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Abstract 

The correlation between surface electrical resistivity and modulus of elasticity of fiber-reinforced concrete (FRC) was 
studied within early ages in this study as a novel nondestructive method for predicting the modulus of elasticity of 
FRC. In addition to the relationship of the two quantities, the influence of various discrete fibers such as glass, nylon, 
polypropylene, and steel on the early age properties of FRC was investigated. Twenty-one FRC mixes were designed 
and tested; including four fiber types, three different fiber volume fractions for each fiber type, and three different 
water-to-cement ratios for all the different mixes. The surface electrical resistivity meter and resonance testing gauge 
were used to measure each specimen’s surface electrical resistivity and modulus of elasticity. Early-age dynamic mod-
ulus of FRC may be predicted using the mechanical properties and dimension of the fiber, according to proposed 
mathematical calculations. Statistical analysis was performed on the experimental results and the results acquired by 
the proposed equations, to examine and proof the accuracy of the proposed equations. The acceptable coefficient of 
variation of 5–9 percent confirmed the good agreement between the measured and predicted values.
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1 Introduction
The elastic modulus of concrete is a critical quantity in 
the design of concrete structures because it affects both 
early-age and long-term deformations of structural mem-
bers. When members are designed to be loaded at dif-
ferent ages, the modulus of elasticity must be calculated 
precisely to ensure the structural integrity (Suksawang 
et  al., 2018). Structural members that must be built 
using rapid construction methods are loaded early in the 
construction process. As a result, a successful design is 
contingent on the accuracy of the assumed properties 
of materials at early ages. For example, in the cantilever 
construction method for prestressed bridge decks, where 

each new segment is installed on the previous recently 
installed segment and members are loaded at an early 
stage, an in-depth understanding of material character-
istics is required at the initial stage to protect the struc-
ture from deformations. The early age is typically defined 
as the first 3–8 h or a few days following the casting of 
concrete (Kayondo et al., 2019). The amount of hydration 
achieved during this period determines the elastic mod-
ulus and mechanical properties of concrete which can 
be influenced by a variety of factors, including cement 
microstructure, specimen shape, mixture proportions, 
w/c ratio, fiber and additive inclusion, coarse aggregate 
vs. fine aggregate ratio, concrete age, and curing con-
ditions (Chavhan & Vyawahare, 2015; Safiuddin et  al., 
2018). The elastic modulus of concrete can be deter-
mined empirically or calculated using a formula from 
various codes such as ACI 318 for plain concrete (Lee 
et al., 2015; Suksawang et al., 2018).
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Fiber-reinforced concrete (FRC) is a widely used con-
struction material that has a reputation for limiting 
the development and propagation of cracks due to its 
increased ductility and stiffness. ASTM C1116 classifies 
fiber-reinforced concrete (FRC) into four types based on 
the type of fiber used: steel, glass, synthetic, and natural 
fiber-reinforced concrete (American Society for Testing 
Materials, 2015a). The physical, chemical, and mechani-
cal characteristics of fiber determine the mechanical 
properties of each form of FRC. The major properties 
that influence the performance of FRC include fiber type, 
dimensions, volume fractions, fiber–matrix bonds, elas-
tic modulus, tensile strength, and chemical proper-
ties of concrete mixture (Dopko, 2018). Several studies 
have been carried out to predict the elastic modulus of 
FRC with different fiber types (Aslani & Natoori, 2013; 
Aslani & Samali, 2014; Ayub et  al., 2016). FRC’s elastic 
modulus has been shown to vary depending on the w/c 
ratio, coarse-to-fine aggregate ratio, fiber type, diameter, 
length, and volume fraction (Skazlić & Bjegović, 2009; 
Wtaife et al., 2018). However, the published experimental 
results and associated equations were unable to address 
the issue of having a unique equation that can be applied 
to any fibers.

