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Abstract 

The bond–slip model plays an important role in the structural analysis of reinforced concrete structures. However, 
many factors affect the bond–slip behavior, which means that a large number of tests are required to establish an 
accurate bond–slip model. This paper aims to establish a data-driven method for the prediction of the bond–slip 
model of historical reinforced concrete with few test specimens and many features. Therefore, a new Mahalano-
bis-Meta-learning Net algorithm was proposed, which can be used to solve the implicit regression problem in few-
shot learning. Compared with the existing algorithms, the Mahalanobis-Meta-learning Net achieves fast convergence, 
accurate prediction and good generalization without performing a large number of tests. The algorithm was applied 
to the prediction task of the bond–slip model of square rebar-reinforced concrete. First, the first large pretraining 
database for the bond–slip model, BondSlipNet, was established containing 558 samples from the existing literature. 
The BondSlipNet database can be used to provide a priori knowledge for learning. Then, another database, named 
SRRC-Net, was obtained by 16 groups of pull-out tests with square rebar. The SRRC-Net database can be used to 
provide the posteriori knowledge. Finally, based on the databases, the algorithm not only successfully predicted the 
bond–slip model of square rebar-reinforced concrete, but also that of the other 23 types of reinforced concrete. The 
research results can provide a scientific basis for the conservation of square rebar-reinforced concrete structures and 
can contribute to the bond–slip model prediction of the other types of reinforced concrete structures.
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1 Introduction
The accuracy of the bond–slip constitutive model 
between the rebar and concrete influences the reliability 
of the calculation results of the bearing capacity (Nabilah 
et al., 2020; Wang et al., 2021), regardless of whether the-
oretical derivation or finite element numerical simulation 
is applied. However, many new types of concrete or rebar 

still result in new bond–slip behavior, which needs to be 
studied. For example, square section rebar and concrete 
with a special mix ratio were found in historical build-
ings in China (built in approximately 1910s–1950s). This 
type of square rebar-reinforced concrete is abbreviated as 
SRRC hereafter. As shown in Fig. 1, SRRC concrete has 
unique proportions and different material configuration 
requirements. At the same time, SRRC rebar was mainly 
ribbed square rebar, which is very different from the 
current deformed rebar, thereby determining a unique 
bond–slip model (Zhang et al., 2021a, 2021b). Therefore, 
the prediction of the bond–slip model between square 
rebar and SRRC concrete is a new prediction task.
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In recent years, many meaningful studies have been 
performed on the bond–slip problem. The smooth sur-
face caused by epoxy coating or zinc coating will reduce 
the bonding performance. In addition, sand-coating 
treatment on the rebar surfaces will improve bonding 
performance (Islam et  al., 2020; Pauletta et  al., 2020; 
Rabi et al., 2020; Wang et al., 2020; Zhou & Qiao, 2018). 
Some studies show that the types of concrete, such as 
green concrete, high-strength concrete, fine aggregate 
concrete, and recycled aggregate concrete, also exert a 
certain effect on the bond–slip performance (Liu et al., 
2020; Nguyen et  al., 2020; Paswan et  al., 2020; Wang, 
2016; Wardeh et al., 2017). According to the literature 
(Fu et al., 2021; Hou et al., 2018; Yang et al., 2015; Zhou 
et al., 2020a, 2020b), the corrosion of rebar exerts a very 
complex effect on the bond–slip properties. On the 
one hand, the iron rust attached to the surface of the 
rebar will increase the friction between the rebar and 
the concrete, but on the other hand, the uneven vol-
ume expansion will cause the concrete near the rebar to 
crack, reducing the grip force between the concrete and 
the rebar. In addition, the rib shape, spacing and projec-
tion area of rebar (Cai et al., 2020; Li et al., 2019; Metelli 
& Plizzari, 2014; Prince & Singh, 2015), the cover thick-
ness (Rockson et al., 2020), the diameter and spacing of 
the stirrups (Koulouris & Apostolopoulos, 2020), the 

size of specimens (Zhang et al., 2020a, 2020b), and the 
loading modes (pull-out, beam-type drawing or beam-
type bending) (Kaffetzakis & Papanicolaou, 2016; Rock-
son et al., 2020) all affect the bond–slip model.

Thus, the bond–slip model between rebar and concrete 
is very complex, and scholars have made valid attempts 
to determine the bond–slip model. Based on the elastic 
mechanical solution for a thick-walled cylinder under 
constant pressure, the analytical solution was derived for 
the key point coordinates of the bond–slip curve (Gao 
et al., 2019). However, as shown in Fig. 1, the SRRC rebar 
has a square section, which does not validate the hypoth-
esis in the derivation process, and the results of SRRC 
rebar contain complex variable functions, which are not 
convenient for engineering applications. The application 
of two-dimensional and three-dimensional finite element 
methods for bond–slip models was proposed (Biscaia & 
Soares, 2020; Liu et  al., 2020). However, the premise of 
finite element calculation depends on accurate prior 
knowledge of the bond–slip behavior. Since the friction 
coefficient and chemical interactions between rebar and 
concrete are difficult to accurately test, it is challenging 
to use the finite element method to directly predict the 
bond–slip model. A unified formula was constructed 
for a bond–slip model by collecting a large amount of 
test data in the literature (Wu & Zhao, 2013). However, 

Fig. 1 Square rebar and concrete.
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the present results only have a good confidence level for 
the bond–slip model between ordinary concrete and 
deformed rebar. At the same time, the model expres-
sion (polynomial, exponential expression, or logarithmic 
expression) of bond–slip needs to be determined accord-
ing to the experience of researchers. Therefore, if the 
prediction task changes, the regression parameters and 
regression function expressions in the new and old tasks 
may be difficult to balance.

