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Abstract 

In pavement engineering, cement grouting material is widely used to pour into large void asphalt concrete to prepare 
semi-flexible composite mixtures. It plays an essential role in the performance of the semi-flexible composite mixture. 
To meet specific engineering requirements, various additives are mixed into the grouting material to improve the 
physical and mechanical properties. As a result, the uncertainty of the grouting material is also more significant as 
the complexity of material composition increases during the material design. It will bring some unknown risks for the 
engineering application. Hence, it is necessary to quantize the uncertainty during the material design of the grouting 
material and evaluate the reliability of the material formula. In this study, a novel framework of material design was 
developed by combing the Multioutput support vector machine (MSVM), Bayesian inference, and laboratory experi-
ments. The MSVM was used to approximate and characterize the complex and nonlinear relationship between the 
grouting material formula and its properties based on laboratory experiments. The Bayesian inference was adopted 
to deal with the uncertainty of material design using the Markov Chain Monte Carlo. An optimized formula of the 
cement grouting material is obtained based on the developed framework. Experimental results show that the opti-
mized formula improves engineering properties and performance stability, especially early strength. The developed 
framework provides a helpful, valuable, and promising tool for evaluating the reliability of the material design of the 
grouting material considering the uncertainty.

Keywords: Cement grouting material, Uncertainty, Optimization design, Bayesian inference, Multioutput support 
vector machine
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1 Introduction
In pavement engineering, cement grouting material is 
widely used to pour into large void asphalt concrete to 
prepare semi-flexible composite mixtures (Cai et  al., 
2019; Ren et  al., 2022a). The semi-flexible composite 

mixtures can significantly improve the rutting resist-
ance and bearing capacity of the pavement because of 
the existence of the cement grouting material (Hong 
et al., 2019; Zhang et al., 2020). Obviously, the cement 
grouting material plays an important role in the per-
formance of the semi-flexible composite mixture. Guo 
et  al. considered that the cement grouting material is 
the main factor influencing the performance of semi-
flexible composite mixture (Guo & Hao, 2021). To 
meet various functional requirements of the semi-flex-
ible composite mixture, the grouting material should 
provide various properties of high-fluidization, early 
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strength, and low-shrinkage (Hu et  al., 2008). Hence, 
many different additives such as the expansion agent, 
accelerating agent, water-reducing agent, and early 
strength agent are mixed with cement and water to 
prepare the cement grouting material (Li & Hao, 2018; 
Zhang et  al., 2017). Although these additives can sig-
nificantly improve the engineering properties of the 
grouting material, the nonuniformity of physical spatial 
distribution and the uncertainty of hydration reaction 
degree is more significant as the complexity of material 
composition increases (Su & Miao, 2003). It is inevita-
ble to affect the performance of the grouting material. 
As a result, a frequent case is that there is performance 
fluctuation of the grouting material, although the raw 
materials, formula, experimental conditions, and 
operating personnel are all the same, which will bring 
unknown risk in engineering application (Ren et  al., 
2021a, 2021b, 2022b; Zhao, 2022; Zhao et  al., 2021a, 
2021b, 2021c). The performance fluctuation results 
from the uncertainty mentioned above during material 
design (Ren et al., 2020). It is necessary to quantize the 
uncertainty during the material design of the grouting 
material and evaluate the reliability of the material for-
mula to reduce the potential engineering risk.

The uncertainty is an essential attribute of engineer-
ing materials and influences the properties and perfor-
mance of engineering materials (Nahvi et  al., 2018; Ni 
et  al., 2022; Zhao et  al., 2021a, 2021b). The uncertainty 
analysis of cement materials has been paid more atten-
tion in the past decade. Venkovic et  al. (2013) investi-
gated the uncertainty of elastic modulus, Biot–Willis 
parameter, and skeleton Biot modulus on the vulnerabil-
ity of concrete structure at early age based on the poly-
nomial chaos expansions. Tsamatsoulis and Nikolakakos 
(2013) analyzed the strength variability of cement grout-
ing material caused by cement composition and curing 
time using a variance analysis based on the error propa-
gation technique. Kim et  al. (2020) evaluated the effect 
of the uncertainty of the porosity and pore continuity on 
the stiffness and thermal conductivity of cement grouting 
material using the first-order second-moment method. 
Zhu et al. (2021) studied the uncertainty of cement frac-
tion in the binder and the binder concentration resulting 
from mixing binder slurry with in situ clays in the cement 
stabilized soil using Monte Carlo simulations. Jones et al. 
(2021) investigated the unknowns in the cement paste 
degradation process and the cost of uncertainty quan-
tification based on a minimally complex model. Miller 
(2021) addressed the uncertainty analysis of concrete 
production on environmental pollution using the Monte 
Carlo method. These studies contribute considerably 
to improving our understanding of the uncertainty of 
cement-based materials.