Concrete specimens subjected to compression can pro-
vide a more accurate estimate of FRC’s elastic modulus. 
But it is impractical for structures that are either under 
construction or already exist (American Society for Test-
ing Materials, 2014; Shkolnik, 2005; Zeng et  al., 2020). 
Earlier it was demonstrated that nondestructive testing 
(NDT) methods are more advantageous for estimating 
the static and dynamic modulus of elasticity in concrete 
because they are less expensive, safer, faster, and simpler 
to use (Estolano et al., 2018; Pokorny et al., 2016). How-
ever, the current equations for predicting FRC’s elas-
tic modulus do not account for fiber volume percent or 
fiber type. For example, ACI 318 connects elastic modu-
lus and compressive strength and provides formulas for 
approximating elastic modulus that can be used for plain 
concrete (American Concrete Institute, 2014). Concrete’s 
electrical resistivity, compressive strength, and elastic 
modulus are all inextricably linked to its hydration and 
microstructure formation. Shao et al. (2015) established a 
nonlinear relationship between the modulus of elasticity 
and the resistivity of concrete and proposed using electri-
cal resistivity (ER) techniques to predict the elastic mod-
ulus of concrete, particularly at early ages. The elastic 
modulus of early age cemented gangue backfill columns 
was successfully determined using ER measurements 
(Guo et al., 2020). Teng et al. (2018) showed that ER test-
ing can significantly help with the analysis of the elastic 
modulus and mechanical properties of high-performance 
hybrid FRCs. Chavez et al. (2014) developed a model that 

has predict the static modulus of elasticity using electri-
cal resistivity values. An alternative method for deter-
mining the elastic modulus of concrete is the resonance 
test gauge (RTG), a vibration-based NDT test. Impact 
resonance was used to determine material properties 
such as dynamic elastic modulus to evaluate asphalt 
pavements for moisture damage (Yadav et  al., 2021). 
For the determination of selected parameters such as 
thickness and dynamic modulus of elasticity of concrete 
structures, the resonant method was found reliable by 
Pokorny et al. (2016). Another study reported the elastic 
modulus of degraded concrete using resonant frequency 
to evaluate the distribution of damage at different depths 
within the concrete structure (Park et  al., 2014). Using 
material constants such as elastic modulus and resonant 
frequencies, Kolluru et al. (2000) proposed mathematical 
models for concrete cylinders that are in good agreement 
with ASTM standard test procedures.

In this paper, the efficacy of nondestructive testing for 
detecting elastic modulus of concrete is studied. Twenty-
one mixes in total were prepared comprising polypropyl-
ene, nylon, glass, and steel fibers at of 0.5 percent, 0.75 
percent, and 1.00 percent fiber volume fractions (Vf); and 
w/c ratios of 40%, 45%, and 50%. This study was initiated 
to introduce a cost-effective and practical method that is 
reliable when used with FRC at young ages. The elastic 
modulus and electrical resistivity of FRC at an early age 
will also be investigated in relation to the w/c ratio, fiber 
volume percentage, and fiber type.

2  Experimental Program
A comprehensive experimental investigation was con-
ducted to determine the dynamic modulus and elec-
trical resistivity of FRC using four distinct fiber types, 
three volume fractions, and three w/c ratios as speci-
fied in Table  1. Nondestructive testing of FRC at early 
ages was performed using standard cylindrical molds 
(4˝ × 8˝). The physical properties of the polypropylene, 
nylon, glass, and steel fibers used in this study are listed 
in Table 2. There are specific addition rates for each fiber 
type shown in Table  3 according to the manufacturer’s 
specifications.

Twenty-one mixtures containing polypropylene, nylon, 
glass, and steel fibers at of 0.5 percent, 0.75 percent, 
and 1.00 percent fiber volume fractions (Vf); and w/c of 
40%, 45%, and 50% were considered. For each mix ratio, 
9 test cylinders were cast and cured, yielding 189 speci-
mens. Table  4 shows the detailed mixture parameters, 
where CA represents coarse aggregate, FA represents 
fine aggregate, and W represents the total weight of FRC 
in cumec. Electrical resistivity and resonance frequency 
tests were performed after 1, 3, 7, and 28 days of curing.
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2.1  Specimen Preparation
ASTM C511 and ASTM C192 standards were followed 
when storing and curing concrete cylinders in the labora-
tory prior to testing (American Society for Testing Mate-
rials, 2002). At the Georgia Southern Concrete Research 
Lab, specimens were stored in a concrete curing tank of 
103-gallon capacity made of galvanized steel. The cur-
ing tank is connected to a heater which keeps the water 
temperature in the curing tank stable for proper curing of 
concrete specimens. To prevent moisture loss, concrete 
cylinders were initially stored for up to 48  h at tempera-
tures ranging from 60 to 80° F. Then cylinders were sub-
merged in the curing tank after removing the plastic molds 
and kept at a temperature of 73.5 ± 3.5° F until the test date. 
According to ASTM C128 and C127, the specific gravity of 
both coarse and fine aggregates was calculated in order to 
alter the quantity of bath water used (American Society for 
Testing Materials, 2015b; 2015c).

