​​3 √ 
_

 ​y​ j​​ ​  ~ N​(​μ​ j​​ ,  σ)​,   ​μ​ j​​ = ​x​ ​poly​ j​​​ T ​      β,  ∀ j  ∈  ​{1,  2,  …,  n}​​

ENM7 log(y) ~ Xpoly ​log​(​y​ j​​)​ ~ N​(​μ​ j​​ ,  σ)​,   ​μ​ j​​ = ​x​ ​poly​ j​​​ T ​    β,   ∀ j  ∈  ​{1,  2,  …,  n}​​

ENM8 y ~ X̃poly ​        ​y​ j​​  ~ N​(​μ​ j​​ ,  σ)​,   ​μ​ j​​ = x̃​poly​ j​​ β,  ∀ j  ∈  ​{1,  2,  …,  n}​​

ENM9 ​​3 √ 
_

 y ​  ~  ​X̃poly      ​​3 √ 
_

 ​y​ j​​ ​  ~ N​(​μ​ j​​ ,  σ)​,   ​μ​ j​​ = x̃​poly​ j​​ β,  ∀ j  ∈  ​{1,  2,  …,  n}​​

ENM10 log(y) ~ X̃poly ​log​(​y​ j​​)​ ~ N​(​μ​ j​​ ,  σ)​,   ​μ​ j​​ = ​x̃​ ​poly​ j​​​ T ​  β,   ∀ j  ∈  ​{1,  2,  …,  n}​​

Note: n is number of features model uses.
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parameters). ENMs have two hyper-parameters: a) λ > 0 
is the complexity parameter that controls the weight of the 
penalization factors; and b) α ϵ [0,1] is the compromise 
between Ridge (α = 0) and LASSO (α = 1). Small λ values 
can result in an overfitted model (too complex), whereas 
high λ values can result in an underfitted model (too simple).

Step 3: Sensitivity analysis and selection of hyper-
parameters

The hyper-parameter sensitivity analysis described in 
Fig. 2 was implemented for the 12 ML models (1 ANN, 
1 RF regression, and 10 ENMs) using an iterative k-fold 
cross-validation (CV) method with, in this case, Niter = 100 
iterations and k = 4 folds. K-fold CV is useful for data scien-
tists when dealing with small databases (a few thousand 
data samples). Iterations are included because, in Structural 
Engineering, the database is typically even smaller (just 
a few tens or hundreds). The number of folds was set as 
k = 4 because it makes the validation set representative of 
the testing set (that is, the same size). Once the sensitivity  
analysis is completed, k × Niter = 4 × 100 = 400 RMSE values 

are computed for each configuration of hyper-parameters. 
The mean and standard deviation of the calculated RMSEs 
are obtained for each of these configurations. The optimal 
hyper-parameters are selected based on the lower mean error 
and standard deviation.

ANN—Rules suggesting values for the number of hidden 
layers and neurons per layer (main hyper-parameters) can be 
found in the literature (Chen et al. 2018; Moradi and Hariri- 
Ardebili 2019), which are covered by the ranges selected for the 
sensitivity analysis. The sensitivity analysis results are shown 
in Fig. 3; a blue dashed line indicates the best ANN configu-
ration for each number of hidden layers considered. From 
there, the optimum ANN is the one with four hidden layers and 
30 neurons in each layer because it has the lowest mean error 
(MIN RMSE) and the lowest standard deviation (SD). Previous 
configurations (the same four hidden layers, but fewer neurons) 
show an extensive range of similar and stable results.

RF regression—A large number of decision trees 
(1000 trees) are selected to ensure that a stable error level 
is reached. For this study, the error became stable at approx-
imately 300 trees. Two other hyper-parameters could have 

Fig. 2—Sensitivity analysis algorithm to select optimum set of hyper-parameter values.

Fig. 3—Sensitivity analysis results to define optimum ANN configuration.
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an impact on the performance of the model (Zhang and 
Ma 2012): 1) the number of variables (selected among all 
the features) in each cell (mtry); and 2) the prespecified 
threshold of maximum observation per cell (nodesize). The 
sensitivity analysis covered ranges of values for both hyper- 
parameters according to observations by Zhang and Ma 
(2012) concerning mtry, and according to Breiman (2001) 
and Segal and Xiao (2011) concerning nodesize. Figure 4 
shows that the RF results are only slightly sensitive to mtry, 
and that having large trees (small nodesize) results in low 
errors (RMSE). Optimal hyper-parameters are selected as 
mtry = 50 and nodesize = 1 (minimum mean and SD).

ENMs—The log(λ) values ranged from –12 to –2, while the 
α values were 1.0, 0.8, 0.6, 0.4, 0.2, and 0.0 for all 10 ENMs 
defined in Table 2. As an example, Fig. 5 presents the sensi-
tivity analysis results for ENM6; the optimum version of the 
model is indicated with a black dashed vertical line, while 
the blue, green, and orange vertical dashed lines indicate the 
λ values associated with the selected underfitting levels. In 
this study, three levels of underfitting are selected: 1) one in 

which the error corresponds to the error that is one standard 
deviation away from the error of the optimum model (“1-SD 
away” version); 2) an underfitted model that uses six features 
only (“6-feature” version); and 3) an underfitted model that 
uses three features only (“3-feature” version). These under-
fitting levels were selected because they are representative 
of models adopted in building codes and standards, and a 
model with this complexity level is of particular interest in 
this study.

