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Abstract 

In this study, a modified Artificial Neural Network (ANN) and Support Vector Regression (SVR) with three different opti-
mization algorithms (Genetic, Salp Swarm and Grasshopper) were used to establish an accurate and easy-to-use mod-
ule to predict the lateral pressure exerted by fresh concrete on formwork based on three main inputs, namely mix 
proportions (cement content, w/c, coarse aggregates, fine aggregates and admixture agent), casting rate, and height 
of specimens. The data have been obtained from 30 previously piloted experimental studies (resulted 113 samples). 
Achieved results for the model including all the input data provide the most excellent prediction of the exerted lateral 
pressure. Additionally, having different magnitudes of powder volume, aggregate volume and fluid content in the mix 
exposes different rising and descending in the lateral pressure outcomes. The results indicate that each model has its 
own advantages and disadvantages; however, the root mean square error values of the SVR models are lower than 
that of the ANN model. Additionally, the proposed models have been validated and all of them can accurately predict 
the lateral pressure of fresh concrete on the panel of the formwork.
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1 Introduction
Generally, conventional concrete has an exerted pres-
sure on formwork at an early stage of casting. Specifically, 
self-compacting concrete (SCC) type is a novel type of 
concrete that has the ability to flow quickly without any 
effort. This type of concrete has high exerted lateral pres-
sure on the formwork because of its high flowability. It 
can fill the formwork and compact under its own weight 
which eliminates the shaking and vibration process 
through vibrator. This also reduces noise pollution and 

labour work in the field. Furthermore, SCC increases the 
potential of construction productivity, reduces the total 
cost of the structure, provides a sustainable environment, 
and improves the quality of the structures (Almeida Filho 
et al., 2010). In general, there are many studies on the per-
formance of SCC, such as mechanical strength (Roussel 
& Cussigh, 2008), durability (Tabatabaeian et  al., 2017) 
as well as cost and life cycle assessment (Margallo et al., 
2015). Development of SCC was undertaken by authors 
Okamura  (1997) and Okamura and Ozawa (1996) in 
Japan. Despite having abundant research on the benefits 
of SCC, related to its performance and flow of SCC since 
its first developments in the late 1980s in Japan, there 
are many limitations and a lack of results regarding the 
expected lateral pressure exertion on the different types 
of formwork (Shakor & Gowripalan, 2020).
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SCC is highly subject to changes in material behav-
iour and characterization (Kurda et  al., 2022); there-
fore, it is necessary to have a suitable quality control. 
One way to overcome this is by controlling the fresh 
properties of concrete that directly affect its lateral 
pressure on the formwork. To ensure adequate fresh 
properties, it is necessary to have a suitable SCC mix. 
These are also substantial investigations of lateral pres-
sure properties in the fresh SCC, hardened properties, 
and durability (Brito & Kurda, 2021; Koehler, 2007). 
Since a number of parameters affect the performance 
of concrete and its lateral pressure on the formwork 
(Gowripalan et al., 2021), it is necessary to use machine 
learning on the SCC and conventional concrete as 
well (Shakor & Pimplikar, 2011). Having limited data 
on the SCC lateral pressure causes difficulty in simu-
lating and predicting lateral pressure on formwork by 
machine learning; therefore, studies on lateral pressure 
of conventional concrete have been included in the data 
collection.

Machine learning techniques such as Artificial Neural 
Network (ANN) and Support Vector Regression (SVR) 
have been used to predict concrete properties in the 
past two decades (Ahmadi et  al., 2020; Alam & Al Riy-
ami, 2018; Farooq et al., 2020; Kandiri & Fotouhi, 2021; 
Kandiri et  al., 2020; Lizarazo-Marriaga et  al., 2020; 
Mohammed et  al., 2021; Ramezani et  al., 2020; Velay-
Lizancos et al., 2018; Vickers, 2017; Yu et al., 2020). For 
instance, Golafshani et  al. (2020) modified ANN with a 
multi-objective grey wolf optimizer and used that to 
forecast the compressive strength of high-performance 
and normal concrete (Golafshani et al., 2020). The study 
of Kandiri et  al. (2021) used three different optimiza-
tion algorithms to modify ANN and used those models 
to predict the compressive strength of recycled aggregate 
concrete (Kandiri et al., 2021). In another study, Jahangir 
and Eidgahee (2021) used a hybrid artificial bee colony 
algorithm-ANN to evaluate the bond strength of fibre-
reinforced polymers-concrete. In addition, Ahmed et al. 
predicted 7 and 28  days of flexural strength of normal 
concrete using SVR (Jahangir & Eidgahee, 2021).

Nevertheless, the performance of SVR and ANN sig-
nificantly depends on the selection of training set data 
and features. These data are not only used for SCC, but 
also applicable for three-dimensional printed concrete as 
shown in the study (Izadgoshasb et al., 2021). The num-
ber of hidden layers and their nodes for ANN, and the 
values of the penalty coefficient, error limit, and the slack 
variable for SVR determine the models’ performance. 
However, the challenge is in the fact that it is needed to 
determine these parameters in the first step, and they 
are not changeable during the process. Therefore, in this 

study, the Genetic Algorithm (GA), Salp Swarm Algo-
rithm (SSA), and Grasshopper Optimization Algorithm 
(GOA) are used to develop a systematic approach to 
achieve the optimum structures and increase the accu-
racy of the models as much as possible.

2  Research Significance
SCC has many advantages in terms of fresh state, but it 
may generate high lateral pressure on the formwork that 
has not been studied in detail. Thus, this research aims 
to provide an approach to estimate the maximum lateral 
pressure of concrete (conventional and self-compacting 
concrete). Guessing the behaviour of Bingham fluid (e.g. 
concrete) would be interesting which is part of input 
and output data to produce the right models and clos-
est approach to the resulted outcome. Concrete at the 
hardened stage might be easier to predict considering the 
complexities of the mixed components of concrete at the 
early ages. Predicting the lateral pressure of fresh con-
crete is highly important and considered a great outcome 
to know its lateral pressure before pouring. On the other 
hand, there are not enough studies on predicting the lat-
eral pressure of concrete on the formwork and there are 
no investigations particularly on the machine learning 
modelling to predict the lateral pressure of fresh concrete 
on the formwork. The predicting models could be pre-
cise for engineering application predictions and it could 
eliminate the need for extensive further laboratory in situ 
testing (Vickers, 2017), and it will be advantageous for 
the design of the formwork.