Therefore, data-driven method can be used to solve 
the complex problem of prediction (Cai et al., 2019; Jang 
et al., 2019; Kakavand et al., 2021; Vanneschi et al., 2018). 
A deep neural network (DNN) method was proposed to 
predict the bond strength between fiber reinforced poly-
mers (FRPs) and concrete, thereby obtaining good results 
(Naderpour et al., 2019; Zhou et al., 2020a, 2020b). How-
ever, the bond–slip relationship between rebar and con-
crete is a new research topic. Moreover, only the ultimate 
bond strength was predicted, and the other characteristic 
points of the rising stage, descent stage and residual stage 
were not predicted, which means that the prediction task 
in this paper contains more features of the output. In 
fact, the existing neural network technology for predict-
ing bond strength often uses the traditional DNN frame-
work. The results of this training method depend on the 
characteristic distribution of the dataset and the size of 
the dataset. It is difficult to use the existing network for 
transfer learning with a small amount of test data for 
new types of concrete or rebar. In contrast, a large num-
ber of tests must be performed to study the strength of 
concrete, specimen size, stirrup arrangement, cover 
thickness, rib shape, proportion of concrete and other 
factors and then train a new DNN for learning, which 
consumes considerable resources and time. In addition, 
a large number of square rebar samples are difficult to 
obtain for tests to build a large neural network training 
database because SRRC reinforced concrete buildings 
are mainly cultural relic protection units. Fortunately, a 
large number of tests have been conducted on bond–slip 
between other types of rebar and concrete, which provide 
a considerable degree of prior knowledge. Moreover, the 
bond behavior of the steel–concrete composite structure 
is very complex and has similar characteristics to rebar-
reinforced concrete (Wang et  al., 2019), which contains 
a sufficient number of features for training and provides 
prior knowledge for the prediction task. Although dif-
ferent prediction tasks will lead to differences in the 
final bond–slip model, some basic knowledge about the 
model can be shared, which provides the basis for the 
Mahalanobis-Meta-learning Net (MMN).

In summary, to solve the task of using a small amount 
of test data to predict the bond–slip model, such as 

SRRC concrete reinforced with square rebar, the follow-
ing method was proposed in this paper. First, in Sect. 2, 
the databases used for training were established. Based 
on the test results from 36 studies, a database named 
BondSlipNet was established by determining the main 
factors affecting the bond–slip model between rebar 
and concrete. This database can be used to provide prior 
knowledge through the so-called pretraining process. 
Then, the pull-out test of the SRRC reinforced concrete 
was designed to obtain the bond–slip curve data, which 
can be used to establish the database for the SRRC task 
named SRRC-Net. This database is different from the 
BondSlipNet database due to its few samples, and it is 
used to provide posterior knowledge through the so-
called fine-tuning process. Second, in Sect.  3, based on 
the improvement in the model-agnostic meta-learning 
(MAML) algorithm (Finn et  al., 2017), the MMN algo-
rithm was established and used to solve the prediction 
task of the SRRC bond–slip model. It should be noted 
that although the prediction task of the SRRC bond–slip 
model was used as an example, the MMN algorithm and 
the BondSlipNet database can be used to solve other pre-
diction tasks with few test specimens and many features, 
which is discussed in Sect. 4. Finally, the MMN algorithm 
was compared with other algorithms to verify the predic-
tion ability and generalization level of the network.

2  Dataset Preparation
2.1  BondSlipNet Database for Prior Knowledge
In this paper, based on 36 references (Biscaia & Soares, 
2020; Cai et al., 2020; Coccia et al., 2016; Fu et al., 2021; 
Hou et al., 2018; Islam et al., 2020; Kaffetzakis & Papani-
colaou, 2016; Khaksefidi et al., 2021; Koulouris & Apos-
tolopoulos, 2020; Leibovich et  al., 2020; Li et  al., 2019, 
2020; Liu et  al., 2020; Metelli & Plizzari, 2014; Mo & 
Chan, 1996; Nguyen et al., 2020; Paswan et al., 2020; Pau-
letta et  al., 2020; Prince & Singh, 2013, 2015; Qi et  al., 
2020; Rabi et  al., 2020; Rafi, 2019; Rockson et  al., 2020; 
Wang, 2016; Wang et  al., 2018, 2020; Wardeh et  al., 
2017; Xiao & Falkner, 2007; Xing et al., 2015; Yang et al., 
2015; Yeih et al., 1997; Zhang et al., 2020a,  2020b, 2021a, 
2021b; Zhou & Qiao, 2018; Zhou et  al., 2020a,  2020b) 
with 2039 experimental tests, a large bond–slip data-
base containing 558 samples (after averaging repeated 
groups), BondSlipNet, is labeled and established. The slip 
value was measured using an extensometer, and the bond 
stress was determined by rebar strain gauge or draw-
ing force. Limited by the manuscript length, 2000 tests 
were collected from 36 articles, and after considering the 
repetitive samples, 558 samples were ultimately included. 
These samples mainly focus on the pull-out test and also 
cover a small amount of beam pull-out and bending tests. 
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In fact, many other meaningful research results that can 
provide prior knowledge, such as lap splice tests, are still 
available. These valuable results remain to be added to 
the dataset in future studies. However, the main innova-
tion of this paper is the method used to construct large 
databases and the task-based MMN algorithm based on 
existing databases. Algorithms and database construction 
methods can be easily applied to new data for test results, 
such as FRP rod-reinforced concrete and lap splice tests.

The following assumptions were used to simplify the 
labeling process:

(1) If the labeled parameters were not specified in the 
original literature, they could be determined according 
to other relevant literature (Béton 1990; Gao et al., 2019; 
CAoB 2010).

(2) Since the coefficient of friction between rebar and 
concrete is difficult to be determined quantitatively, only 
qualitative sorting was used according to the surface 
roughness to distinguish sand-coating surfaces, rusted 
surfaces, ordinary surfaces, epoxy-coated surfaces, zinc-
coated surfaces, etc., during the labeling process.