Figure 6 presents the mean errors obtained from the sensi-
tivity analysis of the 10 ENM models and demonstrates 
that regardless of the value of α considered, there is a λ 
value where practically the same optimum error is reached. 
Figure 7 indicates that it is difficult for the models to exclude 
features to achieve the defined underfitted levels of interest 
for lower α values. Because of these reasons, for each ENM 
in this study, the selected hyper-parameter configuration for 
the optimum and underfitted complexity levels is α = 1, and 
its associated corresponding λ value—that is, all selected 
ENMs are LASSO models.

Fig. 4—Sensitivity analysis results to define optimum RF configuration.

Fig. 5—Sensitivity analysis results for ENM6 model: ​​3 √ 
_

 ​y​ j​​ ​  ~ N​(​μ​ j​​, σ)​, ​μ​ j​​ = ​​x​ ​poly​ j​​​​ ′ ​ β​.
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Step 4: Training, verification, and selection of best-
performing models

All the models are trained using the training set with selected 
sets of hyper-parameters. This results in 42 trained ML models: 
the optimum ANN (1 model), the optimum RF Regression (1 
model), the optimum version of each LASSO (10 models), the 
1-SD away version of each LASSO (10 models), the 6-feature 
version of each LASSO (10 models), and the 3-feature version 
of each LASSO (10 models). The acceptability criterion 
adopted in this study defines a model as acceptable when the 
errors of the training and testing sets are both within a defined 
margin away from the converging error, which is ±20% for the 
optimum models and ±10% for the underfitted models. The 
converging error is taken as the average of the training and 
testing errors. Optimum models have a larger margin because 
they are right on the balanced point between the underfitted 
and overfitted models. Thus, they have the potential to “keep 
learning” (for example, re-adjust their coefficients a bit) if 
new data are provided for training. On the other hand, by defi-
nition, underfitted models are not capable of capturing enough 

details, and they follow more rough trends identified from the 
data, which is the reason for the stricter margin around the 
converging error. The performance of existing models and the 
training of several new models also informed the selection of 
the acceptable bandwidth around the converging error (Rojas-
León 2022).

Optimum ANN and RF—Although the training process 
was based on the RMSE between ytrue and ypred (refer to 
Fig.  8(a) and 9(a)), similar model performance (that is, 
training and testing errors within ±20% of the converging 
error) is verified when using the predicted values from the 
training and testing sets to compute the mean and COV 
of Vtrue/Vpred for the optimum ANN (Fig. 8(b) and (c)) and 
optimum RF (Fig. 9(b) and (c)). Figures 8(c) and 9(c) also 
show that the predictions for the training and testing sets 
have the same distribution shapes.

Optimum and underfitted LASSO models—All 40 LASSO 
models selected (four from each ENM defined in Table 2) are 
trained using only the features associated with each chosen 
hyper-parameter configuration—that is, they are linear 

Fig. 6—Mean of MSE obtained from sensitivity analysis of all ENM models.

Fig. 7—Mean non-zero coefficients obtained from sensitivity analysis of all ENM models.
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regressions with different engineered features. Figures 10(a) 
to (d) show the training and testing errors (RMSE between 
ytrue and ypred) with a blue dot or a red cross, depending on 
whether they meet or do not meet the acceptability criterion, 
respectively. For each complexity level, the model meeting 
the acceptability criterion with the smaller converging error 
was selected (which are highlighted with a green box in 
Fig. 10; full-color version can be accessed at www.concrete.
org); the best optimal LASSO model, the best 1-SD away 
LASSO model, the best 6-feature LASSO model, and the 
best 3-feature version. Note that the optimum LASSO models 
No. 9 and 10 have significant errors, which is attributed to 
the implemented automated selection of hyper-parameters 

that are just a little past the underfitted-overfitted sweet spot, 
which is the reason that the 1-SD away model was included 
(especially for those LASSO models that are more complex). 
Figure 11 verifies the good and similar performance (training 
versus testing errors) in terms of the same error indicators 
used for the optimum ANN and optimum RF. The error goes 
up gradually, and distributions of the ytrue/ypred become wider 
as the complexity level of the models is relaxed. Nonethe-
less, the errors obtained for the 6-feature and 3-feature linear 
regressions are still very low compared to the results of 
existing equations in Table 1.

Except for the RF regression, all the learning curves 
shown in Fig. 12 (also obtained by iterating at each set size) 

Fig. 9—Performance of selected RF on training and testing sets in terms of: (a) normalized shear stress; (b) Vtrue/Vpred versus 
Vtrue; and (c) distributions of Vtrue/Vpred. (Note: 1 kip = 4.448 kN.)

Fig. 8—Performance of selected ANN on training and testing sets in terms of: (a) normalized shear stress; (b) Vtrue/Vpred versus 
Vtrue; and (c) distributions of Vtrue/Vpred. (Note: 1 kip = 4.448 kN.)

Fig. 10—Selection of best LASSO model for each complexity level based on acceptability criterion.
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have a gap between the training and testing curves and reach 
a plateau when approaching the use of 100% of the training 
set. Because of this, the error obtained when including 
future data into the training set to refine these same models 
(that is, keeping the same hyper-parameters and relevant 
features already identified) should fall between the training 
and testing errors, but closer to the training error. On the 
other hand, the training and testing learning curves for RF 
regression are very close to each other because a very large 
number of trees are selected. However, it is observed that 

the slope of the learning curves reduces (reaches a plateau) 
when the training size becomes larger. This behavior means 
that, if additional data are provided for training the same 
RF regression, the converging error would get closer to that 
plateau, resulting in a slightly lower error.