3  Methodology
As shown in the flowchart (Fig. 1), this study was made to 
estimate the lateral presser exerted by fresh concrete on 
the formwork, namely by using modified ANN and SVR. 
For that purpose, data from 30 previous studies (113 
experimental data) were collected (Appendix 1). As input 
data, (i) mix composition such as cement, coarse aggre-
gates, fine aggregates, water and admixture contents was 
considered as well as (ii) dimensions of casted specimen 
and (iii) casting rate of concrete (Sect. 3.1).

Two most accurate algorithms were considered to 
establish the required model based on the collected data, 
namely SVM (Sect.  3.2) and ANN (Sect.  3.3). However, 
accurate mathematical methods cannot solve optimi-
zation problems. Hence, to find the optimum answer 
possible at a convenient time, heuristic and metaheuris-
tic algorithms are used. For that purpose, GA, SSA and 
GOA are used (Sect. 3.4) in order to modify the SVM and 
ANN models. The modification process of the two algo-
rithms are shown in Sect. 3.5.
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Fig. 1 The flowchart diagram process followed in this study.
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3.1  Materials and Data Collection
The experimental dataset consists of 113 data extracted 
from 30 previous studies, which is tested to provide mod-
els from both types of concrete. This study counted dif-
ferent factors in its approaches, for example, the height 
effect of the casted specimens, the casting rate (place-
ment rate) of casting the concrete, the constant gravita-
tional unit, the ratio of water to cement, the quantity of 
cement, coarse aggregate, fine aggregate, and admixtures. 
Fig. 2 illustrates histograms of the inputs and the output 
of the models. Moreover, Table 1 represents the statisti-
cal parameters of the inputs and the output.

These factors assist in evaluating and predicting the lat-
eral pressure of the fresh concrete on the formwork using 
each model as statistical evaluation parameters. These 
would be also beneficial for the construction industry 
to identify and predict the value of the pressure before 
the casting process. Table 3 (Appendix 1) represents the 
results of earlier studies on exerted lateral pressure of 
concrete, mix design, casting rate, slump and height of 
casting.

Based on the available data in Table 3 (Appendix 1), the 
data could be entered and applied into algorithm model-
ling for machine learning. The selected algorithms have 
been chosen and attempted for the process and the most 
suited are opted for the application.

3.1.1  Mix Composition of Concrete
Concrete mix design uses various methods to mix and 
various systems to cure them. Most of the concrete mixes 
are considered to be evaluated through visual inspection 
(Day, 2006). According to the earlier studies by Alyamac 
and Ince (2009), the concrete mix design could be com-
bined their expression of fresh and hardened into one 
graph in terms of compressive strength. These could be 
presented in a nomogram diagram; see Fig. 3.

However, as Fig.  3 shows that the w/c ratio directly 
affects the compressive strength, with increasing w/c 
ratio is decreasing the compressive strength. On the 
other hand, the increase in the w/c ratio increased the 
workability and lateral pressure on the formwork as a 
result. Therefore, it should be considered that the lateral 
pressure highly depends on the percentage of water con-
tent in the mix design.

In the collection of data shown in Appendix 1, the w/c 
ratio is between 0.3 to 0.9. It is quite obvious that the 
maximum water content in the mix design of concrete 
is usually 0.6–0.7 of cement ratio. However, sometimes 
the w/c ratio may be changed in the construction site 
in order to achieve a certain workability. This kind of 
changes must not be allowed. In other words, the out-
put of this study can be recommended only for concrete 

mixes made with w/c of 0.3–0.9. The most common mix 
design ratio also for concrete proportion is the 1:2:4 mix 
ratio which represents the cement ratio 1 to fine aggre-
gate ratio 2 and the coarse aggregate 4. However, other 
mix designs could be observed in the matrix of concrete 
mixes, such as 1:1.25:2.25, and 1:2.25:3.75.

3.1.2  Fresh Properties of Concrete
Concrete at early ages, called fresh-state concrete, 
behaves as a Bingham fluid. This fluid is quite different 
from water which is called Newtonian fluid. Bingham 
fluid is commenced with a yield stress point (YP) which 
is basically the starting point of the concrete rheology. 
Concrete materials behave as a thixotropic material with 
a dilatant property (shear thickening) (Feys et al., 2009). 
Fig. 4 shows the comparison between Bingham fluid and 
Newtonian fluid.

Shear thickening materials are such materials that 
the viscosity increases with increasing of the shear rate. 
Generally, it has a resistance to the applied rate when it 
applies. However, these could be beneficial for concrete 
to reduce its lateral pressure at a later stage.

Regarding the formwork and instalment of the form-
work panel, on the construction site; it is required to 
provide a high amount of bracing to prevent any collapse 
due to huge pressure on the lateral side of the formwork. 
However, this extreme pressure on the formwork will 
increase when the height of the casting structural mem-
ber increases due to the gravitational unit and height 
rate. Fig.  5 displays certain details on the normal form-
work that should be considered during casting and brac-
ing it properly before casting.

Sometimes the formwork and handling procedure 
would be so costly as to exceed the total cost of concrete 
implementation by 40% (Haron et al., 2005; Lloret et al., 
2015; Shakor & Gowripalan, 2020). Therefore, consider-
ing to have a better implementation of casting concrete 
and to not lose the formwork and the proper amount of 
concrete, it is better to understand and study more on 
exerted lateral pressure modelling to mitigate the risk of 
losing the cost of implementation and prevent the risk of 
injury at the field.

However, according to the theoretical calculations, 
the lateral pressure of concrete on formwork depended 
on height which is related to the rate of the gravita-
tional unit. Moreover, the density of materials relatively 
depends on the mass of the materials. Therefore, accord-
ing to the law of hydrostatic pressure, the maximum pres-
sure could be expressed as below Eq. (1) (Merriam, 1992):

(1)P = ρ×g×H ,
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Fig. 2 Histograms of the input and the output variables.
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where P is pressure, ρ is density, g is gravity and H is the 
height of the concrete.

According to Puente et al. (2010), the lateral pressure of 
fresh concrete on the formwork is theoretically expressed 
as (Eq. 2):

where P is lateral pressure, λc is the relationship between 
horizontal and vertical pressure, γ is the concrete weight 
and H is the height of the concrete.

