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Abstract 

The linear complementarity problem (LCP) approach, expedited by using the simple rigid–plastic theory, has been uti-
lized successfully in predicting the numerical response of the ductile steel or concrete structures subjected to short-
duration, high-intensity dynamic loads. The current study attempts to improve the computational stability of this 
powerful technique while determining the response of skeletal structures under blast loading. The performance of 
the Lemke LCP solver is amplified by introducing an automatic time-stepping scheme to efficiently trace the complex 
dynamic response using either lumped mass or continuous mass discretization. The computational efficiency of this 
solver is tested against carefully chosen three numerical examples, and the acquired results are in good agreement 
with the derived closed-form solution and results from other sources.
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1 Introduction
Blast loading response is an essential aspect of civilian 
and military structures that are likely to be subjected to 
accidental explosions and terrorist attacks (Chen et  al., 
2011; Jones, 1990). These extreme events demand a bet-
ter understanding of structural behavior especially for 
appraising their safety (Biju et  al., 2017; Jahami et  al., 
2019; Lee & Kwak, 2018; Li et al., 2018; Liu et al., 2018; 
Magnusson & Hallgren, 2004; Magnusson et  al., 2010; 
Temsah et al., 2018; Young Lee et al., 2018; Zhang et al., 
2013). Numerous experimental and numerical studies 
have been carried out in which damage of blast-loaded 
structural components is appraised (Guzas & Earls, 2011; 
Kirsch & Bogomolni, 2007; Nawar et  al., 2021; Portioli, 
2020; Tian et  al., 2020; Wu et  al., 2020; Yu et  al., 2019). 

Most of the numerical models used in research require a 
high level of expertise and are computationally expensive 
(Jones, 1976). This demands a simple numerical method 
that can predict the blast loading response with reason-
able accuracy.

The simplicity of rigid–plastic approximation has been 
known for several decades as an analytical tool defining 
and crystallizing concepts that can be extended to a wide 
class of problems (Cennamo et  al., 2017; Jones, 1986; 
Lee & Symonds, 1952a; Taylor, 1948). The rigid–plastic 
theory was first applied to dynamic problems in 1949 
(Taylor, 1948) and systematically studied in 1952 (Lee & 
Symonds, 1952b). These studies subsequently yielded vast 
literature on the investigations of structures submitted to 
extreme dynamic loading (Bleich & Shaw, 1960; Jones & 
Shen, 1993; Ling et al., 2017; Lowe et al., 1972; Mehrega-
nian et  al., 2019; Menkes & Opat, 1973; Parkes, 1955, 
1958; Symonds, 1967; Symonds & Frye, 1988). Yet, it is 
noteworthy that each closed-form theoretical solution 
requires postulating a kinematically admissible veloc-
ity profile for the evolution of displaced configuration. 
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Therefore, most procedures incorporating the simple 
rigid–plastic theory are oriented towards obtaining spe-
cific results for specific problems and demand personal 
judgment for getting the best results.

The numerical investigation of the dynamic response 
of rigid–plastic structures appears not to have been 
examined extensively. The commercially available finite 
element softwares, such as ABAQUS, ANSYS, etc., expe-
rience severe mathematical complications when a purely 
rigid–plastic model is adopted. From this precedent, 
mathematical programming provides an approach to 
incorporate the rigid–plastic theory into a unified for-
malism that is not specific and problem-oriented. Fur-
thermore, mathematical programming (Dantzig, 1998; 
Dantzig et  al., 1955; Guzas & Earls, 2011; Lemke, 1978; 
Murty, 1983) has a broader application in various spe-
cialized fields of engineering, such as robotics (Nuseirat 
& Stavroulakis, 2000), fluid simulation (Andersen et  al., 
2017), and agriculture (Garrido et  al., 2020). It has the 
potential to proffer a finite element-based numerical for-
mulation (Maier, 1984; Martin, 1964) that facilitates any 
distribution of mass, spatial placement of applied load-
ing, and temporal variation of the associated load pulses. 
Moreover, once the physical modeling decisions have 
been taken, a complete algorithmic or completely auto-
matic solution procedure can be obtained. The benefits 
of mathematical programming have been recognized 
for more than 60 years. Extensive surveys of the use of 
the mathematical programming application in engineer-
ing plasticity have been reported by Maier (Maier, 1984), 
Maier and Munro (Maier & Munro, 1982) and Maier and 
Lloyd Smith (Maier & Munro, 1982; Smith, 1974).

Tamuzh (Tamuzh, 1962) first offered a procedure to 
determine the response of rigid, perfectly plastic con-
tinua using kinematic minimum principle. Later Capurso 
(Capurso, 1972) used this principle to formulate a math-
ematical programming problem capable of tracing the 
response of rigid–plastic framed structures submitted to 
short-duration pulse loads. The capability of such math-
ematical programming problem can be enhanced by 
incorporating the effects of strain rate and large displace-
ments in rigid–plastic material model (Cennamo et  al., 
2017; Jones, 1986; Lee & Symonds, 1952a; Taylor, 1948). 
In recent times, Patsios and Spiliopoulos (Patsios & Spili-
opoulos, 2018) have analyzed structural frames using the 
mathematical programming method. Moreover, Milani 
and Tralli (Milani et  al., 2009) have employed mathe-
matical programming to model the behavior of masonry 
walls. Later, Portioli has used a similar model for the 
dynamic and pushover analysis of masonry structures 
(Portioli, 2020). Although mathematical programming 
has the potential to solve problems in dynamic plastic-
ity (Khan et al., 2013; Rodigari et al., 2019), this tool has 

not been exploited to any great extent (Milani et al., 2009; 
Wu et al., 2020).

In a companion paper by Khan et al. (Khan et al., 2013), 
a mathematical programming formulation, called the 
Linear Complementarity Problem LCP (Lloyd Smith & 
Sahlit, 1991; Smith, 1990), was developed. In that study, 
the LCP solution was employed as a simplified design 
procedure for the assessment of structures under impact 
loading. This type of loading required an initial veloc-
ity profile for starting the Lemke Algorithm (Khan et al., 
2021). However, it was shown (Khan et  al., 2013) that 
such problems posed considerable numerical difficul-
ties in finding solutions for simple bending-only models. 
These numerical problems were avoided by considering 
the bending–shear interaction in the model. In a recent 
research (Khan et al., 2021), the Lemke algorithmic solu-
tion was tested by investigating several engineering prob-
lems; these included a simply supported beam subjected 
to rectangular pulse load and a portal frame subjected to 
triangular pulse load. A comparison of the LCP approach 
with the theoretical and the numerical solutions using 
lumped mass discretization showed excellent agreement. 
Nevertheless, there were occasions, particularly in the 
analysis of the portal frame problem, when the algorithm 
would become unstable producing illogical results. One 
remedy to reduce this instability was to use a smaller time 
step that is specified at the outset of the evolutionary 
process. In the current study, this numerical instability of 
the Lemke solver is investigated, and remedial measures 
are proposed. Specifically, the instability becomes more 
pronounced with the continuous mass discretization and 
mesh refinement. It turns out that this instability can 
disappear if the time step is allowed to adjust automati-
cally, especially in highly nonlinear dynamic problems. 
A newly developed time-step controller subroutine is 
incorporated within a MATLAB program that reduces 
the increment size repeatedly until stability is achieved. 
It also overcomes the instability problems encountered 
when refining the finite element mesh (Khan et  al., 
2013). Three illustrative examples are carefully selected 
to test the accuracy and efficiency of the improved LCP 
solver. The first two examples are comparable to that of 
the recent investigation (Khan et al., 2021), but with the 
increased non-linearity to the dynamic response. The 
third verification example investigates the experimental 
study of Zhang et  al. (Zhang et  al., 2013) involving the 
dynamic response of a semi-clamped RCC beam.

2  Research Significance and Assumptions
Computation of structural response under blast loading 
is important for reducing the risk and ensuring the safety 
of people. This demands a fast algorithm that can effi-
ciently handle material nonlinearities and give accurate 
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results. There exist limited numerical methods that can 
be applied to capture the complex dynamic behavior of 
structures subjected to blast loading. Commonly used 
methods of determining the response of structures to 
blast loading are simulations in commercial finite ele-
ment softwares, such as ABAQUS, ANSYS, etc. However, 
due to their higher computational cost and requirement 
of skills to simulate complex models, an efficient formu-
lation is needed that has the important practical benefit 
of speed and simplicity. Inspired by the promise shown 
by the previous investigations, rigid–plastic structures 
under impact (Khan et  al., 2013) and Lemke Algorithm 
for the rigid–plastic response (Khan et al., 2021), the pre-
sent study is a more systematic exploration of this power-
ful approach to efficiently predict the response of skeletal 
structures under blast loading. A predicament encoun-
tered previously (Khan et al., 2021) was a tendency of the 
LCP algorithm to crash when a large number of continu-
ous mass finite elements were employed in the modeling. 
Such problems are resolved in the current study when a 
newly developed automatic time-step controller is incor-
porated. Three computational examples are presented 
to prove the accuracy and efficiency of the updated LCP 
solver with low-order finite elements.