However, the existing studies mainly focused on the 
uncertainty of the durability and mechanical properties of 
engineering materials. There is no related discussion on 
the uncertainty evaluation and quantification for material 
design, especially for the cement grouting material—a 
complex material composed of various components. The 
objective of this study is to establish a framework to real-
ize the uncertainty evaluation and quantification during 
material design to optimized the formula of the cement 
grouting material.

With probabilistic methods and machine learning 
development (Nahvi et al., 2018; Pham et al., 2020), the 
Bayesian theory and support vector machine has been 
widely applied in various engineering fields. The Bayes-
ian theory is a useful tool to quantify the uncertainty, 
because it is able to determine a complete estimation of 
the posterior probability density function of unknown 
parameters (Doh & Lee, 2018; Markus et al., 2019). An 
alternative approach was developed to explore param-
eter space and compute Bayesian evidence based on 
Bayesian inference and Nested Sampling (Vigliotti 
et  al., 2018). Bayesian inference was combined with a 
support vector machine to update the geomechani-
cal parameters and determine their uncertainty based 
on field monitoring (Zhao et  al., 2021b). Thomas et  al. 
(2022) presented a Bayesian methodology to infer the 
elastic modulus of the constituent polymer and the fiber 
orientation state in a short-fiber reinforced polymer 
composite. Based on the experimental design process, 
a machine learning technique based on Bayesian infer-
ence was developed to predict the optimum strength 
gain in sustainable geomaterials (Jong et  al., 2022). A 
probabilistic method was developed to quantify the 
uncertainty of the mechanical behavior of rockbolts 
based on the Bayesian method (Zhang et al., 2022). Sup-
port vector machine has been a commonly used sur-
rogated model which is conducive to avoid the costly 
computation of the engineering system to improve 
efficiency in uncertainty analysis. However, the tradi-
tional support vector machine has only one output, 
which hinders its application in practical engineering 
problems. The traditional support vector machine is 
unsuitable for material design problems that deal with 
multiple outputs. This limitation increases the compu-
tation time required and introduces errors, because the 
correlation between different outputs is not considered. 
Fortunately, Multi-output support vector machines 
(MSVM) can overcome the above shortcomings and 
consider the relationship between outputs (Tuia et  al., 
2011). MSVM regression was applied to estimate the 
biophysical parameter based on the remote sensing data 
(Tuia et  al., 2011). An MSVM-based surrogated model 
was developed to evaluate the geomaterial mechanical 
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parameters and their uncertainty (Li et  al., 2016). 
MSVM was utilized to replace the numerical model to 
improve the efficiency of inverse analysis in geotechni-
cal engineering (Zhao & Yin, 2016). Zhou et  al. (2019) 
explored a novel framework by combining the MSVM 
and the Multi-Task Learning algorithm to improve the 
effectiveness and the accuracy of regional multi-step-
ahead PM2.5 forecasting. Lu et  al. (2020) developed a 
novel framework to predict wind power output from 
multiple wind farms based on MSVM and grey wolf.

The Bayesian inference is a fundamental way of com-
bining uncertain and observational data (experimental 
data) with models from different sources and quantify-
ing uncertain information about the obtained model. 
Bayesian inferences enable the combination of uncertain 
and incomplete information (observational data) with 
models from different sources and provide probabilistic 
information about the accuracy of the material design 
model. The MSVM, an excellent machine learning, not 
only characterizes the relationship between input and the 
multi-outputs but also deals with the correlation between 
different outputs. In this study, the Bayesian inference 
was employed to quantify the uncertainty during mate-
rial design of the cement grouting material. To charac-
terize the relationship between the formula of cement 
grouting material and their properties, the MSVM was 
used to approximate the complex and nonlinear function 
based on the design of laboratory experiments. Based 
on this, a novel framework was developed to evaluate 
the uncertainty during material design by combing the 
MSVM, Bayesian inference, and laboratory experiments, 
as illustrated in Fig. 1.