2.2  Nondestructive Testing
2.2.1  Electrical Resistivity Measurement
The surface electrical resistivity of concrete cylinders was 
measured using the four-point Wenner probe method. A 

commercially available equipment named Resipod manu-
factured by Proceq SA, Switzerland (Gowers & Millard, 
1999) was used. The concrete resistivity meter had a probe 
spacing of 38 mm (1.5″). The measurements were taken by 
placing four equidistant electrodes on the concrete surface 
in the longitudinal direction. This method involves passing 
an alternating current through the two outer probes and 
measuring the potential difference between the two inner 
probes. Because the ions are carried by the liquid through 
the concrete pores, the resistivity value is dependent on the 
probe spacing (Resipod User’s Manual, 2017). The calibra-
tion of the equipment was checked before taking measure-
ments for each mix specimen. For each concrete cylinder’s 
circular face, readings were recorded at 0, 90, 180, and 270 
degrees, and the results were averaged. Measurements 
were taken at 1, 3, 7, and 28  days for the 4-inch × 8-inch 
(100 × 200  mm) cylinders. Test specimens were removed 
from water tank after specific curing days and tested at sat-
urated surface dry (SSD) condition at 23 ± 2 °C as specified 
in AASHTO T358 (American Association of State High-
way & Transportation Officials, 2014). The surface electri-
cal resistivity values were directly obtained in Kohm-cm 
from the Resipod output.

2.2.2  Resonance Frequency Measurement
The dynamic modulus of each specimen was determined 
using an ASTM C215-compliant (American Society for 
Testing Materials, 2019) resonant test gauge (Model: 
RTG-1) manufactured by Olson Instruments, Inc. United 
States. The dynamic modulus was determined by the 
impact resonance method using the longitudinal con-
figuration after the specimens were cured in water for 
the specified 1-, 3-, 7-, and 28-days period. The dynamic 

Table 1 Materials, methods, and mix parameters for experimental investigation.

Testing Mechanical property evaluated Modulus of elasticity

Nondestructive methods Electrical resistivity and resonance frequency

Materials Portland cement Cement type I/II

Maximum coarse aggregate size 0.1875 inch (4.7625 mm)

Fiber types investigated Polypropylene, nylon, glass, and steel

Cylindrical molds 4-inch × 8-inch (100 × 200 mm)

Mixture parameters Vf (%) 0.5, 0.75, and 1.0

w/c ratio 0.40, 0.45, and 0.50

Curing (days) 1,3,7, and 28

Table 2 Physical properties of four different types of fiber.

Polypropylene Nylon Glass Steel

Density, ρ (kg/m3) 910 1150 2700 7800

Tensile strength, τ (MPa) 410 300 2000 1030

Flexural strength, σ (GPa) 5.6 2.8 77 203

Fiber length, l (mm) 19 19 13 25.4

Diameter of fiber, d (mm) 1.52 0.038 0.014 1.18

Table 3 Fiber addition rate according to fiber type and manufacturer specifications (Nycon, 2019).