The following assumptions are made in the proposed 
LCP formulation:

1. The initial energy is so large that the elastic response 
can be neglected

2. A skeletal structure is envisaged as an assemblage of 
elements connected with other elements at stations 
called nodes.

3. The development of plasticity is confined to dis-
crete points or nodes on the structural element. No 
account is taken of the spreading of plasticity, either 
in the direction of the locus of cross section or within 
the structural element between the discrete points.

4. The mass properties of a structure are defined at dis-
crete points. Thus, it is idealized that massless ele-
ments connect these lumped masses.

5. The structural system is considered as rigid–plas-
tic, incompressible, and inextensible. Therefore, the 
effect of strain rate and strain hardening are ignored.

6. The deflection of the structural system remains small 
during the dynamic response.

3  Proposed Dynamic Rigid–Plastic Model
In the current section, the fundamental vectorial condi-
tions, namely the kinetics, the kinematics, and the mate-
rial constitution, characterizing the behavior of rigid, 
perfectly plastic structural systems undergoing dynamic 
disturbances due to blast loading, are combined consist-
ently. The structure is envisaged as an assembly of dis-
crete finite beam elements, such as a discretized beam 
shown in Fig.  1, whose structural mass is either con-
centrated at the boundaries of the elements or continu-
ously distributed along the elements. These continuous 
mass elements can cause instability issues in the recently 
reported Lemke solver (Khan et al., 2021). Thus the effi-
ciency and stability of the solver are improved by imple-
menting an automatic time-stepping algorithm with the 
Lemke solver.

3.1  Representation of Kinetics and Kinematics as Nodal 
Description

The structure in Fig.  1 is formed from nodal substruc-
ture having the generalized stresses S (i.e., bending 
moment M) and the generalized strain rates ṡ (i.e., rota-
tion rates θ̇ ) imposed at the critical sections. The struc-
ture is subdivided into N finite elements, in which the 
independent movements of the interconnecting nodes 
are governed by β degrees of freedom. Any kinematically 

Chord

X1

X2

2
s&

1
s&

S2S1

1
x&

2
x&

Fig. 1 Stress-resultants, strain-resultant rates, chord deformation rates and independent chord forces.
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consistent velocity distribution or profile may be 
specified completely in terms of β independent nodal 
velocitiesq̇j

(

j = 1, 2, . . . . . . ,β
)

 . For an assembly of the 
inextensible planar elements, with α static indeterminacy 
and S plastic rotational deformations occurring at the 
element extremities, the kinematic indeterminacy num-
ber can be established asβ = S − α.

When each of the β independent nodal velocities q̇ is 
released, a velocity profile is generated; Figs. 1, 2, 3. Geo-
metric consideration of the velocity profile can help in 
determining the independent member deformation rates 
ẋh(h = 1, 2, . . . .., 2N ) , the velocities related to the center 
of gravity of mass u̇k(k = 1, 2, . . . .., γ ) , and the load-point 
velocities δ̇l(l = 1, 2, . . . .., n) . Hence, the nodal represen-
tation of the kinematic equations has the form:

where the coefficient matrix is constant, provided that 
the motion falls within small displacements.

Let the structure be subjected to n discrete time-
dependent loads �l(l = 1, 2, . . . .., n) applied at the nodes. 
By employing the D’ Alembert principle, during every 
instant of the accelerated motion of a structure, the 
applied loads and the inertia forces µk(k = 1, 2, . . . .., γ ) 
are in equilibrium with the independent member forces 
Xh(h = 1, 2, . . . .., 2N ) . Corresponding to the independ-
ent nodal displacements, the nodal forces of constraint  
Qj

(

j = 1, 2, . . . ..,β
)

 are applied. For the satisfaction of the 
dynamic equilibrium, it is necessary that the constraints 
Qj must vanish, giving the nodal kinetics description for 
the assembly of all elements:

where T denotes transposed coefficient matrix. It may be 
observed that (1) and (2) satisfy the adjoint relationship 
of kinetic–kinematic duality.
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The independent relations (1) and (2) have no cause–
effect relationship between the kinetic and kinematic 
variables. Nevertheless, the relation

implicitly links the inertia forces µk(k = 1, 2, . . . .., γ ) , 
located at the mass centroid, with the corresponding 
centroidal accelerations ük(k = 1, 2, . . . .., γ ) of the actual 
motion of the system. In this inertial law, the diagonal 
mass matrix mk(k = 1, 2, . . . .., γ ) constitutes the mass or 
moment of inertia related to the corresponding centroi-
dal accelerations.

3.2  Material Model
The cause–effect relation between the stress-resultant Si1 
(bending moment Mi ) and its dual strain-resultant rate 
ṡi1 (rotation rate θ̇i ) at critical section i, (i = 1, 2, . . . ,χ) , 
is illustrated in Fig. 4. The yielding at the critical section 
i is defined by two variables, i.e., the plastic potential y∗ 
and the plastic multiplier rate ẋ∗ . Notably, X∗ collects 
the moment capacities for positive or negative bend-
ing. Suppose if X+i

∗ ≥ 0 , so that the critical section i has 
deformed plastically ( y+i

∗ = 0, ẋ+i
∗ ≥ 0 ) and therefore the 

stress-resultant Si1 is positive. A similar argument applies 
to X−i

∗ ≥ 0, y−i
∗ ≥ 0, ẋ−i

∗ ≥ 0 when Si1 is negative.
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Fig. 2 Centroidal velocities in a lumped mass system.
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Fig. 3 Centroidal velocities in a continuous mass system.

Fig. 4 Variables describing a simple flexural plastic hinge.
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The plastic potential y∗ and the plastic multiplier rate 
ẋ∗ are coupled together via complementarity condition 
( y+i

∗ ẋ+i
∗ = 0 ). This condition ensures the irreversible 

nature of plasticity. It means that the plastic deformation 
will only occur (say ẋ+i

∗ > 0 ) if the corresponding yield 
limit is attained 

(

y+i
∗ = 0

)

 . Whereas, if the yield limit is 
not attained (say y+i

∗ > 0 ), then the plastic deformation 
cannot be active 

(

ẋ+i
∗ = 0

)

 . Now the rigid-perfectly plas-
tic constitutive relation for each critical section i is writ-
ten in matrix notation:

where N is the matrix defining the exterior unit normal 
to the yield function. More specifically,  N =

[

I −I
]

 and 
I is the identity matrix.

It is of interest to develop a governing mathematical 
system that couples the nonholonomic (Maier & Munro, 
1982) constitutive relations, (4) to (7), with the kinetic 
and the kinematic relations, (1) to (3). Fig. 1 clearly illus-
trates that the independent member forces X and the 
independent member deformation rates ẋ can be defined 
by the respective stress-resultants S and the strain-result-
ant rates ṡ . These can be collected for all the constituent 
finite elements:

3.3  The Mathematical Formulation
The vectorial relations (1) , (2),  (3), together with the 
triad of complementarity conditions (5),  (6), (7), can be 
combined into a set of second-order differential equa-
tion with respect to time. Nevertheless, this set is made 
more complex by the complementarity conditions. As 
no closed-form solution is known to this kind of math-
ematical problem, adopting a numerical solution appears 
reasonable. Therefore, a time marching scheme is intro-
duced in order to allow the solution to be advanced from 
a time station tn to tn+1 = tn +�t , where subscript n is 
an integer defining successive discrete time stations and 
�t is the intervening time increment. Then the centroidal 

(4)
[

0 NT

N 0

][

ẋ∗
S

]

+

[

y∗
0

]

=

[

X∗

ṡ

]

(5)y∗ ≥ 0

(6)yT∗ ẋ∗ = 0

(7)ẋ∗ ≥ 0

(8)ẋ = Tṡ,

(9)S = TTX.

velocities and accelerations can be expressed in the New-
mark’s time-integration scheme:

and

in which integration constants are

It is found after thorough investigations (Khan et  al., 
2013) that suitable results are obtained for rigid–plastic 
dynamics if  α = 0.25 and γ = 0.5.