2  Materials and Methods
2.1  Materials
Shanlv P. O. 42.5R cement, accelerating agent, early 
strength water-reducing agent, and UEA expansion 
agent, are adopted to prepare the grouting material 
in this study. Their basic properties are presented in 
Tables 1, 2, 3, and 4, respectively. The sample preparation 
process of the grouting material is illustrated in Fig. 2.

2.2  Bayesian Inference
As previously mentioned, the properties of the cement 
grouting material are uncertain because of the uncer-
tainty of the hydration reaction and spatial distribu-
tion of the components. The joint probability density 
function (PDF) is adopted to characterize the uncer-
tain parameters, regarded as random variables X. The 
property information of the cement grouting material 
was obtained on the different formulas by laboratory 
experiments. When the cement grouting material uses 
a new formula, and the related properties are available, 

these can be useful to modify the formula to improve 
the material performance. The well-known Bayes’s rule 
enables one to update the formula based on the prop-
erties of the material. The updating model can be pre-
sented as follows:

where p(θ) is the prior statistical properties of the mate-
rial formula, which denotes the initial information of the 
unknown parameters θ before obtaining the new infor-
mation. L(y|θ) denotes the likelihood function, which is 
the knowledge obtained based on some tests or obser-
vations (laboratory data (y) on the formula of the mate-
rials (θ)). p(y) denotes the model evidence and can be 
obtained using p(y) =

∫

L
(

y|θ
)

p(θ)dθ , which is generally 
a normalizing constant. p(θ |y) is the posterior statistical 
information of the material formula updated by labora-
tory data which synthesizes both the subjective estima-
tion and the observed information.

When performing Bayesian inferences, the full poste-
rior joint distribution needs to be computed over a set 
of random variables. This study aimed to determine the 
material formula based on the test information of the 
input variables. Assuming that the observed data are 
conditionally independent given θ, the following equa-
tion can determine the posterior updating information:

where y denotes the updated component. In practice, it 
is difficult to calculate the intractable integrals due to the 
complexity and high dimensionality of p

(

y|θ
)

 or p
(

θ |y
)

 , 
and it is impossible to obtain an analytical solution 
for the integral. In this case, we proceed with sampling 
techniques based on the Markov Chain Monte Carlo 
(MCMC) method.

The MCMC approach is a powerful technology to 
approximate the integration (Eq.  2) by combining the 
Monte Carlo integration and Markov chains. A Markov 
chain is a sequential random model of transition from 
one state to another, in which the next state of the chain 
is based on the previous state. Samples are taken from 
distributions using Markov chains whose integral pur-
pose is to perform the approximation completed by 
Monte Carlo integrals. The Markov chain eventually con-
verges to a posterior distribution p

(

θ |y
)

 . This study used 
the Metropolis–Hastings (MH) algorithm to simulate 
samples from a probability distribution based on prior 
distributions and full joint density function for each vari-
able. The procedure of the MH algorithm is presented 
in Fig. 3. More details can refer to Lynch’s study (Lynch, 

(1)p(θ |y) =
L(y|θ)p(θ)

p(y)

(2)p
(

ȳ|y
)

=

∫

θ

p
(

ȳ|θ
)

p
(

θ |y
)

dθ
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2007). The detailed procedure of the MH algorithm is as 
follows:

• Step 1: Initialize the sample value for each uncer-
tainty variable;

• Step 2: Compute a proposal sample based on the pro-
posal distribution;

Formula and its uncertainty

Design of experiment Laboratory test Dataset

Generate the dataset and samples

Surrogate model
y=f(x)

BayesianSVM

Uncertainty-based formula design

Fig. 1 Framework of the developed method

Table 1 Basic properties of the cement

Stability Setting time (min) Flexural strength (MPa) Compressive strength 
(MPa)

Initial Permanent 3 days 28 days 3 days 28 days

Qualification 170 210 5.7 8.9 30.0 53.6
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• Step 3: Determine the acceptance probability accord-
ing to the acceptance function based on the full joint 
density;

• Step 4: Accept or reject the candidate samples 
according to the acceptance probability; and

• Step 5: If the sample number meets, it ends, or else 
Go to Step 2.