Addition rate Polypropylene Nylon Glass Steel

Plastic shrinkage cracking 0.9 kg/m3 0.6 kg/m3 0.30–0.60 kg/m3 10–15 kg/m3

Performance of structure N/A N/A 5–15 kg/m3 15–80 kg/m3
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modulus of test cylinders (4-inch × 8-inch) in GPa was 
calculated using an average of three longitudinal fre-
quency measurements. An accelerometer and a hammer 
strike are positioned parallel to one another in the reso-
nance test method. The accelerometer is connected to 
a specimen, which is then struck with a tiny hammer to 
determine the specimen’s impact resonance. The speci-
men’s resonant frequency is not discernible in the time 
domain, but it can be seen clearly in the frequency range. 
As a result, the resonant frequency peak was located by 
fast Fourier transform (FFT). The results are affected by 
specimen geometry, material properties, accelerometer 
attachment points, and hammer strike locations (Olson 
Instruments, 2020).

3  Revised Equations for FRC
In the literature, the modulus of elasticity for plain con-
crete is predicted (Shao et al., 2015):

where Ec is elastic modulus and η is electrical resistivity. 
The w/c ratio, cement, coarse and fine aggregate denote 
the parameters a, b, c, and d in Eq. (1). C is equal to 0.5 
or 0.33.

When different types of fibers (steel, nylon, polypro-
pylene, or glass) are added to concrete the electrical, 
physical, and mechanical properties of concrete change. 

(1)Ec = a(η + b)c + d,

Therefore, Eq.  1 is not applicable for FRC. To forecast 
the dynamic modulus of elasticity at early ages, Eq. 2 was 
devised. First, two points on the graph were identified by 
selecting the x and y-intercept from the curves for each 
fiber and curing days. To minimize round-off error, these 
two points were chosen as far apart as possible. Since 
none of the data points had the origin as a coordinate, 
both points are substituted into two equations of the 
form f(x) = a(b)x. Finally, the resulting system was solved 
of two equations in two unknowns to find a and b to 
form an exponential function based on volume fractions 
of fiber ranging from 0.5 to 1% of volume and w/c ranging 
from 40 to 50% for all different mixtures including PFRC, 
NFRC, GFRC, and SFRC. At a young age, the growth in 
dynamic modulus and electrical resistivity is exponen-
tial (Haque & Rasel-Ul-Alam, 2018; Safari, 2016). As a 
result, an exponential equation is used to estimate FRC’s 
dynamic modulus at an early age.

For G, P, and NFRC

For SFRC

where η is the electrical resistivity ( k� ∗ cm ), t is the age 
(days), and α is determined using Eq. 3.

(2)Ed = αe0.05∗ηt .

(3)Ed = αe−0.037∗ηt
,

Table 4 Concrete mix ratio for different fiber types.

Name Fiber incorporated Vf (%) Fiber (kg/m3) C (kg/m3) CA (kg/m3) FA (kg/m3) W (kg/m3) w/c

Mix ID—1 None 0.00 0.0 503.3 709.7 986.5 201.3 0.40

Mix ID—2 Polypropylene 0.50 4.5 500.8 706.1 981.5 200.3 0.40

Mix ID—3 0.75 6.8 499.5 704.3 979.1 199.8 0.40

Mix ID—4 1.00 9.1 498.3 702.6 976.6 199.3 0.40

Mix ID—5 0.75 6.8 487.3 687.1 955.0 219.3 0.45

Mix ID—6 0.75 6.8 475.6 670.6 932.1 237.8 0.50

Mix ID—7 Nylon 0.50 5.7 500.8 706.1 981.5 200.3 0.40

Mix ID—8 0.75 8.5 499.5 704.3 979.1 199.8 0.40

Mix ID—9 1.00 11.4 498.3 702.6 976.6 199.3 0.40

Mix ID—10 0.75 8.5 487.3 687.1 955.0 219.3 0.45

Mix ID—11 0.75 8.5 475.6 670.6 932.1 237.8 0.50

Mix ID—12 Glass 0.50 13.5 500.8 706.1 981.5 200.3 0.40

Mix ID—13 0.75 20.2 499.5 704.3 979.1 199.8 0.40

Mix ID—14 1.00 27.0 498.3 702.6 976.6 199.3 0.40

Mix ID—15 0.75 20.2 487.3 687.1 955.0 219.3 0.45

Mix ID—16 0.75 20.2 475.6 670.6 932.1 237.8 0.50

Mix ID—17 Steel 0.50 39.0 500.8 706.1 981.5 200.3 0.40

Mix ID—18 0.75 58.5 499.5 704.3 979.1 199.8 0.40

Mix ID—19 1.00 78.0 498.3 702.6 976.6 199.3 0.40

Mix ID—20 0.75 58.5 487.3 687.1 955.0 219.3 0.45

Mix ID—21 0.75 58.5 475.6 670.6 932.1 237.8 0.50
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For polypropylene, nylon, and glass fibers