Step 5: Setting target errors for different model 
complexity levels

Because the six selected models demonstrate good perfor-
mance that has been verified, adding data with a distribution 

Fig. 11—Performance of selected LASSO models on training and testing sets in terms of: (a), (d), (g), and (j) normalized shear 
stress; (b), (e), (h), and (k) Vtrue/Vpred versus Vtrue; and (c), (f), (i), and (l) distributions of Vtrue/Vpred. (Note: 1 kip = 4.448 kN.)

Fig. 12—Learning curves of selected and verified ML models.
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similar to that of the training data will only refine these models 
(Amazon Web Services 2019). Thus, the testing set is incor-
porated into the database used to train these models, but the 
same selected hyper-parameters and input features are kept. 
The results are presented side by side in Fig. 13, sorted from 
higher model complexity level (left) to lower model complexity 
level (right): optimum ANN, optimum RF, optimum LASSO 
M6, 1-SD away LASSO M9, 6-feature LASSO M4, 3-feature 
LASSO M10. As expected, performances are similar to those 
obtained previously and aligned with the observations derived 
from the learning curves. This good behavior is verified for all 
different error indicators used before.

Figure 13 shows that the ANN performs better (smaller 
error) than RF, but there is still room for the RF to improve 
if additional data are added to the database. The optimum 
LASSO model performs practically the same as the optimum 
ANN, or even slightly better if the RMSE between ytrue and 
ypred is considered. This is a relevant finding for two primary 
reasons: 1) the LASSO model is much less complex than the 
ANN model because, as noted before, LASSO models are 
linear regressions using those selected features only (which, 
for the optimum LASSO model, are 45 features engineered 
from the 10 starting features); and 2) the underfitted LASSO 
models can be understood as a smooth relaxation away from 
the optimum when looking for target model performances 
(errors) that fulfill user requirements for less complex 
models. The 1-SD away LASSO model is a linear regres-
sion of 14 features engineered from seven of the 10 starting 
features (x1, x2, x3, x6, x8, x9, and x10), the 6-feature LASSO 

model is a linear regression of six features engineered from 
six of the 10 starting features (x1, x2, x3, x4, x6, and x8), and the 
3-feature LASSO model is a linear regression that uses three 
features engineered from five of the 10 starting features (x1, 
x2, x3, x6, and x10). Unlike the ANN or RF regression models, 
the LASSO models could be easily implemented in an Excel 
spreadsheet. Therefore, for the comprehensive database used 
in this study or for a similar one (similar parameter ranges 
and distributions, as is the case of the testing set with respect 
to the entire database accordingly with Fig. 1), models with 
different levels of complexity noted should comply with the 
requirements stipulated in Table 3.

COMMENTS ON RELEVANT PARAMETERS
Among the starting features defined from Eq. (7) to 

(16), the ones used in the 6- and the 3-feature LASSO 
models defining the performance requirement for a 

Fig. 13—Selected and trained ML models applied to entire database.

Table 3—Target performances for different model 
complexity levels

Requirements

Model complexity level

Complex ML models Simplified models

Number of parameters — ~3 to 6

Vtrue/Vpred mean ratio 0.99 to 1.01 0.98 to 1.02

COV ≤0.12 0.16 to 0.19

Training versus testing 
error margin

±20% of converging 
error

±10% of converging 
error
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code-oriented equation are: x1 = ρwh(fywh/fc′), x2 = ρwv(fywv/fc′), x3 =  
ρwbe(fybe/fc′); x4 = 1 + Pu/(Agfc′), x6 = Mu/(Vulw), x8 = tw/hw, and 
x10 = Abe/Acv. The only ones that are not listed herein are x5 =  
c/lw, x7 = tw/lw, and x9 = hw/lw. The absence of x5 = c/lw can be 
attributed to the presence of x10 = Abe/Acv and x3 = ρwbe(fybe/
fc′) because these two features can be used to represent the 
forces of compression or tension that are developed at the 
wall edges (and thus the neutral axis depth). The absence 
of x7 = tw/lw can be attributed to the presence of x8 = tw/hw, 
which already accounts for the wall thickness and can be 
used together with x6 = Mu/(Vulw) to reproduce values that 
have a high correlation with x7 = tw/lw. On the other hand, 
the absence of x9 = hw/lw might be surprising because some 
existing models used by codes or standards, or reported in 
the literature, use the wall aspect ratio (hw/lw) as a parameter 
to estimate wall shear strength (ACI 318-19 is one of those), 
whereas some other models use moment-to-shear span ratio 
(Mu/(Vulw)). In many of the tests reported in the literature 
(82% of the tests in the database used), these values are the 
same because the test involves a cantilever wall, fixed at 
the base, with a single point load applied near the top of 
the wall (that is, Mu = Vuhw). For some tests reported in the 
literature, these values are not the same (for example, for a 
partial-height wall with an applied lateral load and moment 
at the top of the wall), and it is necessary to define an effec-
tive wall height hw,eff and wall aspect ratio (hw,eff/lw). As 
for the database used in this study, there are 32 specimens 
with a moment applied to the top of a partial height wall, 
three cantilever walls with two or more lateral loads, and 
26 specimens tested with a double curvature configuration. 
For tests with multiple applied lateral loads (Cardenas and 
Magura 1972) or a moment applied at the top of the wall test 

(Segura and Wallace 2018), or both, the effective wall aspect 
ratio hw,eff was defined as Mu/Vu at the wall critical section 
(wall-foundation interface). If this approach is used, then 
identical results are produced from the wall test database 
using either hw/lw or Mu/(Vulw). Thus, the constructed wall 
height was used to define x9 = hw/lw because that is how the 
aspect ratio has been defined in other studies. However, for 
the reasons given previously, it was expected that x6 = Mu/
Vulw would be a better parameter to assess the shear strength 
of walls in buildings.