2.3  Multioutput Support Vector Machine (MSVM)
Suppose the observable output is a vector to be predicted 
with a Q variable, i.e., y ∈  RQ, a multidimensional approxi-
mation problem needs to be determined via solving the 
weight vector wj and bj (j = 1, 2,…, Q) for every output. 
The multi-output support vector machine is introduced 
by Tuia et al. (2011) to solve the above multidimensional 
case, as expressed in the following equation:

where W denotes a vector [W1,…, WQ], b denotes a vec-
tor [b1, …, bQ], C, which is a constant, denotes the penalty 
factor and must be larger than zero, ui is the approxima-
tion error:

(3)LP(W,b) =
1

2

Q
∑

j=1

∥

∥

∥
W

j
∥

∥

∥

2

+ C

N
∑

i=1

L(ui)

Table 2 Basic properties of the water reducing agent

Water reduction (%) Density (g/cm3) Chloride ion content (%) Alkali content (%) Bleeding rate (%) Compressive 
strength ratio (%)

7 days 28 days

21.2 1.031 0.21 3.5 30 150 135

Table 3 Basic properties of the accelerating agent

Setting time (min) Fineness 
(%)

Water 
content 
(%)

28d 
compressive 
strength 
ratio (%)

Initial 
setting

Permanent 
Setting

2–3 8–10 11.6 1.7 75

Table 4 Basic properties of the expansion agent

Chemical composition Fineness

Magnesium oxide 
(%)

Water content (%) Total alkali content 
(%)

Chloride ion (%) Specific surface 
area  (m2 ×  kg−1)

0.08 mmmaterial 
retained (%)

1.25 mmmaterial 
retained (%)

2.661 0.80 0.15 0.01 333 7.0 0.31

Fig. 2 Sample preparation process

Initialize the sample value for each random 

Generate proposal samples form the proposal distribution

Compute the acceptance probability via the 
acceptance function based on the proposal 

Accept or reject the candidate samples based on the 

Meet the samples number
No

End

Yes

Fig. 3 Procedure of the Bayesian inference
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where ε denotes the accuracy of MSVM regression, yi is 
the ith sample output, and φ(xi) is the feature function 
presented using kernel function later. The optimization 
problem is solved by an iterative reweighted least-squares 
(IRWLS) algorithm, and each iteration (t) depends on the 
previous solution (Wt and bt) until the optimal solution is 
obtained. A first-order Taylor expansion of L(u) over the 
previous solution is used to construct the IRWLS proce-
dure for approximating Eq. 3 in the following form:

where

where τ denotes a sum of constant terms, which is inde-
pendent on either W or b and presents the same value 
and their gradient as Lp(W,b) for W = Wk and b = bk. 
It shows that the optimization problem (Eq.  12) is a 
weighted least squares problem in which the weights 
depend on the previous solutions and contain knowl-
edge of all components of each yi. Once Wk and bk are 
determined, the optimization problem corresponding 
to Lp(W,b) can be transformed into finding the optimal 
solution of L’’

p(W,b). The following equations can be 
obtained based on the representer theorem (Schölkopf & 
Smola, 2002) and SVM theory:

where K denoted the kernel matrix, 1 is an all-one col-
umn vector, and δ is the Dirac function.
Ws and bs will be determined by solving Eq.  8. To 

determine Wt+1 and bt+1, a descending direction Pt is 
established as expressed in Eqs. 9 and 10:

(4)ui = �ei�,ei=yi − φ(xi)W − b

(5)L(u) =

{

0 u < ε

u
2 − 2uε + ε2 u ≥ ε

(6)

LP(W,b) ≈ L′′P(W,b) =
1

2

Q
∑

j=1

∥

∥

∥
W

j
∥

∥

∥

2

+
1

2

1
∑

i=1

aiu
2
i + τ

(7)ai =







0 u
k
i
< ε

2C

�

u
k
i
− ε

�

u
k
i

u
k
i
≥ ε

(8)































�

K +D−1
a 1

aTK 1T

��

β j

bj

�

=

�

yj

aTyj

�

�

j = 1, 2, · · · , k
�

K = K (xi, xj)

Da = aiδ(i − j)

yj = [y
j
i, · · · , y

j
N ]

where ηt is determined based on a back-tracking algo-
rithm by initializing ηt = 1:

where ξ denotes a constant and is less than 1. Fig. 4 lists 
the detailed flowchart of the MSVM. The followings are 
the procedures of the MSVM algorithm.