However, Rodin (1952) explained that the maximum 
pressure Pmax could be found when the concrete mix is 
1:2:4 with a slump of 150 mm and temperature is about 
21  °C and density is assumed to be about 2400  kg/m3 
(Eqs. 3, 4):

(2)P = �c × γ ×H ,

(3)Hm = 1.63× R0.5,

Table 1 Descriptive statistics of the input and output variables.

Cement 
(kg/m3)

Water (W/C) Coarse 
aggregates

Fine aggregates Admixture 
(ml/100 kg)

Total 
height 
(m)

Casting 
rate (m/h)

Maximum 
pressure 
(kPa)

Maximum 500 1 2400 1200 10 17 71 186

Minimum 182 0 305 379 0 0 0 2

Mean 388 1 1008 799 1 3 7 48

Standard deviation 82 0 459 182 2 3 15 37

Kurtosis 0 3 4 0 7 7 14 3

Skewness 0 2 2 0 3 2 4 2

Fig. 3 Mix design nomogram of water-to-cement ratio in relation to compressive strength as design criterion (Alyamaç & Ince, 2009; Monteiro 
et al., 1993).

Fig. 4 Bingham fluid behaviour compared with Newtonian fluid.



Page 7 of 22Kandiri et al. Int J Concr Struct Mater           (2022) 16:64  

where Hm is the height which the maximum lateral pres-
sure occurred which is considered to be (m), Pmax is the 
maximum lateral pressure of the concrete on the form-
work in (kPa) and R is the casting rate of the concrete 
(m/h). These dataset and earlier information on the con-
crete pressure and different mix designs would be benefi-
cial to create a model to predict the lateral pressure of the 
concrete on the formwork and find the maximum pres-
sure on the formwork panel.

Therefore, usually expect the lateral pressure of con-
crete should be one of the following expectation for the 
concrete. This is based on the materials mix, density, 
temperature and slump. Fig.  6 displays all types of lat-
eral pressure of concrete on formwork. However, Rodin 
(1952) proposed that the formwork should be designed 
for full hydrostatic pressure considering the density of 
concrete.

3.2  Support Vector Regression
Support vector machine (SVM) is an AI-based method 
that is used for classification and regression analysis 
using hyperplane classifiers. The best hyperplane can 
minimize the risk of classification by maximizing the 
distance between the two classes, where the support vec-
tors lie (Sun et al., 2019). A linear regression hyperplane 
equation is defined as Eq. (5) by mapping the input data 

(4)Pmax = 23.4 ×Hm,
into a higher-dimensional feature space with linearly sep-
arable output data:

where W is a multi-dimensional vector determining the 
orientation of the hyperplane, and b is the bias term.

Support vector regression (SVR) is a machine learn-
ing method, which was proposed in 1992 (Boser et al., 
1992). It has been used to solve non-linear classifica-
tion, regression, and prediction problems recently 
(Ahmad et al., 2020; Suykens & Vandewalle, 1999; Vap-
nik, 2013). The following equation represents the SVR’s 
objective function (Eq. 6):

(5)Y = WTX + b,

(6)minw,b
1

2
�w�2 + C

n∑

i=1

(
δ
+
i + δ

−
i

)
,

s.t.

(
b+WTXi

)
− yi ≤ ε+ δ

+
i , i = 1, 2, . . . , n

yi −
(
b+WTXi

)
≤ ε+ δ

−
i , i = 1, 2, . . . , n

δ
+
i ≥ 0, δ−i ≥ 0, i = 1, 2, . . . , n

Fig. 5 Schematic illustration of the erecting formwork.
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where C is the penalty coefficient, ε is the error limit, δi 
is the slack variable above the sample observation point 
and δ′ i is the slack variable under the sample observation 
point. Slack variables are defined in Eq. (7):

where ti is the ith target value of the model and yi is the 
ith predicted value of the model.

The optimization problem in Eq.  (8) is solved by its 
dual formulation more easily by introducing Lagrange 
multipliers, described as follows:

where L is the Lagrangian function; η+i  , η−i  , α+
i  , and α−

i  
are positive Lagrangian multipliers.

δ
+
i δ

−
i = 0,

(7)δi =

{
0 if

∣∣ti − yi
∣∣ < ε∣∣ti − yi

∣∣− ε otherwise

}
,

(8)

L =
1

2
�w�2 + C

n∑

i=1

(
δ
+
i + δ

−
i

)
−

n∑

i=1

(
η+i δ

+
i + η−i δ

−
i

)

−

n∑

i=1

α+
i

(
ε + δ+i − yi + Y

)
−

n∑

i=1

α−
i

(
ε + δ−i + yi − Y

)
,

This method is developed for linear classification; 
therefore, to solve non-linear classification kernel func-
tions are defined (Brereton & Lloyd, 2010). Any func-
tion which is symmetric, positive and semi-definite 
(Mercer’s condition) qualifies to be a kernel function 
(Pan et  al., 2009). However, the most used one is the 
Gaussian radial basis function (RBF). The description 
of the function is defined in Eq. (9) (Smola & Schölkopf, 
2004; Vapnik et al., 1997):.

where σ is the width of the RBF.
After using a proper kernel function at last, the basic 

equation describing the modelling of the data is shown 
in Eq. (10):

(9)K
(
xi, xj

)
= exp

(
−

1

2σ 2
�xi − xi�

2

)
,

(10)f
(
x,α+

i ,α
−
i

)
=

n∑

i

(
α+
i − α−

i

)
K
(
xixj

)
+ b.

Fig. 6 Lateral pressure exerted on formwork at different points (Puente et al., 2010).
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The biggest challenge in this algorithm is to find the 
optimum C, ε , and σ . The accuracy of an SVR closely 
depends on these values. In this study, the position of a 
salp and a grasshopper and chromosome of an individ-
ual has three parts. The first part is dedicated to the C 
parameter, the second part is for the ε , and the third part 
is allocated to the σ.