Collecting together (1) to (9), at the time t = tn+1 , 
and coupling with the Newmark’s scheme (10) to (16) 
the governing system becomes:

with variables q̇n+1, Xn+1 unrestricted.
The right-hand side sub-vector Yn+1 of (17) is given 

by:

and the mass matrix Mq is given by relation:

The approximating governing system (17), (18), (19), 
(20) has a mathematical structure of a linear comple-
mentarity problem (LCP). It may be noticed that the 
variables [ẋ∗, y∗] are restrained into the complementary 

(10)ün+1 = b0(u̇n+1 − u̇n)− b1ün

(11)u̇n+1 = un + b2u̇n + b3ün + b4ün+1,

(12)b0 =
1

γ�t
,

(13)b1 =
1− γ

γ
,

(14)b2 = �t,

(15)b3 = (0.5− α)�t,

(16)b4 = α�t2.

(17)
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,

(18)y∗n+1 ≥ 0,

(19)yT
∗n+1ẋ∗n+1 = 0,

(20)ẋ∗n+1 ≥ 0,

(21)Yn+1 = AT
0 �n +Mq(b0q̇n + b1q̈n),

(22)Mq = AT
d mAd .
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pairs, whereas the leading sub-matrix related to vari-
ables [q̇,X] is negative semi-definite. In this work, the 
governing system is solved efficiently by Lemke algo-
rithm due to its simplicity and robustness.

3.4  Initiation
The incremental numerical process shown in (17), (18), 
(19), (20), representing the evolutive sequence of the 
dynamic response, is not self-starting. Therefore, it is nec-
essary to establish a subroutine to calculate the relevant 
accelerations at a certain instant. These accelerations are of 
particular relevance at the commencement of the motion 
and the deactivation of the previously active section. At the 
initiation of the response, the vector of plastic multiplier 
rates ẋ∗ is separated into Y yielded sections and R rigid 
sections. So, these subsets of the multiplier rates ẋ∗ can be 
expressed as:

Using Tamuzh principle (Tamuzh, 1962), the discrete law 
(4) to (7) can be written in the form

Notably, the relation (25) to (29) represents the admissi-
ble acceleration field that is derived from differentiating the 
rigid-perfectly plastic constitutive relation (4) to (7).

Differentiating with respect to time the kinematic rela-
tion (1), and together with the admissible acceleration field 
(25) to (29), Sahlit (Lloyd Smith & Sahlit, 1991) re-estab-
lished the governing system in terms of accelerations:

(23)Y =
{(

ẋ∗y, y∗y
)

|ẋ∗y > 0, y∗y = 0
}

,

(24)R =
{(

ẋ∗r , y∗r
)

|ẋ∗r = 0, y∗r ≥ 0
}

.

(25)
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(28)ẍ∗r ≥ 0,

(29)ẍ∗y unrestricted.
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,

with variables q̈, ẍ∗y,X unrestricted.
The previous study (Maier, 1984) of impact required an 

initial velocity field to coerce the dynamically loaded struc-
ture into motion, so the vector of initial loading was null 
�0 = 0 at the start of motion. The current investigation has 
a load vector � = �0 , while the prescribed initial velocity is 
null q̇0 = 0.

3.5  Automatic Time‑Stepping Algorithm
The LCP formulation (17), (18), (19), (20) has stability 
restrictions on the size of the time step that is specified 
at the outset of the evolutive response. Lemke algorithm 
(Khan et al., 2021) solves the LCP formulation very effi-
ciently and robustly, provided the fixed time-step size 
is small enough to ensure stability. A smaller time step 
defined at the outset can provide a detailed description 
of the whole response, but is computationally expensive. 
Selecting a fixed step size is very challenging (Khan et al., 
2013) in the case of the continuous mass model of Fig. 3, 
especially as the mesh is refined. The continuous model 
with a bigger time step can cause the LCP solver either 
to crash or converge to a physically meaningless solution. 
A possible solution to overcome this problem is an auto-
matic selection of time-step size, which can maximize the 
numerical accuracy while minimizing the computational 
cost.

The proposed automatic time-stepping algorithm is 
implemented via a routine in the LCP iterative procedure 
as shown in Fig. 5. This scheme adjusts the time step when 
it detects the anomalous value of plastic multiplier rates ẋ∗ 
occurring over several consecutive time intervals. These 
anomalous values of plastic multiplier rates are given 
in Fig.  5. Thus, the evolutive sequence of the dynamic 
response is terminated temporarily at the instant when 
this anomaly is detected and restarted with the increment 
size shortened. The stepping algorithm can reduce the 
increment size repeatedly if the anomaly remains. Once 
the anomaly is resolved, the time increment is lengthened 
to its original value. This automatic control allows substan-
tial gains in the numerical stability of the LCP algorithm. 
If unstressing is detected within the increment ∆t, another 
subroutine calculates the unstressing time instant tn+ε 
within the interval ∆t (Khan et al., 2013). Subsequently, the 
structural variables at tn+ε are determined, and the evolu-
tive process of the LCP system (17), (18), (19), (20) is re-
initiated with  tn+ε as the starting-time.

(31)y∗r ≥ 0,

(32)yT
∗r ẍ∗r = 0,

(33)ẍ∗r ≥ 0,
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4  Case Study: Triangular Pressure Pulse 
on a Propped Cantilever Beam

The underlying behavior of a pulse-loaded propped can-
tilever beam is illustrated in this section; Fig. 6. A recent 
study (Khan et  al., 2021), in which a rectangular pulse-
loaded simply supported beam was examined using the 

Lemke Algorithm, is extended to a linearly decaying 
pulse and asymmetric support condition. The primary 
aim is to validate the automatic time-stepping algorithm 
by reference to a suitably complex problem. More specifi-
cally, the support and the loading condition of this case 
study problem are chosen to enhance the complexity of 

Construct nodal Tableau (30)
Set

Time step is specified as input

Evaluate LCP (30)-(33) for

Set n = 0

Unstressing has occurred during
time
Identify the unstressing time

Evaluate the evolutionary
LCP LCP (17) – (20).
Adjust the Right hand side
using (21)

Check

=0

Evaluate LCP (30)-(33) for

Set

Construct the
tableau in the
form (17)

=0
(if all components of
are zero)

>0
Resume original time step

Motion
terminates; stop

Check
*anomalies in

Reduce time step

Resume original time step

* Anomalies in
=
>0, =0, >0

Fig. 5 Iterative procedure of LCP response.

Fig. 6 Propped cantilever beam subjected to triangular pulse load.
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the traveling plastic hinge phases. The exact solution is 
derived here to give insight into the associated physi-
cal phenomena and to demonstrate the efficiency of the 
improved Lemke algorithm.

4.1  Problem Statement
Let a rigid-perfectly plastic propped cantilever beam of 
length L and uniform mass per unit length m be sub-
jected to a uniformly distributed linearly decaying pulse, 
shown in Fig. 6. The pulse can be written as:

Let the fully plastic bending moment of the beam be Mp , 
while the effect of shear force on yielding be neglected. A 
sequence of the response phases can be performed based on 
the magnitude of the force P0 ; Fig. 7. Whenever the applied 
load is less than the static collapse load Pc , the rigid-perfectly 
plastic beam remains static and undeformed (Jones, 1990).

The proposed theoretical solution of the problem shown in 
Fig. 6 is discussed below. The description of the phases is also 
given in Fig. 7.

(34)P = P0

(

1− t

τ

)

, 0 ≤ t ≤ τ ,

P = 0, t > τ .

4.1.1  Theoretical Response of the Beam, Pc ≤ P0 ≤ 3Pc

Phase 1 of motion An analytical solution is desired using 
the transverse velocity distribution shown in Fig. 8. The 
beam is idealized as two rigid arms connected by a sta-
tionary plastic hinge located at x = ξ∗ from the clamped 
end. It is found, if Pc < P0 < 2Pc, the motion commences 
at t = 0 , and then ceases before the pulse terminates; that 
is, t < τ.

The bending moment is given by

and

(35)
M =P0

(

1−
t

τ

)(

ξ∗x −
x2

2

)

+
m

2ξ∗

d2W1

dt2

(

x3

3
− ξ2∗ x

)

−Mp,

for 0 ≤ x ≤ ξ∗ and Pc < P0 ≤ 3Pc,

(36)
M = P0

(

1−
t

τ

)(

ξ∗x −
x2

2
−

ξ∗
2

2

)

+
m

(L− ξ∗)

d2W1

dt2

(

Lx2

2
−

x3

6
− Lξ∗x +

ξ∗
2x

2
−

ξ3∗

3
+

Lξ2∗
2

)

+Mp

Check
A stationary plastic hinge
within span and clamped end

A stationary plastic hinge within
span and clamped end
Motion ceases before termination
of pulse load

A stationary plastic hinge within
span and clamped end
Motion during pulse duration

A stationary plastic hinge within
span and clamped end
Motion continues after termination
of pulse load

Two travelling plastic hinges within
span and one stationary hinge at
cantilever end
Travelling plastic hinges coalesce
before the pulse terminates

Two travelling plastic hinges within
span and one stationary hinge at
clamped end
Travelling plastic hinges coalesce after
the pulse terminates

A stationary plastic hinge
within span and clamped end

Fig. 7 Dynamic analysis of propped cantilever beam.
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whereas

for  0 ≤ x ≤ ξ∗ and Pc < P0 ≤ 3Pc, and

for  ξ∗ ≤ x ≤ L and Pc < P0 ≤ 3Pc.