• Step 1: Initialization t, Wt, bt.
• Step 2: Determine ui and ai based on Eqs. 4 and 7.
• Step 3: Compute Ws and bs using Eq. 8.
• Step 4: Set ηt = 1, compute the descending direction 

using Eq. 10.
• Step 5: Obtain the next step solution using Eq. 9.
• Step 6: If Lp(Wt+1,bt+1) > Lp(Wt,bt) then set ηt = ξηt, 

and Go to Step 5.
• Step 7: If ||ui

t|| or t meets the convergence condition, 
then End, Else Set t = t + 1, Go to Step 2.

3  Laboratory Experiment
In this study, the orthogonal experiment method  (Ren 
et  al., 2019) is adopted to determine the target cement 
grouting material. Four test factors (water–cement ratio, 
content of expansion agent, content of water reducing 
agent, and content of accelerating agent) are determined 
for the orthogonal experiments in this study. Four test 
levels are selected for each test factor. Considering the 
recommended content of the water reducing agent, accel-
erating agent, and expansion agent by the manufacturers 
are 1.2–1.4%, 2.0–2.5%, and 7.0–8.0%, respectively, the 
test levels of the three additives are determined to ‘1.0–
1.2–1.4–1.6%’, ‘1.5–2.0–2.5–3.0%’, and ‘6.0–7.0–8.0–9.0%’. 
Moreover, to determine the test level of water–cement 
ratio and balance the time cost, laboratory tests listed in 
Table  5 are implemented. Owing to the fluidity criteria 
of the cement grouting material being 9–13  s (CAECS, 
2019), the test level of the water–cement ratio is deter-
mined to ‘0.50–0.53–0.56–0.60’.

Table  6 presents the scheme generated by orthogonal 
experimental design. The fluidity, flexural and compres-
sion strength (1 day, 3 days, and 7 days), and shrink-
age rate (7 days and 28 days) were tested to investigate 

(9)
[

Wt+1

(

bt+1
)T

]

=

[

Wt

(

bt
)T

]

+ ηtPt

(10)Pt =

[

Ws −Wt

(

bs − bt
)T

]

(11)ηt = ξηt
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physical and mechanical properties of the grouting mate-
rials. All the tests are implemented following the Chinese 
specification (MTPPC, 2020). The average values of test 
results are listed in Table 7. Six samples are successfully 

experimented for each condition, and all the data are 
used for the uncertainty analysis.

It should be explained that the analysis process of for-
mula determination is complex in the orthogonal experi-
mental method, which can be found in our previous study 
(Ren et al., 2021a, 2021b) and not described in this paper. 
The formula determined by the orthogonal experimental 
method is listed in Table  8. The engineering properties 
of the proposed formula are presented in Table  9. O-1 
and O-2 are the two optimized formulas of the cement 
grouting material based on the orthogonal experimental 
method. The optimized criteria for the proposed formula 
are according to the Chinese standard (CAECS, 2019), as 
shown in Table 9. The fluidity must range from 9 to 13 s. 
As far as the flexural and compressive strength is con-
cerned, the higher the better. The shrinkage rate should 
be lower than 0.5%.

Initialization: Set t = 0, Wt = 0, bt = 0 

Compute ut
i and ai using Eq. 4 and Eq. 7 

Compute Ws and bs using Eq. 8 

Compute the descending direction using Eq. 10 and set ηt = 1 

Obtained the next step solution using Eq. 9 

Compute Lp(Wt+1,bt+1) and Lp(Wt,bt) 

Lp(Wt+1,bt+1) ≤ Lp(Wt,bt) 

Compute ||ui
t|| 

||ui
t|| or t meets the 

convergence condition 

Set ηt = ξηt (ξ<1) 
No 

Yes 

Set t = t + 1 
No 

End 

Yes 

Fig. 4 Procedure of the MSVM

Table 5 Laboratory test for determining test level of water–
cement ratio

Water–
cement 
ratio

Expansion 
agent (%)

Water 
reducing 
agent (%)

Accelerating 
agent (%)

Fluidity (s)

0.45 7.5 1.3 2.25 22.7

0.50 15.3

0.55 12.1

0.60 9.7

0.65 6.9
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4  Uncertainty Analysis of Material Design
4.1  Process
In this study, a novel framework was developed to eval-
uate the certainty of the cement grouting material by 
combing the Bayesian inference, MSVM, and laboratory 
experiments. The laboratory experiment (orthogonal 

experiments used in this study) was used to obtain the 
combination of the material component based on the 
material formula to generate the data set for the MSVM. 
The MSVM was adopted to approximate the complex 
and nonlinear function between the material formula and 
the related properties based on the data set. Finally, the 
Bayesian inference was used to obtain the rational for-
mula of civil material based on the code requirement by 
considering the uncertainty.