(3) If the concrete batching contained substitute mate-
rials, the substitute materials were removed from the 
proportion of concrete, which means that only the pro-
portion of ordinary batching was calculated to distin-
guish concrete with special batching.

(4) If the rebar yields or the concrete breaks, the 
descending stage is not tracked in most literature. There-
fore, it is assumed that the bond stress reaches 0 after a 
very small amount of relative slip, and at this time, the 
remaining characteristic points of the descending stage 
and the residual stage are linearly interpolated.

(5) Since the Combin 39 element used to simulate the 
bond–slip characteristics in ANSYS only supports 20 fea-
ture points, the output curve feature points in this data-
base are selected as 20. Ten of the feature points with a 
uniform abscissa distribution were used to describe the 
behavior of the ascent stage, and the other ten feature 
points were used for the descent stage.

(6) Since task-based MMN learning is performed in 
the following section, BondslipNet distinguishes differ-
ent prediction tasks based on five subitems. The subitems 
include different concrete types, rebar types, speci-
men cross-sectional shapes, loading modes, and stirrup 
arrangement modes. When dividing the samples into dif-
ferent tasks, there may be some samples that belong to 
more than two tasks. In this case, these samples will be 
divided equally to ensure that each task will not have too 
few samples.

Then, the samples in BondSlipNet were divided into 
23 prediction tasks. Among these 23 prediction tasks, 
2 tasks will be selected randomly in Sect. 4 to construct 
the test set together with the SRRC tasks, which will 
not be fed to the network until the test process. More 
details about the method for dividing the training set 
and test set will be discussed in Sect.  4. In the follow-
ing text, the above different classifications are abbrevi-
ated in Table  1. For example, specimen #6 was labeled 
 AcirBplaCnorDnstiEnor, which means that the specimen is 
normal concrete with a circular section and normal rebar 
without stirrups.

The BondSlipNet database contains three sets of data: 
data X (features), data Y-S (slip), and data Y–T (bond 
stress). Among them, X, as the resource of the input 
layer of the subsequent network, contains a total of 558 
samples, and each sample has 24 features, as shown in 
Table 2 (24 features are from the row of Water to the row 
of Coefficient of friction). Y-S and Y–T are the resources 
of the output layers of the subsequent network, each con-
taining 558 samples (namely, curves of bond–slip) corre-
sponding to X. In general, each sample of the output layer 
contains 40 features (20 points for bond stress Y–T and 
20 points for slip Y-S), which are the point coordinates 
in the curves. It should be noted since the training pro-
cess of the DNN is based on the samples and that of the 
MMN is based on the tasks, the resource of the input/
output layers means the training/test set was established 

Table 1 Letter abbreviation used in the prediction task classification.

Section of 
concrete 
specimen

Loading modes Concrete types

Square Circular Beam-type bending Beam-type drawing Pull-out Coarse aggregate 
replaced

Fine aggregate 
replaced

Water replaced Normal concrete

Asqu Acir Bbwan Bbla Bpla Carep Csrep Cnwat Cnor

Stirrups arrangement mode Rebar types

With stirrups Without stirrups Corroded rebar Plain rebar Coated rebar Normal rebar

Dsti Dnsti Ecor Epla Ecoa Enor
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indirectly or directly based on the resource. Y-S and Y–T 
are plotted as shown in Fig. 2.

2.2  SRRC‑Net Database for Posterior Knowledge
Although the BondSlipNet database has been estab-
lished, the tests described below were designed using 

SRRC square rebar to obtain the distribution character-
istics of the SRRC reinforced concrete bond–slip model 
(Zhang et al., 2021a, 2021b). Sixteen groups of pull-out 
specimens were prepared considering 16 different con-
ditions, such as different batches of concrete, different 
rebar section sizes, different cover thicknesses, different 

Table 2 Data X in the BondSlipNet database.

Due to the large number of samples, this table is only an example. More details can be found in the Additional file 1, which can be published with this paper online. 
The water, cement, sand and aggregate are the relative values, assuming that the value of cement is 1