A stationary hinge is formed at ξ∗ = 0.585786438L, 
Fig.  8, which is similar to the static collapse case. 
Within the phase the velocity at ξ∗  is given by

for Pc < P0 ≤ 3Pc, and

for Pc < P0 ≤ 3Pc.

As mentioned earlier, if Pc < P0 < 2Pc , the motion 
ceases before the pulse terminates. The beam will reach 
its final position when the central velocity Ẇ1 = 0 , 
which occurs when:

for Pc < P0 < 2Pc.

However, if 2Pc < P0 < 3Pc, the motion continues 
until t > τ . Therefore, the first phase of motion con-
cludes at t = τ , when the beam has an associated maxi-
mum transverse velocity:

for ξ ∗ ≤ x ≤ L and Pc < P0 ≤ 3Pc,

(37)
d2W1

dt2
=

3P0

2m

(

1−
t

τ

)

−
6Mp

mξ2∗
,

(38)
d2W1

dt2
=

3P0

2m

(

1−
t

τ

)

−
3Mp

m(L− ξ∗)
2
,

(39)Ẇ1 =
3P0

2m

(

t −
t2

2τ

)

−
6Mpt

mξ2∗
,

(40)W1 =
3P0

2m

(

t2

2
−

t3

6τ

)

−
6Mp

mξ2∗

(

t2

2

)

,

(41)T =
4τ

P0

(

P0

2
−

2Mp

ξ2∗

)

,

for t = τ and 2Pc < P0 ≤ 3Pc, and the peak transverse 
displacement:

for t = τ and 2Pc < P0 ≤ 3Pc.

4.1.2  Phase 2 of Motion, 2Pc < P0 < 3Pc

The beam will be unloaded when the external pressure 
terminates at t = τ ; Fig. 6. If the transverse velocity of the 
beam at time t = τ conforms to (42), then the beam will 
continue to deform after time t ≥ τ until the remaining 
kinetic energy is dissipated at the plastic hinges.

After unloading, the beam continues to deform and the 
velocity at the center of the beam is represented as

with the corresponding maximum displacement is:

The motion comes to stand still when Ẇ2 = 0 , which 
occurs when:

4.2  LCP Prediction of Beam Response, Pc ≤ P0 ≤ 3Pc

Consider the propped cantilever beam shown in Fig.  6 
that is impelled by a uniformly distributed linearly decay-
ing force pulse. Two amplitudes of pressure pulses were 
considered, one with force magnitude P0 = 1.5Pc and 
non-dimensional duration τ = Mpτ/IL = 0.458 , and the 
other with force magnitude P0 = 2.5Pc and non-dimen-
sional duration τ = Mpτ/IL = 0.275 , where I = 1/2P0L 
is the total impulse of the load. The rigid beam was 
discretized into 100 finite elements by idealizing the 
structure into either lumped mass elements (Fig.  2) or 
continuous mass elements (Fig. 3).

Investigation showed that the LCP offered promising 
results having small errors in most of the examined quan-
tities. Table  1 presents the results for the non-dimen-
sional central displacement W̄1 = (W /L).(mL)Mp/I

2 
and the non-dimensional cessation time T̄1 = MpT1/IL , 

(42)Ẇ1 =
3P0τ

4m
−

6Mpτ

mξ∗
2
,

(43)W1 =
P0τ

2

2m
−

3Mpτ
2

mξ∗
2
,

(44)Ẇ2 =
3P0τ

4m
−

6Mpt

mξ∗
2
,

(45)W2 =
3P0τ t

4m
−

3Mpt
2

mξ∗
2

−
P0τ

2

4m
,

(46)Tf =
ξ2∗P0τ

8Mp
.

Fig. 8 Distribution of transverse velocity during Phase 1 of the 
motion.
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both calculated for the force magnitude P0 = 1.5Pc 
and P0 = 2.5Pc . It is evident from the table that for 
Pc < P0 < 2.0Pc the motion ceases before the pulse 
terminates at τ = Mpτ/IL = 0.275 ; whereas, for 
2Pc < P0 < 3Pc the motion continues until after the 
pulse terminates. Hence, the LCP solution confirms 
that the dynamic response is characterized by the pulse 
magnitude.

Fig. 9 shows the evolution of non-dimensional central 
displacement W̄1 = (W /L).(mL)Mp/I

2 at ξ∗ (Fig. 8) when 
P0 = 2.5Pc . It is apparent from Fig. 9 that the LCP results 
concur with the theoretical solution.

Figs.  10 and 11 show the bending moment distribu-
tion across the non-dimensional distance ζ/L from the 

clamped support of the beam. Once again, the accuracy 
and efficacy of the LCP solution are demonstrated.

All these results show that both the lumped mass and 
the continuous mass discretization substantially agree 
with the closed-form solution. Previously (Khan et  al., 
2013), the continuous mass elements incurred extreme 
difficulty, especially after mesh refinement. Therefore, 
the recent study (Khan et  al., 2021) used only lumped 
mass discretization to solve various numerical examples 
of blast-loaded skeletal systems. The current investiga-
tion clearly shows that regardless of lumped or continu-
ous mass discretization, mesh refinement is not an issue 
when an automatic time-stepping scheme is adopted. 
However, a suitable complex test involving the phase of 

Table 1 Comparison between theoretical solution and numerical LCP solution at phase transition.

Theoretical 
solution

Numerical
Lumped mass

Error 
Lumped mass
(%)

Numerical
Continuous mass

Error 
Continuous mass
(%)

P0 = 1.5Pc

 Hinge position
ξ∗/L

0.58579 0.59000 − 0.72 0.58500 0.1349

 Displacement at the end of motion
W̄1 = (W1/L)(mL)Mp/I

2

0.13471 0.13429 0.31 0.13456 0.1114

 Cessation time
t = MpT/IL

0.30463 0.30444 0.06 0.30784 − 1.0537

P0 = 2.5Pc

 Hinge position
ξ∗/L

0.58579 0.59000 − 0.72 0.58500 0.1349

 Displacement at the end of first phase
W̄1 = (W1/L)(mL)Mp/I

2

0.43885 0.43576 0.7 0.43615 0.6152

 Displacement at the end of second phase
W̄2 = (W2/L)(mL)Mp/I

2

0.48008 0.47692 0.66 0.47706 0.6291

 Cessation time
t̄2 = MpT/IL

0.34315 0.34308 0.02 0.3450 − 0.5391

0.00

0.10

0.20

0.30

0.40

0.50

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Theoretical

Lumped Mass (100 elements)

Continuous mass (100 elements)

Phase 1 Phase 2

Fig. 9 Evolution of central displacement at ξ∗ (P0 = 2.5Pc).
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Lumped Mass (100 elements)

Continuous Mass (100 elements)

Fig. 10 Dynamic bending moment when the pulse terminates 
(P0 = 2.5Pc).
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traveling plastic hinges can provide a better opportunity 
for the robustness of the LCP method.

4.3  Theoretical Response of the Beam, P0 ≥ 3Pc

In order to furnish an elaborate numerical test of the 
improved LCP method, the phase of the traveling plas-
tic hinges is investigated. This phase is fostered when 
the applied pressure pulse is of higher magnitude, 
i.e., P0 ≥ 3Pc . It transpires that for pressure pulses 
3Pc < P0 < 6Pc two traveling plastic hinges appear 
within the beam span and move inward; Fig.  12. These 
hinges coalesce before the pulse terminates. However, if 
the pressure pulse P0 > 6Pc , then the traveling hinges do 
not coalesce until after the pulse terminates.

4.3.1  Phase 1 of Motion
Initially, at t = 0 , it is postulated that three plastic hinges 
form, two within the beam span and the third at the 
clamped support. The transverse velocity distribution is 
in Fig. 12. Thus,

for 0 ≤ x ≤ ξ∗1 , and

for ξ∗1 ≤ x ≤ ξ∗2 .

Similarly,

(47)
M =P0

(

1−
t

τ

)(

ξ∗1 x −
x2

2

)

+
m

2ξ∗
1

(

d2W1

dt2

)(

x3

3
− ξ∗21 x

)

−Mp,

(48)M = Mp,

for ξ∗2 ≤ x ≤ L, with
(49)

M = −Px2/2+ P
[

Lx2/2− x3/6
]

/
[

L− ξ∗2
]

+ C1x + C2,

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Theoretical

Lumped Mass (100 elements)

Continuous Mass (100 elements)

Fig. 11 Dynamic bending moment when the motion ceases 
(P0 = 2.5Pc).