The detailed process of the developed method is as fol-
lows, as shown in Fig. 5.

• Collect the engineering and code requirements, such 
as the raw materials, formula theory, experimental 
method, performance standard, etc.

• Implement the laboratory experiments of the cement 
grouting material according to experimental design, 
and establish the data set composed with laboratory 
data.

• Obtain the surrogate model based on the data set 
using the MSVM.

Table 6 Test scheme based on experimental design

No. Water–
cement 
ratio

Expansion 
agent (%)

Water 
reducing 
agent 
(%)

Accelerating 
agent (%)

Orthogonal 
combination

1 0.50 6.0 1.0 1.5 A1B1C1D1

2 0.50 7.0 1.2 2.0 A1B2C2D2

3 0.50 8.0 1.4 2.5 A1B3C3D3

4 0.50 9.0 1.6 3.0 A1B4C4D4

5 0.53 8.0 1.0 2.0 A2B3C1D2

6 0.53 9.0 1.2 1.5 A2B4C2D1

7 0.53 6.0 1.4 3.0 A2B1C3D4

8 0.53 7.0 1.6 2.5 A2B2C4D3

9 0.56 9.0 1.0 2.5 A3B4C1D3

10 0.56 8.0 1.2 3.0 A3B3C2D4

11 0.56 7.0 1.4 1.5 A3B2C3D1

12 0.56 6.0 1.6 2.0 A3B1C4D2

13 0.60 7.0 1.0 3.0 A4B2C1D4

14 0.60 6.0 1.2 2.5 A4B1C2D3

15 0.60 9.0 1.4 2.0 A4B4C3D2

16 0.60 8.0 1.6 1.5 A4B3C4D1

Table 7 Result based on the test scheme (Ren et al., 2021a, 2021b)

No. Fluidity (s) Flexural strength (MPa) Compressive strength (MPa) Shrinkage rate (%)

1 day 3 days 7 days 1 day 3 days 7 days 7 days 28 days

1 14.1 2.5 9.1 13.0 10.3 29.0 40.0 0.047 0.138

2 14.7 2.6 9.4 11.6 10.9 29.3 38.6 0.038 0.133

3 17.5 2.8 9.7 12.6 12.7 30.1 39.0 0.030 0.127

4 20.0 2.9 10.0 13.7 12.6 30.4 43.9 0.024 0.121

5 12.8 2.7 8.6 10.7 11.1 27.6 34.9 0.035 0.117

6 13.1 2.6 7.8 10.7 9.6 26.2 35.7 0.027 0.111

7 14.7 3.1 8.9 11.6 12.1 28.6 36.0 0.041 0.139

8 14.3 2.8 8.2 11.3 10.1 27.3 37.0 0.030 0.126

9 9.2 3.1 8.1 10.9 11.0 26.2 34.9 0.021 0.101

10 10.8 3.4 8.2 10.0 10.5 26.7 34.4 0.017 0.107

11 11.1 2.8 7.2 9.1 9.3 25.7 31.4 0.022 0.112

12 11.8 2.9 7.3 10.0 9.4 26.0 35.4 0.031 0.119

13 8.8 2.7 6.2 8.2 9.0 21.8 28.8 0.027 0.109

14 10.0 2.3 5.5 7.1 7.3 21.8 28.7 0.026 0.106

15 9.9 2.2 5.3 6.9 6.1 20.7 26.5 0.010 0.096

16 10.5 2.0 5.0 6.5 5.7 20.7 27.4 0.008 0.096

Table 8 Formula of the cement grouting material based on the 
orthogonal method

No. Water–
cement ratio

Water reducing 
agent (%)

Accelerating 
agent (%)

Expansion 
agent (%)

O-1 0.53 1.0 2.0 9.0

O-2 0.56 1.2 2.5 8.0
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• Call the Bayesian inference and obtain the uncer-
tainty evaluation based on the code requirement.

4.2  Results and Discussion
Once obtained the data sets (Tables 6 and 7), the MSVM 
algorithm was built using the algorithm introduced in 
Sect. 2.3. The predicted properties of the MSVM model 
are shown in Fig.  6. It implies that the MSVM model 
characterizes the physical and mechanical properties well 
using the data sets obtained based on laboratory experi-
ments. The MSVM model can be regarded as a surrogate 
model which replaces the costly and time-consuming.