COMMENTS ON PERFORMANCES OF EXISTING 
MODELS

The performance of the existing models in codes and 
standards was evaluated using the common, comprehensive 
database gathered for this study (refer to Fig. 14). Upper 
limits (for example, ​10 ​√ 

__
 ​​f​ c​​ ′ ​ ​​A​ cv​​​ from the ACI 318-19 equa-

tion) were not considered to avoid introducing bias (conser-
vatism) into the equations. Mean values varied from 0.73 
to 1.63, and the COV values ranged from 0.28 to 0.45, and 
none of the existing models performed particularly well. 
The Gulec and Whittaker (2011) model had the least varia-
tion but with a mean value of 1.19. The Barda et al. (1977) 
model and the Sánchez-Alejandre and Alcocer (2010) model 
had mean values very close to 1.0, but COV values greater 
than 0.3. The ASCE 43-05 model (which is based on Barda 
et al. [1977]) resulted in a mean value of 1.26 and a COV 
of 0.29. None of these models satisfy the simplified model 
complexity level requirements stated in Table 3.

Also, none of the ML models analyzed in the literature 
review meet the target performance requirements for a 
complex model because the error is not small enough or 

Fig. 14—Performance comparison of existing models using single, comprehensive database.
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because the difference between the training and testing error 
is too large. The proposed framework provides a means to 
better train ML models, particularly when the addressed 
problem is based on basic mechanical principles. Applying 
the proposed framework resulted in similar results for all ML 
model types studied at their respective optimum complexity 
level. The observation that essentially the same performance 
of complex ML models (ANN, RF) was achieved with a 
simple LASSO model in this study indicates that the size 
of databases used for many civil engineering problems 
may still be too small to benefit from the use of complex 
ML model types because a linear regression with the right 
features has similar performance, or even slightly better. 
This is aligned with the rule of thumb that says ML models 
should be trained on at least an order of magnitude more 
samples than input model parameters (Morgan and Bourlard 
1989; Google Developers 2022; Gonfalonieri 2019).

SUMMARY AND CONCLUSIONS
This study proposes a framework to obtain different target 

model performance requirements for models with different 
complexity levels. The approach is particularly useful when 
addressing a mechanics-based problem with a small data-
base. The framework leads to properly trained machine-
learning (ML) models (more than one) that enable the quan-
tification of the gap between the performance of existing 
models and the best performance that can be achieved 
with currently available data; this allows the user to make 
informed decisions on the value of developing improved 
models (with less complexity than the ML models).

The framework is demonstrated by addressing the problem 
of assessing wall shear strength using a comprehensive data-
base of 340 walls reported to have failed in shear. This appli-
cation highlights how the framework can be used to address 
issues such as: a) existing reinforced concrete (RC) wall 
shear strength equations (used in building codes or standards 
or proposed in the literature) perform very differently when 
evaluated with different databases and the performance is 
generally poor when evaluated against a common, compre-
hensive database (that is, high error, high variance, or both); 
b) existing ML models were trained without addressing the 
issue that most databases are comprised of tests conducted 
at less than full scale or do not represent the spectrum 
parameters for as-built walls in buildings; and c) existing 
models with higher complexity suggest good performance 
by showing that they are better than models with less 
complexity, which is an unfair comparison. Finally, where 
models of similar complexity are compared, it is insufficient 
to conclude that the model with best performance should be 
selected because a third model with equivalent complexity 
could perform better—that is, model performance require-
ments are needed to guide this assessment.

When applied to the problem of assessing RC wall shear 
strength, the framework shows that a systematic method-
ology that recognizes the mechanics of the problem, the 
availability of limited data (compared to those databases 
with thousands or millions of samples available in fields 
where ML shows its greats potential), and avoids training 
issues such as those highlighted in this paper, can produce 

simple models with performance as good as (or nearly as 
good as) complex ML models. Because all ML models 
considered in this study at their optimum complexity level 
(ANN, RF regression, and LASSO model) result in very 
similar predictive performance, underfitted models derived 
from the optimum LASSO model can be taken as a smooth 
relaxation away from the optimum when looking for target 
model performance (errors) that fulfill user requirements for 
less-complex models.

For the application and database used in this study, the 
framework establishes a Vtrue/Vpred mean ratio very close to 
1.0 with a COV in the range of 0.16 to 0.19 as the perfor-
mance requirements for a less-complex model that could be 
used in codes and standards to predict RC wall shear strength. 
In addition, the training and testing errors should be within 
a margin of ±10% of the converging error (at least, in terms 
of the error used in the optimization process and in terms of 
COV). For complex ML models, the mean ratio of Vtrue/Vpred 
should be very close to 1.0 with a COV of 0.12, or less, and 
training and testing errors should be within a margin of ±20% 
of the converging error. Similar findings are expected for 
other similar applications with similar size databases.