For steel fiber,

where flexural strength (σ) is expressed in GPa, fiber 
length (l) is in mm, diameter (d) will be also in mm, age 
(t) in days, tensile strength (τ) is expressed in MPa, and 
density (ρ) is expressed in kg/m3.

In order to get the static modulus from the dynamic 
modulus, we may utilize Eq. 4 (Trifone, 2017):

Ec is the static and Ed is the dynamic modulus of FRC in 
GPa, respectively.

To quantify the variability between the observed 
dynamic modulus (using the resonance test gauge (RTG 
method) and the projected dynamic modulus (using the 
electrical resistivity (ER) method) for each kind of fiber 
at the ages of 3 and 7 days, the COV (coefficient of vari-
ation) was introduced using Eqs.  5 and 6 (Wtaife et  al., 
2018):

4  Results and Discussion
The findings of this study are reported in this section. 
By comparing experimental data to empirical data from 
Eq.  2, it was established that the new equation is more 
appropriate for FRC. All the fibers studied in this study 
showed excellent agreement between their experimental 
findings and those predicted by the equation. COV for 
each kind of fiber is also determined.

4.1  Influence of Fiber Volume Fraction and w/c Ratio 
on Electrical Resistivity of FRC

Fig. 1 depicts the ER vs w/c and Vf for all the FRC’s tested 
in this study. Fig.  1A–D displays ER (kΩ  *  cm) versus 
Vf (0.5–1.0% vol.) for NFRC, PFRC, SFRC, and GFRC, 
respectively, at the ages of 1, 3, 7, and 28 days. Fig. 1E–H 
displays ER versus w/c ratio (0.4–0.5) for NFRC, PFRC, 

(4)α = 1.8

(

σ

l/d

)

+ t
0.95( τ

ρ
)
+ 19.

(5)α = 1.8

(

σ

l/d

)

+ t
7.5( τ

ρ
)
+ 19,

(6)Ec = 0.83Ed .

(7)COV =

√

1
n−1

∑n
i=1 (f

′

cpi − f
′

ci)
2

µ
,

(8)µ =

∑n
i=1 f

′

ci

n
.

SFRC, and GFRC, respectively, at the ages of 1, 3, 7, and 
28  days. Fig.  1A shows adding Nylon fibers to concrete 
gives rise to ER up to the threshold limit of this inves-
tigation (1.0% vol.) at all ages because nylon fibers are 
non-conductive and absorb water. Therefore, high fiber 
volume fractions of nylon fiber reduce the water-to-
cement ratio resulting in higher ER.

Fig. 1B shows that the ER of PFRC reduces when fibers 
are added up to the threshold limit of this investigation 
at all ages despite being a non-conductive fiber because 
polypropylene fibers have the lowest specific gravity. 
Therefore, more strands of polypropylene fibers were 
added to the mix than any other fiber type. Having so 
many strands of polypropylene fibers reduced concrete 
workability, reduced concrete homogeneity, increased 
void content, and decreased electrical resistivity (Tapkın, 
2008; Wang et  al., 2021). Fig.  1C depicts that the ER of 
SFRC decreases with adding fibers up to the threshold 
limit of this investigation at all ages which is a result of 
steel fibers being conductive and rigid. Therefore, the 
rigid non-conductive fibers caused fiber balling which 
reduced the workability of concrete, increased void 
content, and decreased the electrical resistivity. Fig.  1D 
reveals that the ER of GFRC remains almost constant 
with the addition of fibers up to the threshold limit of this 
investigation because glass fibers are non-conductive but 
reduced the workability of concrete. Therefore, adding 
high fiber volume fractions of non-conductive glass fibers 
increased electrical resistivity but adding high amounts 
of fibers caused fiber balling which reduced the work-
ability of concrete and electrical resistivity. Fig.  1D–H 
depicts that the ER of all types of FRC in this investiga-
tion decreases with the increases in w/c because as the 
water content increases the cement content decreases 
and having a lower cement content results in lower elec-
trical resistivity. Finally, due to the hydration process, the 
electrical resistivity of all test samples increased with age, 
disregarding Vf and w/c ratio.