Fig. 12 Distribution of transverse velocity during Phase 1 of motion.
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Fig. 13 Central displacement at ξ∗ (P0 = 12.5Pc).
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Fig. 14 Movement of plastic hinge away from clamped end 
(P0 = 12.5Pc).
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P = P0

(

1−
t

τ

)

C1 = Pξ∗2 − Pξ∗2
[

L− ξ∗2 /2
]

/
[

L− ξ∗2
]

whereas

With the imposition of the triangular pulse load on the 
beam two plastic hinges are formed, Fig. 12, at a distance 
of ξ01 .

from the root of the cantilever, and ξ02  (Fig. 12)

from the other side.

C2 = PL2/2− PL3/3
[

L− ξ∗2
]

− PLξ∗2 +
PLξ∗2

[

L− ξ∗2 /2
]

[

L− ξ∗2

] ,

(50)
d2W1

dt2
=

P0

m

(

1−
t

τ

)

.

(51)ξ01 =

√

[

12Mp

]

/

[

P0

(

1−
t

τ

)]

(52)ξ02 =

[

1−

√

[

6Mp

]

/

[

L2P0

(

1−
t

τ

)]

]

L
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0.9
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Phase 1

Fig. 15 Movement of plastic hinge away from simple support 
(P0 = 12.5Pc).
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Fig. 16 Dynamic bending moment evolution (P0 = 12.5Pc).
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Fig. 17 History of time-step size for LCP continuous mass 
(P0 = 12.5Pc).

Fig. 18 Portal frame impelled by blast loading.

Fig. 19 Lumped mass symbols.

Equations (51) and (52) show that the extent of the cen-
tral zone 

(

ξ01 ≤ x ≤ ξ02

)

 depends on the pressure pulse 
magnitude and its variation with time. Within this phase, 
the velocity is

and the displacement is given by

The bending moment is given by

(53)
dW1

dt
=

P0

m

(

t −
t2

2τ

)

,

(54)W1 =
P0

m

(

t2

2
−

t3

6τ

)

.

for 0 ≤ x ≤ ξ∗1 , and

for ξ∗1 ≤ x ≤ ξ∗2 .

Similarly,

for ξ∗2 ≤ x ≤ L, whereas

The beam continues to deform and the plastic hinges 
now move inwards. The velocity of these traveling plastic 
hinges at any time t can be determined from

(55)

M =P0

(

1−
t

τ

)(

ξ∗1 x −
x2

2

)

+
m

2ξ∗
1

(

d2W2

dt2
−

1

ξ∗
1

dW 2

dt

dξ∗1
dt

)

(

x3

3
− ξ∗21 x

)

−Mp,

(56)M = Mp,

(57)

M = P0

(

1−
t

τ

)

C1

+m

[

1
(

L− ξ∗
2

)

d
2
W1

dt2
+

1
(

L− ξ∗
2

)2

dW 1

dt

dξ∗
2

dt

]

C2,

C1 =

(

xξ∗2 −
x2

2
+

L2

2
− Lξ∗2

)

,

C2 =

(

Lx2

2
−

x3

6
− Lxξ∗2 +

xξ∗2
2

2
+ L2ξ∗2 −

L3

3
−

Lξ∗2
2

2

)

.
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for ξ∗1 ≤ x ≤ ξ∗ and

for ξ∗ ≤ x ≤ ξ∗2 .

(58)

dξ∗1
dt

= 6Mp/

[

ξ∗1 P0

(

t −
t2

2τ

)]

− ξ∗1

(

1−
t

τ

)

/

[

2

(

t −
t2

2τ

)]

(59)

dξ∗
2

dt
=−3Mp/

[

P0

(

t −
t2

2τ

)

(

L− ξ∗2
)

]

+
(

L− ξ∗2
)

(

1−
t

τ

)

/

[

2

(

t −
t2

2τ

)]

It is found that for pressure pulses 3Pc < P0 < 6Pc the 
two traveling plastic hinges coalesce before the pulse ter-
minates; whereas, if pressure pulse P0 > 6Pc , then the 
traveling hinges coalesce after the pulse terminates at 
t = τ . In the former case, Eqs. (50), (53), and (54) can be 
used; whereas, in the latter case, again (50), (53), and (54) 
can be used to get the transverse acceleration, velocity 
and displacement between 0 < t ≤ τ . For the subsequent 
interval τ ≤ t ≤ T1 , when the pressure pulse is removed, 
the acceleration d2W2/dt

2 = 0 . Thus,

Fig. 20 Evolution of displacement profiles.
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at τ ≤ t ≤ T1 and P0 > 6Pc, and the transverse 
displacement:

at τ ≤ t ≤ T1 and P0 > 6Pc.

For 3Pc < P0 < 6Pc , the juncture of the traveling plas-
tic hinges may be found as ξ∗ = 0.585786438L with the 
velocity of the traveling plastic hinges made zero. These 
hinges coalesce at the interval T1.

When P0 > 6Pc , Eqs. (58) and (59) may be used to give 
the location ξ#

1
  and ξ#

2
 of the plastic hinges at time t = τ 

when the pressure pulse is removed. The subsequent 
position of the traveling plastic hinges can be found from 
the following equations:

for ξ∗1 ≤ x ≤ ξ∗ and P0 > 6Pc at time τ ≤ t ≤ T1, and

for ξ∗ ≤ x ≤ L and P0 > 6Pc at time τ ≤ t ≤ T1.

See Figs. 8 and 12 for further clarity.
The differential Eqs. (58) and (59) are solved using the 

Runge–Kutta fourth-order method. A little finesse is 
required to initiate the numerical solution, since the time 
t = 0 is a singular point at which the travel velocity of 
both the span hinges is infinite.

4.3.2  Phase 2 of Motion
Phase 2 initiates when the traveling plastic hinges meet at 
ξ∗ = 0.585786438L as presented in Fig. 8. Therefore, the 
remaining kinetic energy is consumed at hinges located 
at ξ∗ and the fixed end. This phase ends when the beam 
come to standstill, so the beam kinetic energy is fully 
dissipated.

If 3Pc < P0 < 6Pc , the stationary hinge remains at ξ∗ 
with the continuing pulse load; Fig. 8. Therefore,

for 3Pc < P0 < 6Pc when T1 ≤ t ≤ τ , and

(60)
dW2

dt
=

P0τ

2m
,

(61)W2 =
P0τ

2m
t −

P0τ
2

6m
,

(62)
(

ξ∗1
)2

−
(

ξ#1
)2

=
24Mp

P0τ
(t − τ ),

(63)

(

Lξ∗2 − ξ#2
)

−

[

(

ξ∗
2

2

)2

−

(

ξ#
2

2

)2
]

= −
6Mp

P0τ
(t − τ ),

(64)

dW3

dt
=

P0

2m

(

3t −
3t2

2τ
− T1 +

T1
2

2τ

)

+
6Mp

mξ∗
2
(T1 − t),
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Fig. 21 History of time-step size for LCP continuous mass frame.

Fig. 23 Maximum sway displacement of ABAQUS frame (units in 
mm).
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for 3Pc < P0 < 6Pc when T1 ≤ t ≤ τ .

Equations (64) and (65) can be rewritten for the inter-
val when the pulse is removed:

for 3Pc < P0 < 6Pc when t = τ , and

for 3Pc < P0 < 6Pc when t = τ .

However, if P0 > 6Pc , the pulse terminates before the 
traveling hinges coalesce. So,

for 0 ≤ x ≤ ξ∗,

3Pc < P0 < 6Pc when τ ≤ t ≤ Tf  and P0 ≥ 6Pc when 
T1 ≤ t ≤ Tf , and

(65)

W3 =
P0

2m

(

3t2

2
−

t3

2τ
− T1t +

T1
2t

2τ
+

T1
2

2
−

T1
3

3τ

)

+
6Mp

mξ∗
2

(

T1t −
t2

2
−

T1
2

2

)

,

(66)

Ẇ3 =
P0

2m

(

3τ

2
− T1 +

3T1
2

2τ

)

+
6Mp

mξ∗
2
(T1 − τ ),

(67)

W3 =
P0

2m

(

τ 2 − T1τ + T1
2 −

T1
3

3τ

)

+
6Mp

mξ∗
2

(

T1τ −
τ 2

2
−

T1
2

2

)

,

(68)M =
m

2ξ∗

d2W1

dt2

(

x3

3
− ξ2∗ x

)

−Mp,

for ξ∗ ≤ x ≤ L,

3Pc < P0 < 6Pc when τ ≤ t ≤ Tf  and P0 ≥ 6Pc when 
T1 ≤ t ≤ Tf .