Serial number Parameter range #1 #2 #3 … #558

Water 0 ~ 2.04 0.58 0.58 0.58 … 0.83

Cement 0 ~ 1 1.00 1.00 1.00 … 1.00

Sand 0 ~ 3.33 2.13 2.13 2.13 … 2.52

Aggregate 0 ~ 6.12 2.93 2.93 2.93 … 4.82

Fc (MPa)
Compressive strength

21.64 ~ 102.62 35.90 35.90 35.90 … 44.60

Da (mm)
Maximum aggregate size

0 ~ 31 20.00 20.00 20.00 … 20.00

fy (MPa)
Rebar yield strength

206 ~ 1374 410.00 410.00 410.00 … 422.00

c (mm)
Concrete cover thickness

20 ~ 225 45.25 45.25 45.25 … 63.00

ds (mm)
Rebar diameter

6 ~ 50 9.50 9.50 9.50 … 14.00

As  (mm2)
Rebar area

28.27 ~ 1963.5 70.88 70.88 70.88 … 153.94

S (mm)
Stirrup spacing

0 ~ 240 0.00 0.00 0.00 … 0.00

dsv (mm)
Stirrup diameter

0 ~ 10 0.00 0.00 0.00 … 0.00

Es (MPa)
Rebar elastic modulus

157,575 ~ 257,536 203,000 203,000 203,000 … 209,000

Ec (MPa)
Concrete elastic modulus

1523 ~ 44,240 31,580 31,580 31,580 … 33,579

Esv (MPa)
Stirrup elastic modulus

0 ~ 210,000 0.00 0.00 0.00 … 0.00

L (mm)
Embedded length

15 ~ 370 40.00 60.00 80.00 … 70.00

Sr(mm)
Rib spacing

0 ~ 15 5.92 5.92 5.92 … 9.00

Lr (mm)
Rib top length

0 ~ 3 1.33 1.33 1.33 … 1.06

Lb (mm)
Rib bottom length

0 ~ 4.8 2.11 2.11 2.11 … 3.14

Hr (mm)
Rib height

0 ~ 1.82 0.52 0.52 0.52 … 1.40

Alpha (°)
Rib angle

0 ~ 90 65.00 65.00 65.00 … 53.20

Degree of decay (%) 0 ~ 13.5 0.00 0.00 0.00 … 0.00

Ac  (mm2)
Concrete section area

3632 ~ 250,000 7854 7854 7854 … 19,600.00

Coefficient of friction -1 ~ 1.5 1.00 1.00 1.00 … 1.00

Number of test pieces / 18 … 36

Task type / AcirBpla  CnorDnstiEnor AcirBpla  CnorDnstiEnor AcirBpla  CnorDnstiEnor … AsquBpla  CnorDnstiEnor

Reference / Yeih et al., (1997) … Qi et al., (2020)
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stirrup ratios, and different degrees of corrosion. Each 
group contains duplicate test specimens. The 16 groups 
of test details were labeled according to the format of 
data X in BondSlipNet, as an example shown in Table 3. 
A 1000 kN hydraulic testing machine was used as the 
device to apply the pull-out force. The test specimens 
and loading device are shown in Fig. 3.

At displacement test points 1 and 2, the displacement 
relative to the fixed end (Sa, Sb) is measured using a 
laser displacement meter. At displacement test point 3, 
the displacement of the fixed end (Sc) is measured using 
a laser extensometer. The pull-out force P is measured 
by a load sensor on the machine and applied by the oil 
pressure control method at a speed of 2 mm/min. The 
bond–slip curves of the 16 groups of specimens are 
shown in Fig. 4, and the key point details can be found 
in the Additional file 2.

Figs. 2 and Fig. 4 show that since the section, rib form 
and concrete ingredients of the SRRC specimens were 
special, the bond strength, peak slip value, character-
istic point coordinates and overall trend of the final 
bond–slip curves were different from those of modern 
reinforced concrete.

Now, the databases (BondSlipNet and SRRC-Net) for 
the MMN algorithm in this paper have been basically 
completed. The specific algorithm of the MMN will be 
introduced in the next section.

3  Training Network Construction
3.1  MAML Model Algorithm
For many years, the training sample size has been an 
important issue that cannot be avoided when using 
neural networks for prediction. The prediction ability 
of a neural network based on a database with a small 

Fig. 2 Bond–slip curves in BondSlipNet database output layer.
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sample size is unable to easily reach an ideal accuracy. 
However, in the big data era, there is almost no unique 
task in most of the existing prediction tasks that cannot 
find any similar tasks to provide certain prior knowl-
edge. Taking the bond–slip model prediction of SRRC 
reinforced concrete as an example, although only a 

few tests have been performed before, the bond–slip 
performance between other types of rebar and con-
crete has been extensively studied. In fact, the function 
expression form of the bond–slip curve or the range of 
parameters of the expression can be easily changed with 
various influencing factors. However, some properties 

Table 3 Data X in the SRRC-Net database.

Due to the large number of samples, this table is only an example. More details can be found in the Additional file 2, which can be published with this paper online

Serial number SRRC#1 SRRC#2 SRRC#3 SRRC#4 SRRC#5 SRRC#6 … SRRC#16

Water 0.68 0.68 0.68 0.68 0.68 0.68 … 0.7

Cement 1 1 1 1 1 1 … 1

Sand 1.68 1.68 1.68 1.68 1.68 1.68 … 1.73

Aggregate 3.4 3.4 3.4 3.4 3.4 3.4 … 3.6

Fc (MPa)
Compressive strength

14.94 14.94 14.94 14.94 14.94 14.94 … 15.22

Da (mm)
Maximum aggregate size

30 30 30 30 30 30 … 25

Fy (MPa)
Rebar yield strength

278.6 278.6 278.6 278.6 278.6 278.6 … 218.0

C (mm)
Concrete cover thickness

71.44 71.44 71.44 71.44 71.44 71.44 … 99.00

Ds (mm)
Rebar diameter

15.88 15.88 15.88 15.88 15.88 15.88 … 19.50

As  (mm2)
Rebar area

252.02 252.02 252.02 252.02 252.02 252.02 … 374.00

S (mm)
Stirrup spacing

0 0 0 0 0 0 … 0

Dsv (mm)
Stirrup diameter

0 0 0 0 0 0 … 0

Es (MPa)
Rebar elastic modulus

181,670 181,670 181,670 181,670 181,670 181,670 … 123,035

Ec (MPa)
Concrete elastic modulus

14,100 14,100 14,100 14,100 14,100 14,100 … 13,360

Esv (MPa)
Stirrup elastic modulus

0 0 0 0 0 0 … 0

L (mm)
Embedded length

79.38 79.38 79.38 79.38 79.38 79.38 … 110.00

Sr (mm)
Rib spacing

16 11 16 16 16 16 … 20

Lr (mm)
Rib top length

1 1 1 1 1 1 … 10

Lb (mm)
Rib bottom length

1.2 1.2 1.2 1.2 1.2 1.2 … 15.0

Hr (mm)
Rib height

1.5 1.5 1.5 1.5 1.5 1.5 … 2.0

Alpha (°)
Rib angle

0 0 0 0 0 0 … 0

Degree of decay (%) 0 0.10 0.97 0.86 0.26 0.68 … 0

Ac  (mm2)
Concrete section area

25,600 25,600 25,600 25,600 25,600 25,600 … 48,400

Coefficient of friction 1.00 1.10 1.25 1.25 1.15 1.25 … 1.00
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have common characteristics, such as the stronger the 
tensile strength of concrete is, the larger the maximum 
bond stress will be under the premise of no rebar yield 
and rib failure. Alternatively, the existence of stirrups 
will improve the ductility of the concrete and increase 
the residual bond stress. These common characteristics 
provide a good basis of knowledge for neural network 
learning. Therefore, when the sample size of the target 
prediction task is small, it is recommended to conduct 

prior knowledge learning on a large dataset with similar 
task objectives and then transfer it to the target task. In 
the field of deep learning, this problem is called few-
shot learning, and the MAML algorithm has been pro-
posed in the literature (Finn et  al., 2017) to solve this 
problem.