Finally, none of the assessed existing code-oriented 
models meet the target performance requirements for a 
simplified shear strength model, which suggests there is 
room for improvement in code equation predictive perfor-
mance. Also, none of the ML models analyzed in the litera-
ture review meet the performance requirements for complex 
ML models, which reflects the impact of improper training.
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APPENDIX 

Table A.1 – Existing wall shear strength models in building codes and standards 

Model Comments 
ACI 318-19, Section 18.10  
𝑉௡ ൌ 𝐴௖௩൫𝛼௖𝜆ඥ𝑓௖ᇱ ൅ 𝜌௪௛𝑓௬௪௛൯ ൑ 0.83𝐴௖௩ඥ𝑓௖ᇱ  
 

𝛼௖ ൌ ൞

0.25    for ℎ௪/𝑙௪ ൑ 1.5
0.17    for ℎ௪/𝑙௪ ൒ 2.0

0.25 െ 0.17 ቀ
௛ೢ
௟ೢ
െ 1.5ቁ  for 1.5 ൏ ℎ௪/𝑙௪ ൏ 2.0

  

𝜆 = 1.0 for normal-weight concrete. For lightweight concrete, it ranges from 0.75 to 0.85 
depending on the composition of the aggregates. 

Wall shear strength is determined using Eq. 
(18.10.4.1). The upper limit of 0.83𝐴௖௩ඥ𝑓௖ᇱ 
(for an individual wall) is intended to prevent 
diagonal compression failure and has been in 
the ACI 318 Code since 1971. 
For walls with ℎ௪/𝑙௪ ൑ 2.0 it is required that 
𝜌௩ is no less than 𝜌௛.  

EC8-2004 
𝑉௡ ൌ 𝑣௡𝑡௪𝑑  
 

𝑣௡ ൌ ൞

  
𝜌௛𝑓௬௛ ቀ

ெೠ

௏ೠ௟ೢ
െ 0.3ቁ ൅ 𝜌௩𝑓௬௩ ቀ1.3 െ

ெೠ

௏ೠ௟ೢ
ቁ   for 

ଵ.ହ௉ೠ
஺೟௙೎

ᇲ ൏ 0.1

0.15ඥ𝑓௖ᇱ ൅ ቂ𝜌௛𝑓௬௛ ቀ
ெೠ

௏ೠ௟ೢ
െ 0.3ቁ ൅ 𝜌௩𝑓௬௩ ቀ1.3 െ

ெೠ

௏ೠ௟ೢ
ቁቃ   for 

ଵ.ହ௉ೠ
஺೟௙೎

ᇲ ൒ 0.1
  

Concrete contribution is ignored for walls 
subjected to low axial stresses ( 1.5𝑃௨/
ሺ𝐴௧𝑓௖ᇱሻ ൏ 0.1). Wall shear strength depends 
on vertical and horizontal web reinforcement 
and applied moment-to-shear ratio.  

NZS 3101-2006 
𝑉௡ ൌ 𝑉௖ ൅ 𝑉௦   

𝑉௦ ൌ
஺ೡ௙೤ೢ೓ௗ

௦
 ,  

௏೎
஺೎ೡ

ൌ

⎩
⎪
⎨

⎪
⎧

  

𝑚𝑖𝑛 ൜0.17ඥ𝑓௖ᇱ, 0.17 ൬ඥ𝑓௖ᇱ ൅
௉ೠ
஺೒
൰ൠ                                        Simplified

Method

𝑚𝑖𝑛 ቐ൬0.27ඥ𝑓௖ᇱ ൅
௉ೠ
ସ஺೒

൰ ,ቌ0.05ඥ𝑓௖ᇱ ൅
௟ೢቆ଴.ଵට௙೎

ᇲା଴.ଶ
ುೠ
ಲ೒
ቇ

ಾೠ
ೇೠ

ି
೗ೢ
మ

ቍቑ  Detailed
Method

  

  

The simplified method may only be used 
when the vertical reinforcement ratio along 
the entire wall exceeds 0.003, and the 
reinforcement spacing does not exceed 300 
mm (12 in) in any direction. The detailed 

equation does not apply if ቀ
ெೠ

௏ೠ
െ

௟ೢ
ଶ
ቁ ൑ 0. 

AIJ-1999  
𝑉௡ ൌ 𝑉௖ ൅ 𝑉௦   
 

𝑉௖ ൌ
௧௔௡ሺఏሻሺଵିఉሻ௧ೢ௟ೢఔ௙೎ᇲ

ଶ
൒ 0  ,   𝑉௦ ൌ 𝜌௪௛𝑓௬௪௛𝑡௪𝑙௪𝑐𝑜𝑡ሺ𝜉ሻ,   𝑡𝑎𝑛ሺ𝜃ሻ ൌ ටቀ

௛ೢ
௟ೢ
ቁ
ଶ
൅ 1 െ

௛ೢ
௟ೢ

   

𝜈 ൌ 0.7 െ
௙೎ᇲ

ଶ଴଴଴
  ,  𝛽 ൌ

ቀଵା௖௢௧మሺకሻቁఘೢ೓௙೤ೢ೓

ఔ௙೎
ᇲ  ,  𝑐𝑜𝑡ሺ𝜉ሻ ൌ 1 (for truss mechanisms) 

In this model, besides the truss analogy, shear 
is assumed to be resisted through an arch 
mechanism. The contribution of the arch 
mechanism decreases with the amount of the 
web horizontal steel. 