3.3  Artificial Neural Networks
Artificial Neural Network (ANN) is developed inspired 
by the human brain. If an ANN has enough inputs to 
learn, it can solve new problems. Multi-layer feed-for-
ward back-propagation perceptron (MLFFBPP) is a kind 
of ANN in which there are an input layer and an output 
layer. Between these layers, there can be one or more lay-
ers called hidden layers (Kandiri & Fotouhi, 2021; Shakor 
& Pimplikar, 2011). There are several neurons (nodes) 
in each layer connected to the next layer’s nodes with 
weighted links (Farooq et  al., 2020; Lizarazo-Marriaga 
et al., 2020). In MLFFBPP, the flow of the information is 
from the input to the output layer. Then, weights of the 
network are modified in the back-propagation phase 
(Cybenko, 1989). ANNs use a learning algorithm to mod-
ify their weights such as Bayesian regularization and Lev-
enberg–Marquardt, which is used in this study because 
of its better performance (Golafshani & Behnood, 2018). 
Moreover, each node in the hidden layer includes an acti-
vation function such as tangent sigmoid and hyperbolic 
tangent sigmoid that is used in the current paper.

Each neuron in the hidden layers receives weighted 
inputs from the previous layer’s nodes and after summing 
them enter them in the activation function. The neurons 
in the output layer do the same without activation func-
tion, and input layer nodes just receive input parameters 
from data records. An example of an ANN with one hid-
den layer, two inputs, three nodes in the hidden layer and 
one output is illustrated in Fig. 7.

3.4  Optimization Algorithms
Accurate mathematical methods cannot solve optimiza-
tion problems. Hence, to find the optimum answer pos-
sible at a convenient time, heuristic and metaheuristic 
algorithms are used. The most popular algorithms are 
the ones that are developed inspired by nature (Behnood 
& Golafshani, 2018; Kandiri et  al., 2020). Most of these 
algorithms consist of two parts: exploration and exploita-
tion. The possible solutions that are far from each other 
are investigated in the exploration phase, then, in the 
exploitation phase, the close possible solutions are stud-
ied. In fact, algorithms need the exploration phase to 
avoid local optimums. GA, SSA, and GOA are three of 
them.

3.4.1  Genetic Algorithm
A genetic algorithm is a metaheuristic algorithm to solve 
optimization problems proposed by John Holland (1992). 
This nature-inspired algorithm uses Darwin’s evolution-
ary theory. GA saves the data set in genes and each pat-
tern of the dataset is recorded in an individual’s gene. 

Fig. 7 An illustrative of ANN.
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As mentioned before, every metaheuristic algorithm 
includes the exploration and exploitation phase, and GA 
uses mutation and crossover for these purposes, respec-
tively. A number of individuals equal to the number of 
the initial population are going to survive based on their 
fitness function. In other words, the algorithm calculates 
the fitness function for each individual, and individu-
als who are fitter have a better chance to survive. In this 
study, a roulette wheel is used to choose the survivors. 
This algorithm has been used to train an ANN in a num-
ber of previous studies (Chandwani et al., 2015; Sahoo & 
Mahapatra, 2018; Shahnewaz & Alam, 2020; Shahnewaz 
et al., 2020; Yan et al., 2017; Yuan et al., 2014).

3.4.2  Salp Swarm Algorithm
Salps, which look like jellyfishes, belong to the Salpidae 
group, with a body shape like a transparent barrel (Mir-
jalili et al., 2017). To coordinate rapidly for finding food, 
they usually create a chain. SSA is inspired by salps’ 
swarm intelligence. There is a leader in the chain that 

stands at the front of the chain, and the rest of the group 
are followers. The exploration phase is the leader respon-
sibility and the exploitation phase is handled by the 
followers.

The position of each salp is defined in an n-dimension 
search space where n is the number of decision variables 
in the optimization problem. The following equation 
updates the leader position (Eqs. 11–13):

where LBr is the lower bound in the rth dimension, UBr is 
the upper bound in the rth dimension, FPj is the position 
of the food, Pi

r is rth dimension of the leader position, c1 
balances exploration and exploitation phases; c2 and c3 
are random numbers in [0,1]. c1 is calculated as follows:

(11)

P1
r =

{
FPj + c1((UBr − LBr)c + LBr) c3 ≥ 0
FPj − c1((UBr − LBr)c2 + LBr) c3 < 0,

(12)c1 = 2e−( 4tT )
2

,

Fig. 8 Example of the pseudocode using SSA.
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where T  is the maximum number of iterations and t rep-
resents the current iteration. The position of the follow-
ers are calculated as follows:

where Pi
r is position of the ith salp in the rth dimension. 

Now, it is possible to simulate the salp swarm. Fig. 8 illus-
trates the pseudocode of SSA. This algorithm has been 
used to train an ANN in a number of previous studies 
(Kandiri & Fotouhi, 2021; Kandiri et al., 2020; Kang et al., 
2019).

3.4.3  Grasshopper Optimization Algorithm
Although grasshoppers are observed individually in 
nature, they live in a huge swarm, and this behaviour is 
found in both nymph and adulthood (Rogers et al., 2003; 
Simpson et  al., 1999). In their adulthood phase, they 
move in the long-range while their steps are small in their 
nymph phase. In fact, the big steps are for exploration 
and the small steps are for exploitation. Each grasshopper 
search agents have a position ( Xj ) made of n-dimensions, 
which is defined in Eqs. (14 and 15):

where Sj , Gj , and Wj are social interaction, gravity force, 
and wind advection on the jth search agent. c1 , c2 , and 
c3 are random numbers between zero and one to make 
random behaviour. The following equation discusses the 
social interaction ( Sr):

where drm is the distance between the rth and the mth 
grasshopper, calculated as drm = |xm − xr | , d̂rm is a unit 
vector from the rth to the mth grasshopper as computed 
as d̂rm =

xm−xr
drm

 , and s is a function to describe the social 
forces’ strength represented in Eq. (16):

where ia and lc are the intensity of attraction and the 
attractive length scale, respectively. Based on the distance 
between two grasshoppers, they apply force on each 
other. This force could be absorption for far grasshoppers 
and repulsion for close grasshoppers. However, there is 
an exact value of distance, in which grasshoppers apply 
no force on each other, which is called comfort zone. Gi 
and Wi are calculated in Eqs. (17 and 18):

(13)Pi
r =

1

2

(
Pi
r + Pi−1

r

)
,

(14)Xj = c1Sj + c2Gj + c3Wj ,

(15)
Sr =

n∑

m = 1
m �= r

s(drm)d̂rm,

(16)s(r) = ia × e
−r
lc − e−r ,

where g and êg are the constant of gravity and a unity 
vector towards the earth’s centre, respectively, and u and 
êw  are the constant of gravity drift and a unity vector in 
the wind’s direction, respectively. A modified version of 
the is represented as follows (Eq. 19):

where  ubd and lb are the upper bound and the lower 
bound in the dth dimension, respectively, T̂d is the dth 
dimension of the target position, m is a decreasing coeffi-
cient to shrink the comfort zone. In the first iteration, the 
rate of exploration is higher than that in the final itera-
tions. Therefore, m should decrease as the algorithm get 
close to its end. The m parameter is calculated in Eq. (20):

where IT is the number of maximum iterations and mmax 
and mmin are 1 and 0.00001, respectively. Fig. 9 shows the 
different steps of the GOA.