Consequently, the transverse acceleration is:

for 0 ≤ x ≤ ξ∗,

3Pc < P0 < 6Pc when τ ≤ t ≤ Tf  and P0 ≥ 6Pc when 
T1 ≤ t ≤ Tf , which may be represented as

for 3Pc < P0 < 6Pc when τ ≤ t ≤ Tf ,

for 3Pc < P0 < 6Pc when τ ≤ t ≤ Tf ,

(69)

M =
m

(L− ξ∗)

d2W1

dt2
(

Lx2

2
−

x3

6
− Lξ∗x +

ξ∗
2x

2
−

ξ3∗

3
+

Lξ2∗
2

)

+Mp,

(70)
d2W3

dt2
= −

6Mp

mξ2∗
,

(71)

dW3

dt
=

6Mp

mξ∗
2
(T1 − t)+

P0

2m

(

3τ

2
− T1 +

T1
2

2τ

)

,

(72)

W3 =
P0

2m

(

3τ t

2
− T1t +

T1
2t

2τ
−

τ 2

2
+

T1
2

2
−

T1
3

3τ

)

+
6Mp

mξ∗
2

(

T1t −
t2

2
−

T1
2

2

)

,

Fig. 24 Final distribution of Mises stress and equivalent plastic strain in ABAQUS frame.
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for P0 ≥ 6Pc when T1 ≤ t ≤ Tf , and

for P0 ≥ 6Pc when T1 ≤ t ≤ Tf .

The motion comes to a standstill when Ẇ3 = 0 , which 
occurs when:

for 3Pc < P0 < 6Pc, and

for P0 ≥ 6Pc.

4.4  LCP Prediction of the Beam Response, P0 ≥ 3Pc

For the LCP solution, the beam shown in Fig. 6 was dis-
cretized into n = 100 finite elements, for both lumped 
mass and continuous mass element types. Again, two 
amplitudes of pressure pulses were examined, one with 
force magnitude P0 = 3.5Pc and non-dimensional dura-
tion τ = Mpτ/IL = 0.196 , and the other with force 
magnitude P0 = 12.5Pc and non-dimensional duration 
τ = Mpτ/IL = 0.0549.

The LCP solution showed encouraging results with a 
small error in most of the examined quantities. Table  2 
gives results for the non-dimensional central displace-
ment W = (W /L).(mL)Mp/I

2 and the non-dimensional 
time t = MpT/IL both calculated at various phase 
transitions.

Fig. 13 indicates the evolution of the non-dimensional 
maximum central displacement at ξ∗ (Fig.  8) through-
out Phases 1 and 2 of motion for the pulse magnitude 
P0 = 12.5Pc . It is evident that the LCP results agree sub-
stantially with the theoretical solution.

When the pulse load is applied suddenly att = 0 , two 
plastic hinges are formed simultaneously at x = ξ01  and 
x = ξ02  , with ξ01 /L = 0.28706 andξ02 /L = 0.79702 , Fig. 12, 
while a stationary plastic hinge is formed at the clamped 
end. Both sets of hinges at ξ01  and ξ02   start moving inwards 
towards a stationary pointξ∗/L = 0.58579 . Figs.  14 and 
15 show the path traced by the traveling plastic hinges 
for the applied pulseP0 = 12.5Pc . This phase terminates 
when the traveling hinges reach ξ∗/L = 0.58579 at non-
dimensional timet̄1 =

MpT1

IL = 0.11214.
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Fig. 16 indicates the bending moment evolution of the 
beam at phase transition for both the theoretical and the 
LCP models. The bending moment distribution is for the 
decaying pulse with initial amplitude P0 = 12.5Pc . Again, 
both the LCP solution and the theoretical solution show 
substantially close agreement from the start until the end.

4.5  Performance of Improved Lemke Solver
The earlier investigation (Khan et al., 2013) exhibited a sub-
stantial error in various response parameters for the con-
tinuous mass element modeling. This error was attributed 
to the approximate velocity profile supplied to the LCP algo-
rithm. The recent pulse-loaded beam investigation (Khan 
et al., 2021) was carried out for the lumped mass discretiza-
tion only. Both of these investigations suggested that the spa-
tial discretization requires sufficiently small time step and 
tolerance so as to allow the dynamic response adequately 
traced by the Lemke solver. The current implementation 
of the automatic time-stepping algorithm makes the solver 
efficient and stable by adjusting the time step whenever the 
instability occurs. The performance of the algorithm can 
be appreciated that both the lumped mass and continuous 
mass elements provide workable results with less than 1% 
error in most examined quantities. This reduced error in 
the case of continuous mass elements undoubtedly occurs 
because of the known initial load required to initiate the 
LCP algorithm. The LCP solution of the beams, investigated 
above in Subsections 4.3 and 4.5, is obtained considering the 
minimum tolerance of 1 ×  10–6 and the maximum time step 
of 4 ×  10–5 for capturing all phases of motion. The calcula-
tion time of the Lemke Solver is on average about 70 s. The 
problems without plastic hinge travel phase (Subsection 4.3) 
results in stable execution of the algorithm employing the 
initially specified time increment. However, the Lemke algo-
rithm instability is prevalent if the motion involves a plas-
tic hinge travel phase, thus requiring variation in time-step 
size to overcome this numerical difficulty. Fig. 17 shows the 
variation in the size of the time step during the dynamic 
response of the continuous mass discretized beam under 
the applied pulse load magnitude P0 = 12.5Pc . It tran-
spires that three different time increment cases are possible, 
namely the initially specified time increment, unstressing 
time increment, and the automatic time increment; Fig. 17. 
The figure shows that the initially supplied maximum time 
step ∆tmax is set equal to 4 ×  10–5 s, which sharply reduces 
to 4 ×  10–6 s at various intervals when numerical difficulties 
are detected by the automatic time controlling algorithm. 
All the other reductions in the time-step size indicate the 
instants of unstressing. The solver tends to reach the initial 
time step once the numerical instability is resolved.
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5  Case Study: Portal Frame Subjected to Triangular 
Pulse Load

5.1  Problem Statement
The second example of a single-story fixed-based portal 
frame is borrowed from the previous investigation (Khan 
et  al., 2021), which compared the LCP solution with a 
finite element model through ABAQUS. The LCP solu-
tion of this problem is reexamined with continuous mass 
discretization and a refined mesh. Similarly, the ABAQUS 
model is revamped to reflect the actual behavior of a 
rigid frame. A schematic of the portal frame is shown in 
Fig. 18, which is fabricated from a UKB 610 × 305 × 179 
in S355 steel, having a unit mass of 179 kg/m and a plastic 
moment capacity of 1910 kNm. A triangular pulse load of 
6.55  N/mm2 is uniformly applied on the left column of 
the frame for a duration of 0.0082 s.

5.2  LCP Response of Frame
The earlier (Khan et al., 2021) LCP investigation consid-
ered this portal frame discretized into 30 lumped mass 
elements. It was found that mesh refinement leads to the 
Lemke solver instability if the fixed time increment is not 
chosen appropriately. The current investigation has seen 
a marked increase in the solver instability if continuous 
mass discretization is adopted. This numerical difficulty 
is remedied by the automatic time-stepping algorithm 
that suitably changes the increment size based on the 
changes in dynamic response.

Thus, the portal frame problem is revisited to test 
the efficacy of the time-stepping algorithm. This time 
the mesh is refined into 20 elements per member (60 
elements altogether) by employing either the lumped 
mass discretization or continuous mass discretization. 
The LCP response obtained is shown in Fig.  19. The 
plastic hinges in this figure are expressed symbolically 
in Fig.  19. The motion evolves from the initial profile 
of Fig.  20a to the final profile of Fig.  20(d) and ceases 
before the termination of the pulse. Essentially, both 
the lumped mass and the continuous mass analyses run 
smoothly, returning the sway displacement of 39.3 mm 
and 41.5 mm, respectively, thus showing a coherent and 
consistent solution. Four critical sections are always 
active during each phase of motion, leading to a con-
stant bending moment at every critical section; Fig. 20. 
Finally, it is essential to remark that the initially sup-
plied maximum time step ∆tmax to capture the dynamic 
response is set at 8 ×  10–5  s, Fig. 21. During the recur-
rent sequence of the Lemke Solver, this increment size 
is adjusted twice to 1.6 ×  10–6  s for ensuring algorithm 

stability. The overall MATLAB execution time for the 
frame problem is 15 s.