ASCE/SEI 43-05 

𝑉௡ ൌ ቂ0.70ඥ𝑓௖ᇱ െ 0.28ඥ𝑓௖ᇱ ቀ
௛ೢ
௟ೢ
െ 0.5ቁ ൅

௉ೠ
ସ௟ೢ௧ೢ

൅ 𝜌௦௘𝑓௬ଵ ൑ 20ඥ𝑓௖ᇱቃ 𝑡௪𝑑௪ ൑ 1.66𝐴௖௩ඥ𝑓௖ᇱ  

𝑑௪ ൌ 0.6𝑙௪ ;   𝜌௦௘ ൌ 𝐴𝜌௩ ൅ 𝐵𝜌௛  
 

𝐴 ൌ

⎩
⎪
⎨

⎪
⎧ 1     for  

୦౭
୪౭
൑ 0.5

1.5 െ
௛ೢ
௟ೢ

 for 0.5 ൏
୦౭
୪౭
൑ 1.5

0     for 
୦౭
୪౭
൐ 1.5

  ,  𝐵 ൌ

⎩
⎪
⎨

⎪
⎧ 1     for  

୦౭
୪౭
൑ 0.5

௛ೢ
௟ೢ
െ 0.5 for 0.5 ൏

୦౭
୪౭
൑ 1.5

0     for
୦౭
୪౭
൐ 1.5

    

ASCE/SEI 43-05 adopted the work done by 
Barda et al. (1977), with modifications to 
extend its applicability. This equation is meant 
to predict the peak shear strength of walls with 
barbells or flanges, common in nuclear power 

plants, and applies to walls with 
௛ೢ
௟ೢ
൑ 2.0 and 

vertical and horizontal web reinforcement 
ratios ≤ 1%. If the reinforcement ratios exceed 
1%, the combined reinforcement ratio 𝜌௦௘  is 
limited to 1%. 

*All equations are in units of MPa, mm, and kN 
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Table A.2 – Existing wall shear strength models reported in the literature 

Model Database Comments 
Barda et al. (1977) 

𝑉௡ ൌ ቂ0.66ඥ𝑓௖ᇱ െ 0.21ඥ𝑓௖ᇱ
௛ೢ
௟ೢ
൅

௉ೠ
ସ௟ೢ௧ೢ

൅ 𝜌௩𝑓௬௩ቃ 𝑡௪𝑑  

 

 8 flanged walls 

 ௛ೢ
௟ೢ

 between 0.25 – 1.00 

 𝜌௕௘ between 1.8% - 6.4% 
 𝜌௪௛ and 𝜌௪௩ between 0.0% - 0.5% 

It is meant to predict the peak 
shear strength of walls in low-rise 
buildings. 

Wood (1990) 

0.5𝐴௖௩ඥ𝑓௖ᇱ ൑ 𝑉௡ ൌ
஺ೡ೑௙೤
ସ

൑ 0.83𝐴௖௩ඥ𝑓௖ᇱ  
𝐴௩௙𝑓௬ ൌ 2𝐴௕௘𝑓௬௕௘ ൅ 𝐴௪௩𝑓௬௪௩  
 

 143 squat walls reported to have failed 
in shear 

 ~105 barbell, ~20 flanged walls, and 
~18 rectangular cross-sections. 

 ெೠ

௏ೠ௟ೢ
൑ 2.0,  with 0.5 ൑

ெೠ

௏ೠ௟ೢ
൑ 1.0  for 

more than 75% of the test specimens. 

 0.7 ൑
௉ೠ
஺೒௙೎

ᇲ ൑ 0.18  for 18 specimens, 

and 
௉ೠ
஺೒௙೎

ᇲ ൌ 0 for the rest. 

The model does not consider the 
concrete and steel contributions 
as two different terms. Instead, it 
only uses the concrete 
contribution to define a lower and 
upper limit. 

Sánchez-Alejandre and Alcocer (2010) 

𝑉௡ ൌ ቆ൬𝛾𝜂௩ ൅ 0.04
௉ೠ
஺೒
൰ඥ𝑓௖ᇱ ൅ 𝜂௛𝜌௛𝑓௬௛ቇ𝐴௚  

𝛾 ൌ 0.42 െ 0.08
ெೠ

௏ೠ௟ೢ
   or   𝛾 ൌ 0.42 െ 0.08ሺ%𝑅௠௔௫ሻ 

𝜂௩ ൌ 0.75 ൅ 0.05𝜌௩𝑓௬௩  
𝜂௛ ൌ 1 െ 0.16𝜌௛𝑓௬௛ ൒ 0.20  
𝑅௠௔௫ = drift angle 

 80 rectangular walls with diagonal 
tension failure mode  

 Most of the walls have 
ெೠ

௏ೠ௟ೢ
൑ 1.0 

 Low web reinforcement ratios and axial 
loads. 

 Drift angles < 1%. 

The model depends on the 
amount of web reinforcement 
(hor. and ver.) that has reached 
plastic strains at a given drift 
angle (𝑅௠௔௫), and although the 𝛾 
factor depends on 𝑅௠௔௫ , it can 
also be expressed in terms of 
𝑀௨/ሺ𝑉௨𝑙௪ሻ.  