3.5  Proposed Models
This section defines that how the proposed models are 
developed and how the optimization algorithms are com-
bined by ANN and SVR.

3.5.1  Modified ANN
The performance of an ANN is affected by its architec-
ture; in fact, obtaining the optimum number of hidden 
layers and their nodes is the biggest challenge in build-
ing a network. In the present paper, three different opti-
mization methods are used to develop ANNs with the 
optimum architectures and reliable performances. The 
position of a search agent and the gene of an individual 
are divided into two parts. As shown in Fig. 10, the upper 
part is allocated to the existence of a hidden layer, and the 
lower part is allocated to the number of nodes in the hid-
den layers. Each cell of the upper part can take a value of 
either 0 or 1. If the nth cell has the value of 1, the network 
includes the nth hidden layer, and if it has the value of 0, 
the networks do not include the mentioned hidden layer. 
Regarding the lower part, the mth cell indicates that the 
related hidden layer includes how many nodes.

(17)Gi = −gêg ,

(18)Wi = uêw ,

(19)

Xd
i = m




N�

j = 1
j �= i

m
ubd − lbd

2
s
����xdj − xdi

���
�xj − xi

dij




+ �Td ,

(20)m = mmax − IT
mmax −mmin

R
,
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These three models have almost the same process as their 
original algorithms, but instead of a fitness function they use 
and ANN with the obtained architecture to calculate the fit-
ness of each individual or search agent, and their errors are 
computed by root mean square error (RMSE) (Eq. 21):

3.5.2  Modified SVR
Finding the best values for the penalty coefficient (C), the 
error limit ( ε ), and the slack variable ( δ ) are really important 
in the SVR method; in fact, the performance of an SVR is 
dependent on those parameters. To address this challenge 
in this paper, the gene of an individual and the position of a 
search agent are made with three cells. Each cell is allocated 
to one of the parameters. Therefore, the optimization algo-
rithms can optimize the SVR performance and reduce its 
error as much as possible. The method that used in this sec-
tion is similar to the method that used in Sect. 3.4.1.

(21)RMSE =

√√√√√ 1

Q

Q∑

j=1

(Mq − Vq)
2.

4  Results and Discussion
4.1  Normalization
In the first step, before entering the inputs into the model, it 
is needed to normalize them because of the difference in the 
scales of inputs. In this study, the following equation is used 
(Eq. 22):

where a is an input value, amin , amax , and an are mini-
mum, maximum, and normal values of the a, respectively.

4.2  Comparison of the Models’ Performances
After running the models, three ANNs and two SVRs 
are made. The architecture of ANNGOA, ANNSSA, and 
ANNGA are 9–7–4–1, 9–15–1, and 9–13–10–5–1, respec-
tively. The weighted links and biases of these ANNs are rep-
resented in Appendix 2. In other words, ANNSSA has the 
simplest architecture with 15 nodes in its only hidden layer, 
ANNGOA has the second simplest architecture with seven 
and five nodes in its first and second hidden layer, respec-
tively, and ANNGA has the most complex one with three 
hidden layers including 13, 10, and 5 nodes in them, respec-
tively. Moreover, the error limits, penalty coefficients, and 
the slack variables of SVRGOA are 5, 0.267, and 1 while 
these parameters of SVRSSA are 5, 0.237, and 1, respectively. 
These two SVRs are working almost the same. Fig. 11 dem-
onstrates the errors of the models for the dataset.

In this study, to compare the performances of the 
proposed models, in addition to RMSE, mean abso-
lute percentage error (MAPE—Eq.  23), correlation 

(22)an =
2(a− amin)

(amax − amin)
− 1,

Fig. 9 Example of the pseudocode using GOA.

Fig. 10 The gene of and individual or the position of a search agent 
to optimize the ANN’s architecture.
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coefficient (R—Eq.  24), mean absolute error (MAE—
Eq.  25), scatter index (SI—Eq.  26), and mean absolute 
bias error (MBE—Eq. 27) are used:

(23)MAPE =
100

Q

Q∑

i=1

Vq −Mq

Vq
,

(24)

R =

Q
Q�
i=1

MqVq


Q

Q�
i=1

M2
q −

�
Q�
i=1

Mq

�2



Q

Q�
i=1

V 2
q −

�
Q�
i=1

Vq

�2


,

where M is the mean value of measured results, and 
other parameters are explained in the previous section. 
MBE indicates that the model overestimates (MBE > 0) 
or underestimates (MBE < 0). SI determines that the 

(25)MAE =
1

Q

Q∑

i=1

∣∣Mq − Vq

∣∣,

(26)SI = RMSE/M̄,

(27)MBE =
1

Q

Q∑

i=1

(
Vq −Mq

)
,

Fig. 11 Models’ errors (experimental values – predicted values).
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performance of the model is “excellent” (0 ≤ SI < 0.1), 
“good” (0.1 ≤ SI < 0.2), “fair” (0.2 ≤ SI < 0.3), or “poor” 
(0.3 ≤ SI).  Table  2 represents these indicators for the 
models.

According to Table 2, SVRSSA has the lowest MAE fol-
lowed by ANNGA while SVRGOA is following that closely, 
and ANNGOA and ANNSSA have the second-highest and 
highest MAE, respectively. Based on MBE, ANNGOA over-
estimates the output while other models underestimate that. 
According to RMSE, SVRGOA, SVRSSA, and ANNGOA, 
are the first to third-best models, respectively, so that their 
distances are so low, and finally, ANNSSA and ANNGA are 
the worst and the second-worst ones, respectively. With 
regard to MAPE, SVRSSA has the best performance by 
far, SVRGOA has the second-best performance followed 
by ANNGA closely, and ANNGOA and ANNSSA are the 
fourth and fifth models. SI indicates that all of the models 
have fair performances. Finally, all models have a correlation 

coefficient of 0.98. Fig.  12 illustrates the predicted values 
against the experimental values for the models in which it 
can be seen that the scatter around the baseline for all mod-
els is almost the same. Furthermore, Fig. 13 compares the 
RMSE, MAE, and MAPE of the models in a radar chart in 
which, it can be seen that SVRSSA has the lowest RMSE, 
MAE, and MAPE values among all models.