4.2  Influence of Fiber Volume Fraction and w/c Ratio 
on Elastic Modulus of FRC

Fig. 2 depicts Ed versus w/c and Vf ratio for all kinds of 
FRC investigated in this study. The dynamic modulus was 
influenced by the properties of the fiber incorporated. 
This could be due to the increased porosity of concrete 
because of fiber incorporation (Banyhussan et al., 2019). 
Steel fibers had the best flexural and tensile strength fol-
lowed by glass, polypropylene, and nylon fibers, respec-
tively. Therefore, SFRC had the highest dynamic modulus 
followed by GFRC, PFRC, and NFRC, respectively, as 
shown in Fig.  2A–D at all ages. The impact of the w/c 
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on the dynamic modulus of FRC is demonstrated in 
Fig.  2E–H. It is observed that despite fiber type or age, 
the dynamic modulus of FRC decreases with the decrease 
in w/c ratio because there is less cement in the mix. 
Again, lower elastic modulus has no effect on flexural and 

tensile strength of fibers because it is only useful in bridg-
ing micro-cracks (Banyhussan et al., 2019).

For GFRC with a w/c ratio of 0.4, values for the elastic 
modulus fluctuated at the early age. However, the varia-
tion in all other fiber types remained consistent during 
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early age for concrete containing polypropylene, nylon, 
and steel, regardless of fiber volume fraction or water-to-
cement ratio. The formation of micro-annuli around the 
FRC results in higher electrical modulus early in the cur-
ing process, which persists as curing progresses into the 
later stages due to the hydration reaction of cement paste 
(Appah & Reichetseder, 2001; Danjuschewskij & Ghof-
rani, 1991).

4.3  Relationship Between Electrical Resistivity and Elastic 
Modulus for PFRC

Fig.  3 depicts the relationship between PFRC’s dynamic 
modulus (Ed) and electrical resistivity (ER) at 3 and 
7  days. The predicted ER was computed using the pro-
posed Eq. 2 and adjustment coefficients for PFRC.

All the data points from mixes containing poly-
propylene fibers (M7–M11) were used to establish a 
good correlation between PFRC’s measured Ed and 

measured ER while considering Vf between 0.5 and 
1.0% and w/c between 40 and 50%. The 3-day measured 
Ed and ER of PFRC range from 25 to 27  GPa and 3.3–
6.2 kΩ * cm, respectively. The 7-day measured Ed and ER 
of PFRC range from 29 to 31 GPa and 4.5–8.6 kΩ * cm, 
respectively.

The COV was established to explain the discrepancy 
between Ed’s observed and anticipated values. At 45 
degrees, the measured and projected values are per-
fectly correlated, allowing the Keynesian Cross or the 
45-degree line to be used to determine the equilibrium 
value (Blinder, 2008). The data points above and below 
this 45-degree line show conservative and non-conserv-
ative deviations, respectively (Yuan, 2015). Fig.  4 con-
tains three scatter plots comparing PFRC’s measured Ed 
(x-axis) to its predicted Ed (y-axis) in GPa at the ages of 
3, 7, and 28 days. The calculated COV’s were lower at 3 
and 7 days of age.
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Fig. 3 Correlation between dynamic modulus and electrical resistivity for PFRC.
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Fig. 4 Correlation between observed Ed and projected Ed for PFRC at early ages.
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4.4  Relationship Between Electrical Resistivity and Elastic 
Modulus for NFRC

Fig. 5 depicts NFRC’s dynamic modulus (Ed) versus elec-
trical resistivity (ER). The measured data points belong to 
all mixes containing nylon fibers (M2–M6) and the pre-
dicted data points were obtained using the adjustment 
coefficients for NFRC.