Gulec and Whittaker (2011) 

𝑉௡ ൌ

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

For rectangular walls:                                      

𝑉௥௘௖ ൑ 0.83ඥ𝑓௖ᇱ𝐴௖௩                                                

For barbell/flanged walls with 
஺೟
஺೎ೡ

൒ 1.25:

𝑉௕௘ ൑ 1.25ඥ𝑓௖ᇱ𝐴௚                                                   

For barbell/flanged walls with 
஺೟
஺೎ೡ

൏ 1.25:

𝑚𝑖𝑛ሺ𝑉௥௘௖ ,𝑉௕௘ሻ ൑ 10ඥ𝑓௖ᇱ𝐴௖௩                             

  

 

𝑉௥௘௖ ൌ
଴.଼ଷට௙೎

ᇲ஺೎ೡା଴.ଶହிೡೢା଴.ଶ଴ிೡ್೐ା଴.ସ଴௉ೠ

ට
೓ೢ
೗ೢ

  

𝑉௕௘ ൌ
଴.଴ସ௙೎ᇲ஺౛౜౜ା଴.ସ଴ிೡೢା଴.ଵହிೡ್೐ା଴.ଷହ௉ೠ

ට
೓ೢ
೗ೢ

  

 Cantilever walls 
 One database of 74 rectangular walls 
 Second database of 153 walls (79 

barbell walls and 74 flanged walls) 

 ௛ೢ
௟ೢ

 between 0.25 – 2.0  

 𝑓௖ᇱ between 13.7 –  51.0 MPa (2,000 – 
7,400 psi) 

 ௉ೠ
஺೟௙೎

ᇲ between 0 and 0.14 

 𝜌௪௛𝑓௬௪௛ between 0 – 5.8 MPa (835 psi) 
 𝜌௪௩𝑓௬௪௩ between 0 – 12.8 MPa (1,860 

psi) 
 𝜌௕௘∗𝑓௬௕௘ between 0 – 14.1 MPa (2,050 

psi) 

The model is based on a free-
body diagram of a low aspect 
ratio wall with an inclined (shear) 
crack. The boundary element 
reinforcement (𝜌௕௘∗) is calculated 
as 2𝐴௦,௕௘/𝐴௧ , where 𝐴௦,௕௘  is the 
area of vertical reinforcement in 
each BE. Specific parameters for 
this model are: 𝐹୴୵  = force 
attributed to vertical web 
reinforcement, and 𝐹୴ୠୣ  = force 
attributed to both BEs 
reinforcement. 

Carrillo and Alcocer (2013) 
𝑉௡ ൌ ൫𝛼ଵඥ𝑓௖ᇱ ൅ 𝜂௛𝜌௛𝑓௬௛൯𝐴௖௩ ൑ 𝛼ଶඥ𝑓௖ᇱ𝐴௖௩  

𝜂௛ ൌ ൜
0.8  𝑓𝑜𝑟 𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑 𝑏𝑎𝑟𝑠          
0.7  𝑓𝑜𝑟 𝑤𝑒𝑙𝑑𝑒𝑑 െ 𝑤𝑖𝑟𝑒 𝑚𝑒𝑠ℎ  

𝛼ଵ ൌ 0.21 െ 0.02 ቀ
ெೠ

௏ೠ௟ೢ
ቁ  

𝛼ଶ ൌ 0.40  

 39 walls from quasi-static and shake-
table tests. 

 ௛ೢ
௟ೢ
ൎ 0.5, 1.0, 2.0  

 Normal-weight, lightweight, and self-
consolidating concrete. 

 𝜌௪௛ and 𝜌௪௩ between 0.00% - 0.28% 
 𝜌௕௘ between 0.22% - 1.50% 

Meant to be used for walls in 
typical low-rise housing in Latin 
America (low concrete strength 
and wall thickness of ~4 in.)  

Kassem (2015) 
𝑉௡ ൌ 𝑣௡𝑡௪𝑑௪  
 
𝑣௡ ൌ

⎩
⎪
⎨

⎪
⎧

For rectangular walls:                                                     

0.44𝑓௖ᇱ ቂ𝜓𝑘௦𝑠𝑖𝑛ሺ2𝛼ሻ ൅ 0.10𝜔௛
௛ೢ
ௗೢ
൅ 0.30𝜔௩𝑐𝑜𝑡ሺ𝛼ሻቃ

For flanged walls:                                                              

0.67𝑓௖ᇱ ቂ𝜓𝑘௦𝑠𝑖𝑛ሺ2𝛼ሻ ൅ 0.16𝜔௛
௛ೢ
ௗೢ
൅ 1.74𝜔௩𝑐𝑜𝑡ሺ𝛼ሻቃ

  

 

𝜓 ൌ 0.95 െ
௙೎ᇲ

ଶହ଴
 ;   𝑘௦ ൌ

௔ೞ
ௗೢ

;   𝛼 ൌ 𝑡𝑎𝑛ିଵ ቀ
௛ೢ
ௗೢ
ቁ  

𝑑௪ ൌ 𝑑 െ
௔ೞ
ଷ

;   𝜔௛ ൌ
ఘ೓௙೤೓
௙೎
ᇲ ;   𝜔௩ ൌ

ఘೡ௙೤ೡ
௙೎
ᇲ  

𝑎௦ ൌ ቀ0.25 ൅ 0.85
௉ೠ

஺೎ೡ௙೎
ᇲቁ 𝑙௪   

 Cantilever walls 
287 rectangular walls 

 ௛ೢ
௟ೢ

 between 0.25 – 1.0 

 ௉ೠ
஺೒௙೎

ᇲ between 0.00 – 0.23 

 𝜌௪௛ between 0.00% - 1.61% 
 𝜌௪௩ between 0.00% - 2.87% 
 
358 flanged walls 

 ௛ೢ
௟ೢ

 between 0.21 – 1.60 

 ௉ೠ
஺೒௙೎

ᇲ between 0.00 – 0.34 

 𝜌௪௛ between 0.00% - 2.89% 
 𝜌௪௩ between 0.00% - 2.89% 
 

It is a mathematical equation 
based on the strut-and-tie model. 
Since flanged walls are more 
susceptible to diagonal 
compression failure than 
rectangular walls, two separate 
databases of rectangular and 
flanged walls were used to 
calibrate the equations. The 
equations are using the 
coefficients before including 
variations to account for safety 
factors. 
The length of compression zone 
( 𝑎௦ ) can be determined from 
sectional analysis instead. 