When the surrogate model was obtained via the 
MSVM (Fig.  5), the Bayesian inference was utilized 
to analyze the uncertainty of the data sets (laboratory 
experiments). In this study, the Markov Chain Monte 
Carlo (MCMC) method was selected to implement the 
Bayesian inference. Fig. 7 shows the MCMC of the test 

factors using the Bayesian inference process. Owing to 
the parameters of the MCMC method tend to be gener-
ated in the interval which is more likely to obtain tar-
get output values (i.e., the expected properties in this 
study) based on the surrogate model, the possibility 
that obtains acceptable properties is larger when the 
frequencies of the design factors reach a high level. For 
the proposed cement grouting material in this study, 
the target output values are that: the fluidity ranges 
from 9 to 13 s, the 1-day and 3-day strength are as high 
as possible, the 7-day flexible and compressive strength 
are higher than 2 MPa and 30 MPa, and the shrinkage 
rate is lower than 0.5%, according to the standard in the 
Chinese specification ‘Technical Specification for Road 
Semi-Flexible Pavement’ (CAECS, 2019).

When a series of design factors with a high frequency 
are selected to constitute the formula, the prepared 
cement grouting material is more likely to provide a 
better performance and is not easy to appear perfor-
mance fluctuation. Selecting a design factor with a low 
frequency will cause an increased possibility of subop-
timal performance appearing. In other words, perfor-
mance fluctuation will tend to appear in the formula 
containing the design factor with a low frequency. For 
instance, water–cement ratio and accelerating agent 
content are the critical factors for the early strength of 
the cement grouting material (Ren et al., 2021a, 2021b). 
Compared with the O-1 and O-2 (see Table  9), the 
frequencies when the accelerating agent content and 
water–cement ratio are equal to 2.5% and 0.56 for the 
O-2 are higher than the frequencies when the accelerat-
ing agent content and water–cement ratio are equal to 
2.0% and 0.53 for the O-1, respectively. As a result, the 
1-day strength of the O-2 is higher than the O-1. How-
ever, from a view of the frequency, the optimal content 
of the water reducing agent and the accelerating agent 
is not equal to the formula O-1 and O-2. To determine 
the optimal formula based on the uncertainty analysis, 
Fig. 8 plots the probability of each design factor via the 
Markov Chain shown in Fig. 7.

According to Fig.  8, the design factors correspond-
ing to the highest probability are selected to consti-
tute the formula (UF), as shown in Table 10. Moreover, 
Table  11 and Fig.  9 presents the properties and the 

Table 9 Engineering properties of the proposed formula

No. Fluidity (s) Flexural strength (MPa) Compressive strength (MPa) Shrinkage rate (%)

1 day 3 days 7 days 1 day 3 days 7 days 7 days 28 days

O-1 12.9 2.7 8.4 11.1 10.8 27.1 35.9 0.018 0.121

O-2 10.4 3.4 8.2 10.7 10.9 26.0 34.4 0.021 0.108

Requirement 9–13 – –  ≥ 2 – –  ≥ 10 –  < 0.5

Fig. 5 Flowchart of the developed method
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corresponding coefficient of variations of the cement 
grouting material with the orthogonal-based formula 
(O-1 and O-2) and the uncertainty-based formula (UF) 
via laboratory experiments. The performance standard 
of cement grouting material is from the Chinese speci-
fication ‘Technical Specification for Road Semi-Flexible 
Pavement’ (CAECS, 2019). The coefficient of variation 
(CV) can be calculated via Eq. (12):

where σ is the standard deviation and μ is the average 
value.