5.3  Response of the Frame Predicted by ABAQUS
Previously reported (Khan et al., 2021) ABAQUS model 
of the portal frame was developed by prescribing the 
maximum possible Young modulus to achieve rigid-
ity of the connections and members. This approach of 
employing a high-magnitude Young modulus resulted 
in an anomalous shear failure at one of the hinges at the 
portal base. The 3D numerical model is redeveloped in 
ABAQUS Explicit by providing rigidity of the connec-
tions through suitable stiffeners; Fig.  22. The model is 
constructed using tetrahedral brick elements while con-
sidering four bricks along the thickness of the member 
to capture the bending behavior. The material properties 
assumed for the steel frame are density = density of 7850 
kg/m3, the Poisson’s ratio = 0.3 and Young modulus = 200 
Gpa. The validity of the results is examined by making a 
comparison between the displacement time histories of 
the LCP frame with the ABAQUS approach, Fig.  22. In 
general, the LCP sway displacement of 39.3  mm in the 
case of lumped mass elements and 41.5 mm in the case 
of continuous mass elements concur with the results of 
ABAQUS 40  mm (Fig.  23). It is also observed that the 
location of plastic hinges in the final phase of motion 
(Fig.  20d) coincides with the Misses stress field of 
Fig.  24. Interestingly, the type of failure obtained from 
the ABAQUS model involves bending and shear effects 
at the portal base. This clearly shows that the transverse 
shear force has an important influence on the dynamic 
plastic behavior when the amplitude of the applied load 
is high. Thus the LCP solution involving bending and 
shear deformation (Khan et al., 2013) at the support base 
can be considered closer to the actual behavior shown 
in the ABAQUS model. However, the comparison of the 
LCP and ABAQUS sway displacements shows that the 
assumption of infinite resistance to shear deformation 
in the LCP model leads to satisfactory results. Moreover, 
the computational time required to solve the frame prob-
lem in ABAQUS is about 20 min, which is more compu-
tationally costly than the 15-s run time of LCP solver.

6  Case Study: LCP Prediction of Clamped 
Reinforced Concrete Beam

The dynamic response of a clamped reinforced con-
crete beam subjected to blast loading has been exam-
ined experimentally by many researchers. It is aimed 
in this section to compare the existing experimental 
results with the predicted results of the LCP. The LCP 
results are further validated with ABAQUS software. To 
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be specific, particular attention has been focused on the 
LCP mid-span deflection at standstill and the test results 
are borrowed from the experimental study of Zhang et al. 
(Zhang et al., 2013).

6.1  Experimental Program of Zhang (Zhang et al., 2013)
As part of the Zhang et  al. (Zhang et  al., 2013) experi-
mental program, a series of 1100  mm long beams were 
tested under a variable TNT mass and identical stand-
off distance of 400  mm, as shown in Fig.  25a. The RC 
beam was of 40  MPa compressive strength having a 
square cross section of 100  mm × 100  mm and 20  mm 
cover all around. Further, the longitudinal and trans-
verse bars were of 6  mm diameter, with the yield and 
ultimate strength of 395  MPa and 501  MPa, and the 
spacing of stirrups was 60 mm. For the current LCP vali-
dation of semi-rigid supported RC beam subjected to 

blast loading, a beam is selected under the blast loads of 
0.36 kg of TNT. Following Zhang’s classification of tested 
specimens, the beam under the explosive charge weight 
of 0.36 kg is named B2-1; Fig. 25b.

6.2  Response of the RC Beam Predicted by ABAQUS
The primary aim of this subsection is to validate the RC 
beam against the full 3D numerical models in finite ele-
ment commercial software ABAQUS Explicit. Mechani-
cal properties of concrete are modeled using Concrete 
Damage Plasticity; Table  3. C3D8R brick elements are 
used to model the concrete part of the beam, and T3D2 
wire elements are used to model the steel in the beam 
shown in Fig.  25(a). The concrete and steel are linked 
through embedded region interaction. The concrete has 
a density of 2400kg/m3 , the Poisson’s ratio of 0.2 and the 
Young modulus of 29.725 GPa. Similarly, the reinforce-
ment has a density of 7850kg/m3 , the Poisson’s ratio of 

Table 2 Comparison between theoretical solution and numerical LCP solution.

Theoretical 
solution

Numerical
Lumped mass

Error 
Lumped mass
(%)

Numerical
Continuous mass

Error 
Continuous mass
(%)

P0 = 2.5Pc

 Hinge position t = 0 (Fig. 12)
ξ∗
1
/L

0.54265 0.54000 0.49 0.54500 − 0.4331

 Hinge position t = 0 (Fig. 12)
ξ∗
2
/L

0.61629 0.62000 − 0.60 0.61500 0.2093

 Hinge position at the end of Phase 1
ξ∗/L

0.58579 0.59000 − 0.72 0.59000 − 0.7187

 Displacement at the end of Phase 1
W̄1 = (W1/L).(mL)Mp/I

2

0.05224 0.05205 0.35 0.05292 − 1.3017

 Time when hinges coalesce
t̄1 = MpT1/IL

0.05300 0.05308 − 0.14 0.05339 − 0.7358

 Displacement at the end of motion
W̄3 = (W3/L).(mL)Mp/I

2

0.63318 0.62575 1.17 0.63128 0.3001

 Cessation time
t = MpT/IL

0.34272 0.34005 0.78 0.34394 − 0.3560

P0 = 12.5Pc

Hinge position t = 0 (Fig. 12)
ξ∗
1
/L

0.28706 0.28500 0.72 0.28500 0.7176

 Hinge position t = 0 (Fig. 12)
ξ∗
2
/L

0.79702 0.79500 0.25 0.79500 0.2534

 Hinge position at the end of Phase 1
ξ∗/L

0.58579 0.59000 − 0.72 0.59000 − 0.7187

 Displacement when the pulse terminates
W̄1 = (W1/L).(mL)Mp/I

2

0.14686 0.14689 − 0.02 0.14666 0.1362

 Displacement at the end of Phase 1
W̄2 = (W2/L).(mL)Mp/I

2

0.38234 0.38247 − 0.03 0.38145 0.2328

 Time when hinges coalesce
t̄1 = MpT1/IL

0.11372 0.11214 1.39 0.11339 0.2902

 Displacement at the end of motion
W̄3 = (W3/L).(mL)Mp/I

2

0.83904 0.84450 − 0.65 0.83042 1.0274

 Cessation time
t = MpT/IL

0.34248 0.34439 − 0.56 0.34323 − 0.2190
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0.3 and the Young modulus of 200 GPa. Partial fixity at 
the end supports is attained by incorporating top and 
bottom steel plates at each end; Fig. 26. A spacer having Fig. 26 Boundary condition of ABAQUS beam.

Table 3 Parameters of concrete damage plasticity.

Parameters Values

Dilation angle (degrees) 36

Eccentricity 0.1

Bi-axial to uniaxial strength ratio 1.16

Second stress invariant ratio 0.67

Viscosity parameter 0

Fig. 25 RC beam under blast loading: a Zhang (Zhang et al., 2013) experimental setup, b LCP model of RC beam.
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the Young modulus of 10  MPa is provided between the 
top steel plate and the beam to ensure partial support fix-
ity. The blast load is applied on the beam using built-in 
module of ‘CONWEP’ by assigning an equivalent TNT 
explosive. A convergence study is carried out to optimize 
the mesh size.

The ABAQUS results show a maximum deflection 
of 8.44  mm for the Beam B2-1, which is very close to 
the residual experimental deflection of 9.0  mm. The 
deformed configuration of the beam is shown in Fig. 27. 
The maximum deflection occurs at the mid-span, con-
forming to that of the maximum plastic strains in Fig. 28. 
It is observed from Fig. 28 that the plasticity spread over 
the central half of the beam. The overall computational 

time required to solve the beam problem in ABAQUS is 
about 15 min.

6.3  Response of the RC Beam Predicted by LCP Solution
The dynamic response of the beam is predicted using 
a rigid-plasticity based LCP model; Fig.  23b. The LCP 
beam is investigated for both 30 contiguous lumped mass 
elements and a similar number of continuous mass ele-
ments, obtained from the beam’s mesh convergence tests. 
The RC beam has a unit mass of 24 kg/m and the plas-
tic moment of resistance is 1710 Nm. Partial fixity of the 
beam is ensured by assigning one-third of this moment 
resistance to the supports. The investigated blast loading 
scenario is shown in Fig. 25b. Using the scaled distance 
and charge mass, Kinney formulation is employed for 
computing peak overpressure value (Karlos & Solomon, 
2013).

Table 4 and Fig. 29 show the mid-span displacements 
of the RC beam determined from the LCP, ABAQUS, 
and the experimental study of Zhang (Zhang et  al., 
2013). Table 4 gives the result of the final central deflec-
tion calculated at the respective time. It can be seen 
from the table that the LCP results are in good agree-
ment with the ABAQUS and experimental results. 
Fig. 29 shows the evolution of the central displacement, 
where the LCP results present a small error compared 
to the ABAQUS and experimental results. The LCP 
solution showed two traveling plastic hinges within the 
beam span, which coalesced at the mid-span before the 
termination of the applied pulse load. At the motion 

Fig. 27 Maximum deflections of ABAQUS beam (units in mm).