Looi and Su (2017) 
𝑉௡ ൌ 𝑣௡𝐴௚𝑓௖ᇱ  

 ~ 150 rectangular walls with shear and 
flexure-shear failure modes 

The proposed model is entirely 
based on a multi-parameter 
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௩೙
௙೎
ᇲ ൌ 0.034 ൅ 𝐴 ൬

௉ೠ
஺೒௙೎

ᇲ൰
ଵ.ଷ

൅ 𝐵𝜌௩
௙೤ೡ
௙೎
ᇲ ൅ 𝐶𝜌௛

௙೤೓
௙೎
ᇲ ൅

𝐷𝜌௕௘
௙೤್೐
௙೎೎
ᇲ ൑ 0.24  

𝑓௖௖ᇱ : confined concrete strength 

𝐴 ൌ 0.283 െ 0.084
ெೠ

௏ೠௗ
 ; 𝐵 ൌ 0.4 െ 0.15

ெೠ

௏ೠௗ
  

𝐶 ൌ 0.5 െ 0.2
ெೠ

௏ೠௗ
 ; 𝐷 ൌ െ0.08 ൅ 0.06

ெೠ

௏ೠௗ
 

 𝑓௖ᇱ between 15.7 – 70.3 MPa 

 ௉ೠ
஺೒௙೎

ᇲ between 0.00 – 0.40 

 ெೠ

௏ೠ௟ೢ
 between 0.4 – 2.6 

 𝜌௪௛ between 0.11% - 1.72% 
 𝜌௪௩ between 0.13% - 2.84% 
 𝜌௕௘ between 0.00% - 13.46% 

regression, with relevant 
parameters based on a literature 
review. 
The coefficients in the equation 
do not have units; therefore, they 
are the same no matter the set of 
units used as long as they are 
consistent. 

 

 

 

 

 

 

 

Table A.3 – Predictive RC wall shear strength models obtained with machine learning 

Chen et al. (2018) Moradi and Hariri-Ardebili (2019) Keshtegar et al. (2021) 
ANN-PSO (Artificial Neural Network 
implemented with Particle Swarm 
Optimization algorithm) with 1 hidden 
layer and 13 neurons 
 
 6 input variables 
ℎ௪/𝑙௪, 𝑃௨, 𝑓௖ᇱ, 𝐴௖௩, 𝜌௛𝑓௬, 𝜌௩𝑓௬ 

 
 
 
 
 Output variable 
𝑉௧௥௨௘  

 
 Database 
- 139 tests 
- 80% for training test and 20% for 

testing set 
- Rectangular walls 
- ℎ௪/𝑙௪ between 0.25 – 2.0 

- 
௉ೠ
஺೒௙೎

ᇲ between 0.0 – 0.35 

- 𝜌௛ between 0.0 – 1.96 % 
- 𝜌௩ between 0.0 – 2.93 % 

 
 Error indicator used in the training 
- Root mean square error (RMSE) 
- Coefficient of determination (𝑅ଶ) 

ANN with 13 input parameters, 1 hidden layer, 
and 10 neurons 
 
 
 
 13 input variables 
𝑃௨ , ℎ௪ , 𝑙௪ , 𝑡௪ , 𝑏௙ , 𝑡௙ , 𝜌௪௛ , 𝜌௪௩ , 𝑓௬ , 𝑓௖ᇱ , 
“vertical column reinforcement ratio”, and 
“horizontal column reinforcement ratio”. 

 
 
 Output variables 
𝑉௧௥௨௘, lateral in-plane stiffness, drift ratio 

 
 Database 
- 329 tests 
- 85% for training and 15% for testing set 
- 𝜌௪௛ between 0 – 6.69% 
- 𝜌௪௩ between 0 – 14.33% 
- “Horizontal column reinforcement ratio” 

between 0 – 6.69% 
- “Vertical column reinforcement ratio” 

between 0 – 14.33% 
- 𝑉௧௥௨௘ between 15.42 – 3,231kN 

 
 Error indicator used in the training 
- Mean square error (MSE) 

SVR-RSM (Support Vector Regression 
coupled with Response Surface Model) 
 
 
 
 15 input variables: 
𝑓௖ᇱ, 𝜌௪௛, 𝜌௩௪, 𝑓௬௪௛, 𝑓௬௪௩ , 𝑏௙, 𝑡௙ , 𝑡௪ , ℎ௪, ℎ௪/
𝑙௪ , 𝑃௨ , 𝐴௧௢௧ , “effective length of wall,” 
“longitudinal reinforcement ratio of flanges”, 
“yield strength of bars in flanges”. 

 
 Output variable: 
𝑉௧௥௨௘  

 
 Database 
- 208 tests 
- 70% for training test and 30% for testing set 

- 
௛ೢ
௟ೢ

 between 0.21 – 2.4 

- 𝜌௪௛ between 0.00% - 2.44% 
- 𝜌௪௩ between 0.00% - 2.90% 
- 𝑉௧௥௨௘ between 70 – 2,483kN 

 
 
 Error indicator used in the training 
- Root mean square error (RMSE)  

 