The traditional DNN model is shown in Fig.  5, which 
can be described as follows and can be realized by Box 1.

Fig. 3 Loading device and specimen detail diagram.

Fig. 4 Bond–slip curves in SRRC-Net database output layer.
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Fig. 5 Traditional model framework of DNN.
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For a certain distribution P(X ,Y , θ) , X is the input sam-
ple, and Y is the output result. The dimensions of X are 
m × nx, where m is the number of samples and nx is the 
number of features of each sample. The dimensions of 
Y are m × ny, where ny is the number of features of each 
output, and θ is the parameters of the neural network 
(containing weight, bias and other learning parameters). 
For each different task, θ starts from random initializa-
tion, and then the predicted value ŷ(X , θ) of each itera-
tion step will be obtained after forward propagation. 
Generally, let the loss function of the regression prob-
lem be L = 1

m

∑m
i=1 (y− ŷ(X , θ))2 (measuring the error 

between the predicted value and the labeled value). 
Finally, the parameters are updated by calculating 
θ ′ = θ − α∇θL(X ,Y , θ) until the most suitable θ is found 
to describe the corresponding relationship between X and 
Y, where ∇θ represents the gradient vector to θ , and α rep-
resents the learning rate. However, in many engineering 
problems, the gradient descent process of neural networks 
is not the optimization process of smooth convex func-
tions. If the number of samples is small and the distribu-
tion of new and old tasks is different, the network will have 
difficulty escaping from the saddle point or prematurely 
entering the local optimum, thereby obtaining lower pre-
diction accuracy.

The traditional DNN training objects are the sam-
ples, namely, X itself. The goal of the MAML algorithm 
is to ‘learn how to learn’, and the training objects are 
tasks, that is, θ . In other words, the DNN framework 
training object is each sample point in BondSlipNet, 
and the MAML framework training object is first the 
tasks divided from BondSlipNet, and then is the sample 
in the specific prediction task. Therefore, the MAML 
algorithm can be divided into two parts. The first part 
is meta-learning, which uses large databases to train 
with different tasks and finally obtains θ∗ with good 
generalization performance. Then, θ∗ is used for a small 
sample database, and after a small amount of gradient 
update, the final model is obtained, which is the second 
part called the fine-tuning process.

The MAML algorithm is shown in Fig. 6, which can be 
described as follows and can be realized as Box 2.

The global task can be divided into B batches, and one 
batch will be extracted for updating each time. Assuming 
that the number of tasks in a batch is mB, the global model 
parameter is initialized to θ , and the training set R and test 
set R’ are extracted from the mtth task. First, the training 
set R is trained, and the model parameter is updated by 
the gradient. Then, for the R’ set, the loss is calculated, and 
the model parameter is updated. The loss function of the 
mtth task is set to lmt , and the parameters for mB training 

tasks in this batch are initialized to θ . The parameters of the 
mtth task will be changed to θ imt

 using iterative Eq. (1) after 
i times of updates:

α is the learning rate for each task.
After the training tasks in each batch are established, the 

loss function of the global model is set to L(θ) , then:

L(θ) is the functional of θ , where mB represents the num-
ber of tasks processed in each batch. The global parameter 
θ can be updated to θ ′ using Eq. (3):

Note that both θ
(

wj

)

, j = 1, 2, 3, ..., k and 
θ imt

(

wi
l·mt

)

, l = 1, 2, 3, . . . , k contain k parameters, and 
the second item of Eq. (3) is written as Eq. (4):

w is the component of array θ , which refers to a single 
value of weight or bias. Similarly, Eq. (1) can be rewritten 
as Eq. (5):

Combining Eqs.  (4), (5), 
∂wi

l·mt
∂wj

= ∂w
l

∂wj
− α

(

∂2 lmt (θ)

∂w
l
∂wj

+
i−1
∑

s=1

∂2 lmt (θ
s
mt

)

∂ws
l·mt

∂wj

)

 can be obtained. Then, 

each component w′
j of θ ′

(

w′
j

)

, j = 1, 2, 3, ..., k in Eq.  (3) 
can be simplified as Eq. (6):

(1)θ imt
= θ i−1

mt
− α∇

θ i−1
mt

lmt (θ
i−1
mt

),

(2)
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mB
∑
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lmt

(

θ imt

)

=
mB
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lmt

(

θ i−1
mt

− α∇
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mt

lmt (θ
i−1
mt

)

)

.

(3)
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.
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It should be noted that the MAML has made two sim-
plifications in deriving Eq. (6), that is, only one gradient 
update is conducted in meta-learning, and the role of the 
Hessian is ignored. Through mathematical derivation and 
computational experimental analysis, it can be concluded 
that for implicit learning tasks, these two simplifications 
may reduce the accuracy of the training network, and 
the specific explanations will be given in Sect. 3.3.2 and 
Sect. 4.3.

At this point, the training of one batch in the MAML 
algorithm is completed, and then the aforementioned 
process is repeated to train and update the remaining 
batches until all batches are input into the network to 
complete the training, which is regarded as the comple-
tion of one epoch. It should be noted that in each epoch, 
the selection of task sets is random, which has a similar 
effect as cross-validation. After several epochs, the meta-
learning process is completed. Based on the obtained 
optimal initialization parameters, traditional DNN train-
ing is performed here for the specific tasks using a data-
base with a small sample size. Then, the parameters of 
the shallow layer in the DNN are frozen, and only the 
parameters in the subsequent layer are trained, after 
which the fine-tuning process is finally completed. The 
shallow layer represents the first several layers, and the 
subsequent layer represents the last several layers. In this 
study, the parameters in the shallow layer indicate those 
between the Input layer, the Hidden layer 1 and Hidden 
layer 2. The parameters in the subsequent layer indicate 
those between the Hidden layer 2, Hidden layer 3 and 
Output layer.