4.3  Validation with Mathematical Modelling
Mathematical modelling is always a decent method to 
predict the different characteristics of concrete. Hence, 
a study by Lange et al. (2008) used mathematical model-
ling to predict the maximum lateral pressure of concrete 
while the casting, this is expressed in Eq. (28):

(28)Ph = γRt
C0

(at2 + 1)
α ,

Table 2 Models’ statistic indicators.

Models MAE (MPa) MBE (MPa) RMSE (MPa) MAPE (%) SI R

ANNGA 3.01 − 0.28 6.31 12.62 0.13 0.984

ANNSSA 4.08 − 0.32 7.24 18.22 0.15 0.979

ANNGOA 3.60 0.25 6.2 14.66 0.14 0.983

SVRSSA 2.60 − 0.06 6.16 8.20 0.13 0.985

SVRGOA 3.05 − 0.07 6.12 11.59 0.13 0.985
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Fig. 12 The experimental values (lateral pressure from the experimental test) vs the predicted values (the outputs of the model) of each model.
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where Co is the initial pressure and time-dependent vari-
able, and a is used to fit the function of pressure decay, 
while α is a time-dependent variable used to fit the func-
tion to the pressure decay. Therefore, according to this 
formula most changes are in the density, casting rate 
and initial pressure. In addition, if the results in Fig.  8 
are checked, most of the results are located between 50 
to 70  kPa. This indicated that most of the height of the 
formwork is not more than 3 m cast at the same. How-
ever, there are still some values that can be seen as over 
100 kPa.

Another study by Ovarlez and Roussel (2006) expressed 
the lateral pressure for rectangular and circular formwork 
can be obtained using Eqs. (29) and (30), respectively:

where r is the formwork radius, K2 is the ratio of lateral to 
vertical pressure and Athix is a flocculation coefficient of 
concrete. Based on these formulae show there are no dif-
ferences between shape geometry. Their equations show 
clearly the height of the formwork has a major influence 
in an increase or decrease the lateral pressure exertion on 
the formwork. Nevertheless, there are not many differ-
ences in the shape of the formwork for casting; therefore, 
it could not also see obvious differences. As a comparison 
with machine learning, these equations could be quite 
matched with all five models (ANNSSA, ANNGOA, 
ANNGA, SVRSSA, SVRGOA).

(29)Pmax = K2

(
ρgH −

(H − e)2Athix

LR

)
,

(30)Pmax = K2

(
ρgH −

(H − e)2Athix

rR

)
,

In machine learning, all five models (ANNSSA, 
ANNGOA, ANNGA, SVRSSA, SVRGOA) yield excel-
lent result values for R (coefficient of correlation) which 
recorded approximately 0.98 value for all models. This 
outcome is identical to use any of them as a prediction 
model for measuring lateral pressure of fresh concrete on 
the panel of the formwork.

5  Conclusion
Lateral pressure exertion from fresh concrete on the 
formwork panel creates uncertainty for industries while 
casting concrete. This is due to high pressure, particularly 
when the casting rate increases. Therefore, this study col-
lected the various samples around the world to analyse 
and train in data learning. These machine learning appli-
cations would be useful to investigate and predict the lat-
eral pressure of concrete before casting and pouring into 
the formwork. So briefly the outcomes of this investiga-
tion can be listed as follows:

• Following ACI 347-04 Guide to Formwork for Con-
crete, it can be said that the lateral pressure exerted 
concrete in the real-world application did not record 
a value above 200 kPa. However, this mostly depends 
on the height of casting, casting rate, the con-
stant value of gravity and the density of the materi-
als; therefore, it could be expected to increase with 
increasing these parameters.

• Generally, SVR-based models have better perfor-
mances compared to ANN-based models, although 
all models have the same correlation coefficient 
approximately.

• Based on MAE, MBE, and MAPE, SVRSSA is the 
most accurate model followed by SVRGOA closely. 
Nevertheless, SVRGOA has lower RMSE compared 
to SVRSSA.

• All machine-learning-based models have a high cor-
relation coefficient, which indicates the great cor-
relation between experimental and predicted lateral 
pressure. Therefore, all of them can be used to esti-
mate the lateral pressure of concrete.

• Even ANNSSA which is the least accurate model has 
an acceptable performance with the RMSE value of 
7.24 and MAE value of 4.08.

Appendix 1
See Table 3

Fig. 13 A radar chart for comparing RMSE, MAE, and MAPE of the 
models.
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Table 3 A listed result of the research on exerted lateral pressure of concrete on the formwork (Gowripalan et al., 2021).

No. Cement Water (W/C) Coarse 
aggregates

Fine 
aggregates

Admixture 
agent 
(ml/100 kg)

Total height Casting rate Maximum 
pressure (kPa)