Fig. 28 Equivalent plastic strain in ABAQUS beam.
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Fig. 29 Evolution of displacement for each case.

Table 4 Summary of results of maximum deflection.

Experimental results ABAQUS results LCP
Lumped mass

LCP
Continuous mass

Maximum deflection of beam 
B2-1 (mm)

9.00 8.43 9.70 9.90

The time when maximum 
deflection is attained (s)

Not available 0.0048 0.0045 0.0044



Page 22 of 25Khan et al. Int J Concr Struct Mater           (2022) 16:47 

termination, the central half of the beam becomes 
plastic, similar to the ABAQUS result of Fig.  28. In 
the LCP analysis, the initially supplied maximum time 
step ∆tmax to capture the dynamic response is set at 
8 ×  10–5 s; Fig. 30. During the recurrent sequence of the 
Lemke Solver, this increment size is adjusted once to 
4.0 ×  10–6 s for ensuring algorithm stability. The overall 
MATLAB execution time for the frame problem is 10 s, 
which is substantially less than the ABAQUS run time 
of 15 min.

7  Results Discussion and Future Work
The important feature of the numerical implementa-
tion developed in this work is its provision for the auto-
matic change of the magnitude of the time increment. 
This feature is highly advantageous for tracing the true 
behavior of the concrete and steel structures. Three 
examples are reported to demonstrate the accuracy and 
computational efficiency of the LCP formulation, con-
sidering the time increment algorithm. Interestingly, 
the numerical complications identified in the previ-
ous study (Khan et  al., 2013) of impact problems are 
nonexistent in the current case of pulse loading. This 
is because the impact problems required adjustment 
of the initial velocity profile for starting the LCP for-
mulation; however, the current loading case requires 
an initial load to initiate the LCP. Moreover, it is found 
that the Lemke Algorithm (Khan et al., 2021) can break 
down in the case of blast loading problems if finely dis-
cretized continuous mass elements are adopted. Again, 
this numerical difficulty can be resolved by allowing 
automatic control of the time increment. However, the 
error in the results for the continuous element pro-
cedure is marginally greater than in the lumped mass 
discretization, which is contrary to expectation. There 
is a possibility that the large size of the LCP matrix for 
the continuous mass model may have contributed to 
this in the form of round-off errors. The following three 

examples illustrate the effectiveness of the automatic 
time control algorithm.

The first investigation involves a theoretical study 
to explore the underlying mechanics of a rigid–plastic 
propped cantilever beam acted on by a linearly decay-
ing triangular pulse. The nonlinear effects resulting from 
the asymmetry in the support condition and the decay-
ing pulse load provide a better opportunity to test the 
improved LCP solver, compared to the relatively simple 
problem examined recently (Khan et al., 2021). It is seen 
that the time-step controller subroutine automatically 
identifies the instant where instability occurs, reduces the 
time-step size until the instability is resolved, and there-
after continues the evolutionary process. With either the 
masses being lumped at the element ends or uniformly 
distributed along the element, the LCP solution traces 
the dynamic response that matches the derived contin-
uum solution remarkably well.

A second investigation of a pulse-loaded steel portal 
frame is borrowed from the recent study (Khan et  al., 
2021) showing that the LCP formulation can effectively 
capture the complex dynamic response through lumped 
mass discretization of the frame. In the current study, 
the portal frame is discretized into continuous mass 
elements and then the Lemke solver is examined for its 
computational merit. It is found that mesh refinement 
using continuous mass elements is a source of algorith-
mic instability. However, the LCP solver supplemented by 
the automatic time-stepping algorithm is computation-
ally advantageous. The previous ABAQUS model (Khan 
et al., 2021) is further improved by the addition of stiff-
eners at various locations of beam and columns to make 
the assembly rigid, unlike previously reported analysis 
(Khan et  al., 2021) where the modulus of elasticity was 
significantly enhanced to ensure the rigidity of the struc-
ture. The comparison of LCP results with the ABAQUS 
solution indicates that the sequence of mechanism move-
ments is difficult to identify in the ABAQUS output 
because of the interspersed elastic and plastic deforma-
tions. In addition, the dynamic response of the ABAQUS 
frame shows the influence of bending and shear defor-
mations, which is absent in the LCP model since that is 
based on the idealization of infinite resistance to shear 
deformation. However, the final deformation mode of the 
ABAQUS frame model is broadly similar to that of the 
LCP model. It also turned out that the problems encoun-
tered by continuous mass discretization (Khan et  al., 
2013), such as spurious oscillations in stress-resultants, 
are eliminated in solving the blast loading problems.

The third benchmark test is the experimental results 
(Zhang et al., 2013) against which is compared the LCP 
mid-span displacement for a blast-loaded RC beam 
with both ends semi-clamped. This experimental result 
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Fig. 30 History of time-step size for LCP continuous mass beam.
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is borrowed from the literature (Zhang et  al., 2013). 
ABAQUS model of the beam is also developed and cali-
brated on the experimental results. The concrete dam-
age plasticity model is utilized for simulating concrete 
behavior in ABAQUS. The calibration is carried out until 
an acceptable level of error is reached in the mid-span 
displacement. After this calibration, the plastic hinge 
distribution, evolution of displacement, and strain time 
history are compared with the LCP solution. It is shown 
that the LCP solution for both the lumped mass and con-
tinuous mass discretization of 50 elements can capture 
the mid-span deflection satisfactorily. In the case of con-
tinuous mass discretization, the time-stepping algorithm 
again shows exceptional promise in ensuring numerical 
stability.

Finally, it is worth asserting that the proposed auto-
matic time-stepping scheme has made the LCP for-
mulation an efficient computer-based tool, which can 
be applied to size the skeletal structures subjected to 
blast loads. This simple finite element tool can predict 
the main features of behavior for a particular structural 
design rather quickly for both lumped mass and con-
tinuous mass discretization, thereby avoiding the use of 
advanced finite element analysis methods that impose 
considerable demand on computational resources. For 
problems where increased accuracy or further details 
of the structural behavior is required, then the pre-
sent formulation may be straightforwardly extended to 
incorporate additional aspects, such as bending–shear 
interaction, strain rate, strain hardening, and large dis-
placements. The LCP model involving large displacement 
of skeletal structures is in progress and the analysis will 
be reported in due course.

8  Conclusions

• An automatic time-stepping algorithm has been suc-
cessfully implemented in the previously developed 
Lemke solver (Khan et al., 2021) to remedy the wild 
spurious oscillations in the response variables of 
pulse-loaded skeletal structures. This improved time-
stepping strategy allows finer mesh configuration for: 
(i) lumped mass discretization, and (ii) continuous 
mass discretization. A series of three examples are 
presented to demonstrate the accuracy, effectiveness, 
and versatility of the developed methodology

• The first investigation on a propped cantilever beam 
subjected to a decaying triangular pulse provides 
evidence that the time-stepping algorithm can sta-
bilize the Lemke solver during various phases of 
motion. The theoretical response phases are derived 
herein since, to the authors’ knowledge, no closed-
form solutions are available for this problem. Com-

parison of the numerical solution with the theoretical 
response parameters indicates accurate predictions. 
For instance, the errors in the central displacement, 
the bending moment distribution, and the plastic 
hinge travel are less than 1.5%.

• A second investigation of a pulse-loaded steel portal 
frame is discussed. The numerical difficulties related 
to the continuous mass discretization are accom-
modated with the introduction of the automatic 
time-stepping algorithm. The investigation of 60 
elements (lumped mass and continuous mass) LCP 
frame showed less than 1% error in sway displace-
ment compared to ABAQUS tetrahedron brick ele-
ment frame. It is also noted that the execution time 
of the ABAQUS simulation is 20  min, whereas the 
time for LCP is just 15 s indicating the computational 
efficiency of the improved LCP solver.

• To demonstrate the reliability of the improved LCP 
solver, the third numerical test is performed on blast-
loaded reinforced concrete beams. ABAQUS model 
is developed and validated against the experimental 
deflection of RC beam subjected to triangular pulse 
load. Having obtained a good correlation between 
the ABAQUS model and experimental data, a further 
comparative study is carried out to test the validity 
of the LCP model. It is shown by the time history of 
deflection and strain rates at a control point that the 
LCP solution for both the lumped mass and continu-
ous mass discretization of 50 elements can capture 
the response satisfactorily. In the case of LCP con-
tinuous mass discretization, the time-stepping algo-
rithm is again able to enhance the numerical stability.

• It is asserted that the time-stepping algorithm can 
regularize the highly oscillatory response of the 
rigid–plastic skeletal structures when discretized into 
continuous mass elements.
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