3.2  Modification of the MAML–MMN
The original MAML algorithm was used to train the 
regression problem with the sine function as an exam-
ple, which obtained good results. However, for the vast 
majority of engineering problems, an explicit relation-
ship is often unavailable between the input and output 
of data. The training of the network is not only aimed at 
obtaining the regression of several parameters but also 
needs to determine the number of parameters and even 
the function itself or the implicit relationship between 
the data. At the same time, many regression problems 
in engineering have larger input feature dimensions, 
output feature dimensions and smaller sample sizes 
(compared with those of image classification problems). 
Therefore, many problems arise when directly using 

(6)w′
j = wj − β

mB
∑

mt=1

k
∑

l=1

∂lmt

(

θ imt

)

∂wi
l·mt

(

∂w
l

∂wj
− α

(

∂2lmt (θ)

∂wl∂wj
+

i−1
∑

s=1

∂2lmt (θ
s
mt
)

∂ws
l·mt

∂wj

))

,

the MAML algorithm to predict the bond–slip model 
of reinforced concrete (more details are provided in 
Sect. 4).

In this paper, the MMN algorithm is created according to 
the particularity of the implicit regression problem of the 
bond–slip model, as shown in Fig. 7.

Compared with the MAML algorithm, the following 
improvements are incorporated in the MMN algorithm.

(1) For the expression of the loss function, the single-layer 
perceptron is used to modify the Mahalanobis distance loss, 
replacing the mean square error (MSE) loss.

(2) Multiple gradient updating is considered in 
meta-learning.

(3) The overall framework is changed into a multitask 
learning framework. The output task is divided into two 
tasks, namely, the prediction of the slip stage curve and the 
prediction of the failure stage curve, which use joint learning 
(Sun et al., 2020). The multitask learning framework plays a 
dimension reduction role in learning tasks. Furthermore, 
when using a multitask learning framework for joint train-
ing, the different tasks establish linkages between the mini-
mum value through shared parameter constraints. Thus, 
the multitask learning framework has a parameter sharing 
mechanism, which improves the generalization of the net-
work and reduces the risk of overfitting. Dropout (Srivas-
tava et al., 2014) and L2 regularization technology (Rahaman 
et al., 2018) were added to improve the generalization level 
of the network, and gradient clip (Zhang et al., 2020a, 2020b) 
was added to avoid gradient explosion. BN normalization 
is changed to FRN normalization, which also prevent the 
model from overfitting (Singh & Krishnan, 2020).

The MMN algorithm can be realized using the Box 3. 
Mathematical derivation will be performed in Sect. 3.3 
to analyze its improvement significance. Among them, 
the improvements in (3) have already been explained 
by many studies. Therefore, the next section mainly 
focuses on the explanation of improvement points 
(1)–(2).

3.3  Mathematical Explanation of the MMN
3.3.1  Modified Mahalanobis Distance Loss
Let the output results of the MMN equal ŷa×b , where a 
represents the sample size and b represents the output 
feature dimension. Assuming that the number of pre-
dicted feature points in this task is m, then b = 2 × m. 
ŷa×b is rewritten as matrix ŷ

2× ab
2

 with 2 rows and ab/2 
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columns. Then, the first row of ŷ
2× ab

2

 is the abscissa (slip 
Si) of the predicted points, and the second row is the 
ordinate (bond stress Ti). Similarly, the labels in the 
dataset are set as y

2× ab
2

.
The Mahalanobis distance loss between the output 

and the label item can be calculated by Eq. (7):

tr is defined as an operator for finding the mean value 
after taking diagonal elements and C−1 is the inverse 
matrix of the covariance matrix of matrix 
Y2×ab =

[

ŷ
2× ab

2

, y
2× ab

2

]

 . Equation  (7) shows that the 
Mahalanobis distance is equivalent to the following pro-
gress. First, principal component analysis (PCA) of the 
data points in the sample space will be performed. Then, 
the sample space is rotated according to the principal 
component so that the dimensions are independent of 
each other. Finally, the distance between the sample 
points can be obtained by standardization.

Only when the covariance matrix is a unit matrix, 
that is, when each dimension is independent and identi-
cally distributed, the Mahalanobis distance degenerates 
to the Euclidean distance. Thus, it can be seen that the 
Euclidean distance treats the relationship between the 
dimensions of the sample ‘fairly’, ignoring the different 
distribution characteristics between various dimensions. 
For the implicit regression problem of the bond–slip 
model, the mapping between the input features and the 

(7)

lmt

(

y
2× ab

2

, ŷ
2× ab

2

)

= tr

[

(

ŷ
2× ab

2

− y
2× ab

2

)T
C−1

(

ŷ
2× ab

2

− y
2× ab

2

)

]

,

output coordinate points has multiple expressions or 
can be regarded as an implicit relationship. The hori-
zontal and vertical coordinates of the output coordinate 
point have different practical significance and exhibit 
different distribution characteristics. For example, it is 
assumed that there is such a set of data points as shown 
in Fig. 8 that satisfy the distribution P (x, y) of the pre-
dicted bond–slip model. Among them, the coordinate 
of point A is (2.5 mm, 5.8 MPa), and the initial output of 
that point is A1 (5.5 mm, 6.8 MPa), and the second out-
put is A2 (3.5 mm, 2.8 MPa), both of which have the same 
Euclidean distance between points A. However, it is obvi-
ous that A2 is more likely to meet the distribution P (x, y).