As shown in Table 11 and Fig. 9, it can be found that 
the strengths of the UF at different curing ages are 

(12)CV = σ/µ× 100%

higher than the O-1 and O-2, especially for the early 
strength. The flexural and compressive strength at dif-
ferent curing ages is on average 1.16 and 1.12 times 
higher than the O-1 and O-2, respectively. The 1-day 
flexural and compressive strength is 1.27 and 1.17 times 
higher than the O-1 and O-2, respectively. It shows that 
the formula UF can provide improved strength. Moreo-
ver, the CVs of the flexural and compressive strength 
of the formula UF at different curing ages on average 
decrease 29.6% and 28.2%, respectively, compared to 
the O-1 and O-2, implying that the formula UF has bet-
ter performance stability. Moreover, due to the fluidity 
being tested before the curing and is less affected by the 
uncertainty of hydration reaction, the water–cement 

Fig. 6 Predicted performance of the proposed model
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ratio is the most important factor for the fluidity. As 
shown in Fig.  7, the water–cement ratio has the high-
est probability when it is equal to 0.56. Hence, the flu-
idity of the UF is similar to the O-2 and is 17.8% lower 
than the O-1, because the water–cement ratio of the UF 
and O-2 both are 0.56, while the water–cement ratio 
of the O-1 is 0.53. The above proves the worth of the 
uncertainty inspection for material design using the 
proposed method in this study. In addition, the differ-
ence in the 7-day shrinkage rate of the O-1, O-2, and 
UF is very limited, because the contents of the expan-
sion agent in the three formulas all reach a high level 
(> 8.0%). The difference in the 28-day shrinkage rate of 
the three formulas may be originated from experimen-
tal error, because the test results of shrinkage rate usu-
ally have a high divergence. In the Chinese test standard 
(MTPPC, 2020), the allowable test error of shrinkage 
rate is 15%, which is higher than the difference in the 
28-day shrinkage rate of the three formulas.

5  Summary and Conclusions
In this study, design optimization of the cement grout-
ing material used in semi-flexible composite mixture is 
implemented based on the uncertainty analysis by com-
bining the Multioutput support vector machine (MSVM), 

Bayesian inference, and experimental tests. The following 
specific conclusions were drawn from the results.

• The surrogate model based on the MSVM was 
employed to construct the complex and nonlin-
ear relationship between the properties of cement 
grouting material and its formulas, which was in 
good agreement with the laboratory experiment 
results. It provided an effective way to improve the 
efficiency of material design.

• The Bayesian inference with the Markov Chain 
Monte Carlo method is used to obtain the probabil-
ity of different design factors to evaluate the uncer-
tainty during material design.

• An optimized formula of the cement grouting 
material is proposed based on the uncertainty anal-
ysis to provide improve performance and stability. 
Composed to the formula determined by tradi-
tional orthogonal design method, the early strength 
in the case of using the proposed optimized for-
mula improves 1.17–1.27 times, while the coeffi-
cient of variable decreases nearly 30%.

The developed novel framework provides a help-
ful, valuable, and promising tool for evaluating the 

Fig. 7 Markov Chain of different design factors
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Fig. 8 Probability of different design factors

Table 10 Formulas of the cement grouting material based on different methods

a Owing to the lowest content of water reducing agent is 1.0% in the laboratory experiments, the content of water reducing agent is selected as 1.0% rather than 
0.93%

No. Water–cement ratio Water reducing agent (%) Accelerating agent (%) Expansion agent (%)

O-1 0.53 1.0 2.0 9.0

O-2 0.56 1.2 2.5 8.0

UF 0.56 1.0a 2.3 9.0

Table 11 Properties (PV) and coefficient of variation (CV) of different formulas

Type Fluidity Flexural strength Compressive strength Shrinkage rate

1 day 3 days 7 days 1 day 3 days 7 days 7 days 28 days

O-1

 PV 12.9 s 2.7 MPa 8.4 MPa 11.1 MPa 10.8 MPa 27.1 MPa 35.9 MPa 0.018% 0.121%

 CV 8.1% 11.1% 8.8% 6.9% 8.7% 6.6% 5.1% 9.7% 6.7%

O-2

 PV 10.4 s 3.4 MPa 8.2 MPa 10.7 MPa 10.9 MPa 26.0 MPa 34.4 MPa 0.021% 0.108%

 CV 7.6% 10.9% 8.3% 7.0% 8.3% 6.1% 5.4% 9.0% 7.1%

UF

 PV 10.6 s 3.9 MPa 9.7 MPa 12.1 MPa 12.1 MPa 28.9 MPa 38.1 MPa 0.018% 0.109%

 CV 7.7% 7.1% 6.2% 5.3% 4.6% 4.6% 4.7% 9.1% 6.1%



Page 13 of 15Ren et al. Int J Concr Struct Mater           (2022) 16:68  

reliability of material design of the cement grouting 
material considering the uncertainty. It is beneficial to 
alleviate the uncertainty effect during material design 
and reduce the potential risk in engineering.
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