The 3-day measured Ed and ER of NFRC range from 23 
to 29 GPa and 3.9–5.3 kΩ * cm, respectively. The 7-day 
measured Ed and ER of NFRC range from 25 to 31 GPa 
and 5.0–7.0 kΩ * cm, respectively.

NFRC’s measured Ed to its predicted Ed is presented in 
Fig. 6. The COV’s at 3 and 7 days show that the proposed 
Eq. 2 works correctly at these ages.

4.5  Relationship Between Electrical Resistivity and Elastic 
Modulus for SFRC

Fig. 7 shows SFRC’s dynamic modulus (Ed) versus elec-
trical resistivity (ER). The measured data points are 

achieved from all mixes containing steel fibers (M12–
M16) and the predicted data points were obtained using 
the adjustment coefficients for SFRC.

The 3-day measured Ed and ER of SFRC range from 
31.5 to 33.1 GPa and 3.7–5.4 kΩ * cm, respectively. The 
7-day measured Ed and ER of SFRC range from 33.5 to 
37.0 GPa and 4.8–7.3 kΩ * cm, respectively.

SFRC’s measured Ed to predicted Ed is depicted in 
Fig.  8. The axis, units, ages, and significance of the 
45-degree dotted line are consistent with those in Fig. 3. 
The COV is low between the ages of 3 and 7 days which 
indicates that the proposed equation is valid for early age 
SFRC.

4.6  Relationship Between Electrical Resistivity and Elastic 
Modulus for GFRC

Fig. 9 presents GFRC’s dynamic modulus (Ed) to its elec-
trical resistivity (ER). However, the measured data points 
belong to all mixes containing glass fibers (M17–M21) 
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Fig. 5 Correlation between dynamic modulus and electrical resistivity for NFRC.
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Fig. 6 Correlation between observed Ed and projected Ed for NFRC at early ages.
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and the predicted data points were obtained using the 
adjustment coefficients for GFRC.

The 3-day measured Ed and ER of GFRC range from 
24.7 to 27.4 GPa and 2.8–4.1 kΩ * cm, respectively. The 
7-day measured Ed and ER of GFRC range from 28.6 to 
31.5 GPa and 4.3–5.8 kΩ * cm, respectively.

Fig. 10 compares GFRC’s measured Ed to its predicted 
Ed. Since the COV’s at ages 3 and 7 were low, the pro-
posed equation is correct in its early stages.

5  Conclusion
The relationship between dynamic modulus (Ed) and 
electrical resistivity (ER) of early-age FRC is inves-
tigated in this paper by utilizing the NDT methods. 
A total of 21 mixes were considered at 0.5, 0.75, and 
1.00 percent fiber volume fraction (Vf) with w/c ratios 
of 40%, 45%, and 50% to evaluate this correlation. The 
electrical properties and dynamic modulus of each fiber 
were analyzed independently at the ages of 1, 3, 7, and 
28 days based on Vf and w/c. It was observed that the 
electrical resistivity of FRC reduces as the w/c ratio 
increases at early curing ages for the specific fiber types, 
w/c ratios, and fiber volume fractions examined in this 
study. The electrical resistivity of NFRC increased with 
increasing fiber volume percentage, whereas PFRC, 
GFRC, and SFRC showed the opposite trend. This is 
due to an increase in porosity and a decrease in aggre-
gate content, both of which have a significant impact 
on electrical resistivity. The relationship between the 
elastic modulus and the electrical resistivity of the 
studied FRCs has been investigated, and an equation 
to estimate their correlation at early ages for specific 
Vf and w/c is proposed. Since elastic modulus and elec-
trical resistivity are both dependent on the porosity of 

concrete, pore solution conductivity can influence the 
equation. However, the early age dynamic modulus 
of elasticity of the four types of FRC can be estimated 
using the proposed equations, which rely on electrical 
resistivity and NDT methods. The coefficient of varia-
tion (COV) was used to assess the accuracy of the pro-
posed equations for each type of FRC at ages 3 and 
7 days. The COVs obtained for predicting the dynamic 
modulus of the studied FRC using the equations ranged 
from 6 to 9 percent, demonstrating its reliability.
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