Equation  (7) shows that the Mahalanobis distance 
between two points is independent of the measure-
ment unit, which can eliminate the interference of cor-
relation between variables. However, the Mahalanobis 
distance can be easily affected by outlier samples, thus 
sacrificing the overall accuracy.

Therefore, the single-layer perceptron was introduced 
to modify the matrix C−1 , which is one type of neutral 
network with only one layer. In essence, to weaken the 
effect of the outliers, the modified Mahalanobis distance 
using single-layer perceptron enables the element values 
of covariance matrix of the original Mahalanobis dis-
tance to participate in the training process. Since the 
number of outliers is generally small, and the covariance 
matrix of Mahalanobis distance is a 2 × 2 matrix, the 
learning ability of single-layer perceptron is sufficient for 
this task. Therefore, the modified Mahalanobis distance 
obtained by single-layer perceptron has strong anti-noise 
ability. At the same time, the complexity of the model 

Fig. 6 Framework of MAML algorithm.
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will not be increased substantially due to the small num-
ber of parameters introduced by the single-layer percep-
tron, which is convenient to ensure the training speed 

and generalization ability. Let C−1 =
[

c11 c12
c21 c22

]

 , 

C ′−1 =
[

η tan h(ω11c11 + δ11) η tan h(ω12c12 + δ12)

η tan h(ω21c21 + δ21) η tan h(ω22c22 + δ22)

]

=
[

c
′
11

c
′
12

c
′
21

c
′
22

]

 , 

where the coefficient η limits the parameter interval, 
which constrains the effect of the outliers on C−1 . The 

perceptron is initialized by C−1 =
[

c11 c12
c21 c22

]

 , the learn-

ing parameters are ωij , δij (i, j = 1,2) and η , and then C−1 
is updated to further learn the distribution of data.

The corrected C ′−1 is substituted into Eq.  (7). Equa-
tion (8) can be obtained as follows:

Then, let W = c′
11
�S2i +

(

c′
12

+ c′
21

)

�Si�τi + c′
22
�τ 2i  . 

Thus, in addition to weighting the slip deviation and 
bond stress deviation in the Euclidean distance, the prod-
uct of bond stress deviation and slip deviation is also 
considered. Let S ∼

(

S ± σ(S)
)

 and τ ∼ (τ ± σ(τ)) , if 
σ(S) ≈ σ(τ) , the data dispersion degree of the two distri-
butions is approximate, and then the role of �Si�τi can 
be ignored (and vice versa), which should also validate 
the above analysis.

Finally, W = c′
11
�S2i +

(

c′
12

+ c′
21

)

�Si�τi + c′
22
�τ 2i  can 

be regarded as a cone curve about �Si and �τi , so it must 
satisfy W > 0 to have practical significance. Therefore, the 
modified Mahalanobis distance loss function proposed in 
this paper can add the following strengthened constraint 
condition: −2 <

(c′12+c′
21)√

c′
11
c′
22

< 2 and c′
11

> 0.

3.3.2  Hessian Matrix
In Sect.  3.1, the parameter updating Eq.  (6) in meta-
learning is derived. The Hessian matrix term essentially 
measures the second-order sensitivity of the loss function 
lmt (θ) of each task in the meta-learning stage to the net-
work parameters. The Hessian matrix term reflects the 
curvature of the global loss function and can help escape 
saddle points and local minima during gradient descent. 
In addition, in Sect.  3.3.1, the following conclusion is 
derived: for the implicit regression problem of the bond–
slip model, the loss function lmt (θ) is related to �Si�τi , 
which means that there is a certain internal connection 
between the neurons in the output layer. In addition to 
sharing certain parameters between the layers, a second-
order effect is observed between the parameters of some 

(8)

lmt (y2× ab
2

, ŷ
2× ab

2

)

= tr
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neurons. Therefore, the Hessian matrix term cannot be 
omitted.

For the explicit regression problem, since the num-
ber of parameters to be regressed is known, the net-
work parameter space may search for the direction of 
global parameters according to the gradient direction of 
the update results of the internal task gradient of meta-
learning, as shown in Fig. 9. However, for implicit regres-
sion problems, it is necessary to use the Hessian matrix 
correction term to search the parameter space of the 
mapping mode according to the curvature variation char-
acteristics of the loss function, and then the direction of 
updating the global parameters in this parameter space is 
searched.

4  Results and Discussion
To verify the generalization level of the MMN predic-
tion method, in addition to the SRRC bond–slip pre-
diction task, task-A  (AsquBplaCnorDnstiEcoa) and task-B 
 (AsquBplaCnwatDstiEnor) were randomly selected to test the 
network performance. It should be noted that task-A and 
task-B are randomly selected and never trained by the 
network. Therefore, it can be regarded as a test set to ver-
ify whether the algorithm can be used in practical engi-
neering applications. In general, the ratio of the training 
and validation datasets ranges from 7:3 to 8:2. However, 
when the dataset is small, the trade-off between bias and 
variance is inevitable. Many scholars, such as Finn et al. 
(2017), have attempted to solve this problem, and few-
shot learning has been proposed. In the problem of few-
shot learning, some special operators, such as MAML, 
have been used to train a better model with only a few 
training and test samples, which includes the learning 
framework to weaken the effect of overfitting. Therefore, 
the samples of each task were divided into a training set 
and a validation set with a proportion of approximately 
10:1 during meta-learning. On this partition ratio, for the 
SRRC tasks, task-A and task-B, the training set is only 
used during fine-tuning, and the test set will only be fed 
to the MMN when testing the net performance. In the 
present study, the training and validation datasets were 
not fixed at each batch or epoch. After completing one 
batch or epoch of learning, the model will shuffle the 
dataset and resample at the ratio of 10:1.