1 218 0.88 997 665 3.28 3.00 6.00 71.00

2 218 0.88 997 665 3.28 3.00 2.00 61.00

3 218 0.88 997 665 3.28 5.00 6.00 113.00

4 218 0.88 997 665 3.28 5.00 2.00 83.00

5 218 0.88 997 665 3.28 7.00 6.00 151.00

6 218 0.88 997 665 3.28 7.00 2.00 88.00

7 450 0.40 870 740 7.8 2.80 10.00 49.00

8 400 0.47 569 1152 0 4.15 2.70 72.00

9 400 0.47 569 1152 0 6.58 5.06 83.00

10 420 0.39 645 1044 0 3.75 3.63 45.00

11 420 0.39 645 1044 0 4.11 5.13 62.00

12 420 0.39 645 1044 0 5.51 6.44 88.00

13 420 0.39 645 1044 0 4.20 3.27 70.00

14 420 0.39 645 1044 0 5.52 5.09 100.00

15 420 0.39 645 1044 0 4.15 3.19 52.00

16 450 0.35 944 872 5.9 3.90 10.00 58.00

17 280 0.75 905 735 2.4 12.00 71.00 156.80

18 280 0.75 905 735 2.4 12.00 71.00 186.20

19 280 0.75 905 735 2.4 12.00 71.00 166.60

20 280 0.75 905 735 2.4 12.00 71.00 176.40

21 280 0.75 905 735 2.4 12.00 71.00 117.60

22 315 0.55 862 862 6.5 2.70 18.80 55.00

23 325 0.45 305 610 2.7 2.70 18.80 35.00

24 450 0.42 890 710 6.88 2.10 10.00 45.00

25 300 0.49 900 900 10 0.47 2.70 92.00

26 280 0.78 891 735 2.85 2.00 2.50 52.00

27 450 0.40 870 740 7.8 2.80 25.00 58.00

28 280 0.78 891 735 2.85 2.00 2.50 52.00

29 365 0.53 715 805 7.7 2.00 25.00 43.00

30 220 0.91 770 440 0 0.76 0.55 35.00

31 232 0.86 812 464 0 1.06 0.55 26.00

32 303 0.66 682 379 0 1.31 1.16 47.88

33 182 1.10 910 380 0 2.01 2.30 29.70

34 400 0.50 1600 800 0 0.82 0.52 25.00

35 400 0.50 1600 800 0 0.88 0.55 11.50

36 400 0.50 1600 800 0 0.58 0.55 7.00

37 400 0.50 1600 800 0 1.04 1.10 10.50

38 400 0.50 1600 800 0 1.22 2.23 8.50

39 400 0.50 1600 800 0 0.85 2.26 14.00

40 400 0.50 1600 800 0 0.85 2.26 8.50

41 400 0.50 1500 900 0 0.61 0.46 5.00

42 400 0.50 1500 900 0 0.76 0.82 6.50

43 400 0.50 1500 900 0 0.76 1.01 5.50

44 400 0.50 2400 1200 0 0.64 0.52 6.50

45 400 0.50 2400 1200 0 0.52 0.49 4.00

46 400 0.50 2400 1200 0 0.76 1.01 3.00

47 400 0.50 2400 1200 0 1.07 1.07 6.00

48 400 0.50 2400 1200 0 1.16 2.04 1.50
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Table 3 (continued)

No. Cement Water (W/C) Coarse 
aggregates

Fine 
aggregates

Admixture 
agent 
(ml/100 kg)

Total height Casting rate Maximum 
pressure (kPa)

49 400 0.50 2400 1200 0 1.52 2.16 10.00

50 400 0.50 2400 1200 0 2.68 2.74 2.50

51 400 0.50 2400 1200 0 1.55 4.36 3.00

52 396 0.48 693 950 0 2.00 1.00 23.74

53 396 0.48 693 950 0 2.00 1.00 21.88

54 396 0.48 693 950 0 2.00 1.00 25.11

55 396 0.48 693 950 0 2.00 1.00 21.15

56 396 0.48 693 950 0 2.00 1.00 25.96

57 396 0.48 693 950 0 2.00 1.00 22.81

58 396 0.48 693 950 0 2.00 1.00 26.97

59 396 0.48 693 950 0 2.00 1.00 26.92

60 396 0.48 693 950 0 2.00 1.00 30.98

61 396 0.48 693 950 0 2.00 1.00 30.98

62 420 0.50 1030 715 0 17.00 5.00 100.00

63 330 0.50 900 630 0 3.00 12.00 60.90

64 330 0.50 900 630 0 2.00 12.00 59.43

65 330 0.50 900 630 0 3.00 12.00 65.15

66 330 0.50 900 630 0 2.00 12.00 65.20

67 330 0.50 900 504 0 3.00 12.00 58.38

68 330 0.50 900 504 0 2.00 12.00 62.37

69 330 0.50 900 504 0 3.00 12.00 65.48

70 330 0.50 900 504 0 2.00 12.00 65.29

71 330 0.50 900 504 0 3.00 12.00 61.14

72 330 0.50 900 504 0 2.00 12.00 65.19

73 370 0.50 1047 758 2 3.00 1.29 27.00

74 370 0.50 1047 758 0 3.00 1.33 37.50

75 370 0.50 1047 758 0 3.00 0.93 41.50

76 370 0.50 1047 758 0 3.00 1.16 30.50

77 370 0.50 1047 758 0 3.00 0.45 27.50

78 370 0.50 1047 758 0 3.00 8.00 28.50

79 370 0.50 1047 758 0 3.00 1.45 38.20

80 370 0.50 1047 758 0 3.00 1.16 27.20

81 370 0.50 1047 758 0 3.00 1.97 24.80

82 370 0.50 1047 758 0 3.00 3.30 31.30

83 370 0.50 1047 758 0 3.00 6.38 33.00

84 370 0.50 1047 758 0 3.00 1.50 54.70

85 370 0.50 1047 758 0 3.00 2.36 52.90

86 370 0.50 1047 758 0 3.00 5.17 43.70

87 500 0.40 750 750 0 1.83 0.61 14.83

88 500 0.40 750 750 0 3.05 0.61 14.83

89 500 0.40 750 750 0 3.66 0.61 14.83

90 500 0.40 750 750 0 4.88 0.61 14.83

91 500 0.40 750 750 0 6.10 0.61 14.83

92 500 0.40 750 750 0 1.83 1.83 27.55

93 500 0.40 750 750 0 3.05 1.83 37.82

94 500 0.40 750 750 0 3.66 1.83 37.82

95 500 0.40 750 750 0 4.88 1.83 37.82

96 500 0.40 750 750 0 6.10 1.83 37.82
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Appendix 2

Biases and Weights of the ANNSSA Model

Weights of links between input and the hidden layer

=




0.94 0.44 0.32 1.32 −1.21 0.33 0.43 −0.47 −0.38 0.56 −1.10 0.25 0.44 −0.33 0.20

0.32 −0.42 0.03 −0.14 0.20 0.48 0.71 0.72 −0.40 0.49 0.62 0.02 −0.63 0.64 0.77

0.72 −0.13 0.03 0.58 0.64 −0.81 −0.20 0.94 0.62 −1.23 −1.21 −0.54 0.02 −0.70 1.91

0.41 −0.59 1.36 1.43 −1.09 0.48 −0.33 0.78 −0.06 −0.58 0.19 −0.18 0.14 1.16 0.97

−0.44 0.67 −0.07 0.53 −0.82 −0.79 0.03 −1.50 −0.66 −1.01 0.97 0.03 −1.11 −2.52 −0.037

−0.06 0.11 1.36 −0.84 −1.17 −0.56 −0.096 −0.95 −0.67 −0.84 −0.58 0.16 1.31 1.75 −0.78

−1.33 −0.36 −0.43 −0.41 0.27 −0.41 −1.15 0.61 −1.48 −0.31 0.02 0.30 1.25 1.75 0.16

−0.76 0.01 −0.71 0.70 0.4 0.22 −0.39 0.24 0.14 0.48 0.35 −1.41 −0.67 1.78 1.59

0.18 −0.14 0.30 0.63 −0.09 0.9 0.70 0.00 0.58 0.25 0.43 −0.50 2.30 0.65 −4.06




.

Biases of the input layer =
[
0.83 1.22 −0.25 −0.01 −0.53 −0.21 1.27 0.43 −0.71 0.64 0.07 0.90 0.58 1.28 −1.32

]
.

Weights of links between hidden and output layer =
[

−0.28 −0.31 −0.67 0.86 −0.17 −0.78 0.44 0.87 0.48 −0.23 −0.82 −0.91 −1.22 1.18 −1.92
]
.

Biases of the hidden layer =
[
−0.18

]
.

Table 3 (continued)

No. Cement Water (W/C) Coarse 
aggregates

Fine 
aggregates

Admixture 
agent 
(ml/100 kg)

Total height Casting rate Maximum 
pressure (kPa)

97 500 0.40 750 750 0 1.83 3.05 29.33

98 500 0.40 750 750 0 3.05 3.05 45.07

99 500 0.40 750 750 0 3.66 3.05 51.31

100 500 0.40 750 750 0 4.88 3.05 60.91

101 500 0.40 750 750 0 6.10 3.05 64.51

102 500 0.40 750 750 0 1.83 4.27 29.33

103 500 0.40 750 750 0 3.05 4.27 45.07

104 500 0.40 750 750 0 3.66 4.27 52.75

105 500 0.40 750 750 0 4.88 4.27 69.31

106 500 0.40 750 750 0 6.10 4.27 79.54

107 500 0.40 750 750 0 1.83 5.49 29.33

108 500 0.40 750 750 0 3.05 5.49 45.07

109 500 0.40 750 750 0 3.66 5.49 55.44

110 500 0.40 750 750 0 4.88 5.49 69.84

111 500 0.40 750 750 0 6.10 5.49 88.46

112 320 0.75 825 915 0 2.00 10.00 45.00
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Biases and Weights of the ANNGOA Model

Biases and Weights of the ANNGA Model

Weights of links between input and the first hidden layer =




−0.22 0.06 −1.00 1.44 0.78 0.23 −3.02
1.15 0.67 2.37 −3.05 2.13 2.68 0.57
−0.90 −0.09 −0.48 1.68 0.45 0.70 −1.16
−0.78 0.32 −0.12 −1.93 2.40 0.79 −0.13
−0.61 −1.12 1.15 −1.32 0.26 −0.26 1.52
−1.95 −0.99 −2.58 0.64 −2.31 −0.56 0.62
0.29 −1.66 0.71 1.71 0.57 1.84 2.45
−1.73 1.81 −2.50 1.18 1.37 1.10 −1.03
−0.091 −0.31 −0.37 −5.13 −3.87 −0.12 2.03




.

Biases of the input layer =
[
0.03 −0.22 −0.34 −0.55 −0.98 −1.07 0.09

]
.

Weights of links between the first and the last hidden layer =




−1.11 −0.66 −2.24 −0.78
2.39 −0.00 2.62 1.05
−0.36 1.21 2.38 0.68
1.57 −0.15 2.68 0.78
0.11 −1.65 −4.72 −1.34
−1.90 −0.59 1.45 −0.11
2.15 −0.63 0.93 0.54



.

Biases of the first hidden layer =
[
−0.04 −1.24 0.55 −0.33

]
.

Weights of links between the last hidden and output layer =
[
−0.10 −1.14 −0.68 2.65

]
.

Biases of the last hidden layer = [−0.20].

Weights of links between input and the first hidden layer =




0.16 −0.56 −0.89 0.07 −0.30 0.17 −0.60 −1.08 0.81 −0.28 −0.83 −0.73 −0.022

−0.25 −0.28 −0.08 −0.70 −0.89 −0.02 −1.05 −0.91 1.13 −0.49 −0.99 −0.57 1.096

−0.31 0.80 1.05 −0.67 −1.16 0.40 0.69 0.55 0.35 0.94 0.02 −0.11 0.013

0.15 −0.10 −0.95 −0.43 −0.95 0.09 0.22 0.85 −0.99 0.17 0.72 −0.73 0.51

−1.22 −0.22 0.39 −0.86 −0.79 −0.41 −0.50 −0.50 −0.26 −0.84 −0.63 0.52 0.34

0.20 −0.72 −0.18 0.53 0.45 0.88 0.32 −0.45 −0.09 −0.96 −0.40 0.13 0.38

0.40 −0.01 0.76 1.00 0.45 −0.14 −0.79 −0.31 0.96 −0.99 −1.09 0.76 0.61

−1.11 0.01 0.35 0.57 1.06 −0.81 0.52 −1.05 −1.53 0.13 −0.79 1.06 −0.12

0.87 −0.63 −1.02 0.21 0.06 0.86 −0.27 −0.73 0.03 0.48 1.90 0.78 −1.47




.

Biases of the input layer =
[
−0.69 0.86 −0.96 0.25 −0.10 0.77 0.91 −0.20 0.50 0.12 −0.41 −0.41 0.39

]
.
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Weights of links between the first and the second hidden layer =




1.07 0.51 0.73 −0.12 −0.72 0.71 −0.62 −0.37 0.40 −0.21

−0.96 1.14 −0.87 0.78 0.07 −0.29 0.08 −0.14 −0.48 0.16
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.

Biases of the first hidden layer =
[
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]
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Weights of links between the second and the last hidden layer =
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0.96 1.02 −0.98 −0.38 −0.26
0.61 0.22 0.77 −1.00 0.45
0.77 0.26 −0.93 0.46 −0.57




.

Biases of the first hidden layer =
[
0.33 0.95 0.70 0.54 0.07

]
.

Weights of links between the last hidden and output layer =
[
1.96 0.79 1.58 0.70 0.06

]
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