At present, the four-stage linear model and the three-
stage nonlinear model are mostly used in the predic-
tion models of bond–slip between rebar and concrete. 
Therefore, in this paper, the test results are com-
pared with the calculation results of the eight models 
described in Table  4. The models were realized using 
the python 3.6.2 and tensorflow 1.6.0 in the Jupyter 
Notebook. The tuning process for hyperparameters can 
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be described as follows, which were determined based 
on the time cost and the accuracy of the results. The 
epoch in Box  1 and epoch1 or epoch2 in Boxes 2 and 
3 were changed from 30 to 60, and finally set to 50. The 
learning rates, such as α and β , were changed from 0.01 
to 0.00001, and finally took 0.0001. The hyperparam-
eters i, which were used to control the update times in 
each task, were changed from 2–10, and finally set to 6.

4.1  Training and Test Results of the MMN
Since the number of samples is too large to display 
them all, the training results of the MMN in the tar-
get tasks are randomly selected, as shown in Fig. 10. R2 
(coefficient of determination) was introduced in this 
paper to evaluate the prediction results, which can be 
calculated as follows:

Fig. 7 Framework of MMN algorithm.
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yi is the ith test value, ŷi is the ith predicting value, and y 
is the average value of the test values.

Fig.  10 shows that for the three tasks, the R2 of the 
training set ranges from 0.8973 to 0.9913, and the  R2 of 
the test set ranges from 0.9181 to 0.9902. Therefore, both 
the training and test sets of the MMN perform well, and 
only some outliers appear in the descending stages of 
some specimens. The explanation for this phenomenon 

R2 =











0 R2 ≤ 0

1−
�

(yi−ŷi)
2

�

(yi−y)2
0 ≤ R2 ≤ 1

1 R2 ≥ 1

,

is that hypothesis (4) in Sect.  2.1 may introduce some 
errors.

Therefore, the MMN prediction method can not only 
be used to solve the SRRC task but can also be used to 
solve the other bond–slip prediction tasks, which means 
that the MMN method has a high generalization level. In 
the next section, the MMN method will be further com-
pared with the existing prediction methods to verify its 
reliability.

4.2  Algorithm Comparison
In Fig.  11, the results of eight methods were compared 
with the test results. Both the R2 and mean square error 
(MSE) are introduced in this section to evaluate the pre-
diction results. The MSE can be calculated as follows:

yi is the ith test value, ŷi is the ith predicting value, and 
“m” is the sample number. If R2 is closer to 1 and MSE 
is closer to 0, the final result indicates a better result. In 
addition, the success rate can be determined as the ratio 
of the number of samples with R2 > 0 and the total sample 
number.

Because the fitting objects of the samples are ordinary 
rebar and ordinary concrete, Model (6) (CAoB 2010) 
and Model (8) (Wu & Zhao, 2013) have low prediction 
accuracy for the three special tasks: SRRC task, task-A 
(coated-rebar-task) and task-B (geopolymer concrete 
task). In addition, training results from other model are 

MSE =
∑

(yi − ŷi)
2

m
,

Fig. 8 Disadvantages of Euclidean distance.

Fig. 9 Analysis of gradient descent.
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compared in Table 5. Table 5 shows that the MMN per-
forms the best of all the compared models in almost all 
cases. The prediction accuracy of the four-stage model 
(83.33% success rate) and MAML (58.33% success rate) 
is only second to that of the MMN, which has a certain 
anti-interference ability. However, when there are out-
lier samples in the prediction task (e.g., #320 and #66), 
the accuracy of the test set decreases. The other mod-
els perform poorly and are almost unsuccessful in some 
tasks (success rate less than 50%).

Taking Sample #320 as an example, the causes of the 
above situation were further explained: #320 sample 

(Mo & Chan, 1996) belongs to the coated-rebar-task, but 
it comes from the other batch of concrete (Wang et al., 
2020) with a curve that is quite different from those of 
other samples in this task. Due to the existence of the 
#320 sample, the models of overtraining small datasets 
fail to predict the curve of this sample. Moreover, if there 
are other similar samples in the task as the training set, 
the process of updating the parameters in the training 
set will sacrifice the overall accuracy to take these outlier 
samples into account. Therefore, only the MMN model 
and MAML model, which are based on task learning, 
have certain anti-interference effects. However, when 

Table 4 Description of calculation models.

The difference between Model 6 and Model 7 is that Model 6 directly adopts the formulas (CAoB 2010), and Model 7 re-regresses the data from the target task.

References Model Data set Model details

This paper MMN
(Model 1)

Bondslipnet + SRRC-Net or 
data set from task A and B

(1) Meta-learning with Bondslipnet
(2) Fine-tune with data from target task
(3) Multi-tasking learning framework
(4) Mahalanobis distance loss function
(5) FRN normalization + dropout + L2
(6) Consider the Heissel matrix

Finn et al. (2017) MAML
(Model 2)

Bondslipnet + 
SRRC-Net or data set from 
task A and B

(1) Meta-learning with Bondslipnet
(2) Fine-tune with data from target task
(3) Using traditional DNN framework

Amaratunga, (2021) Fine-tune
(Model 3)

Bondslipnet + SRRC-Net or 
data set from task A and B

(1) Pretrain with Bondslipnet samples
(2) Fine-tune with data from target task
(3) Traditional DNN

Naderpour et al. 
(2019), Zhou et al.  
(2020a,  2020b)

DNN
(Model 4)

Bondslipnet + SRRC-Net or 
data set from task A and B

DNN framework with Bondslipnet and data from target task

Naderpour et al. 
(2019), Zhou et al. ( 
2020a), ( 2020)

DNN
(Model 5)

SRRC-Net or data set from 
task A and B

DNN framework with data from target task

CAoB 2010 Four-linear-stages model
(Model 6)

Data from this reference

τ =











(100ft/d)s

100ft/3d(s− 0.025d)+ 2.5f

−2ft/0.51d(s− 0.04d)+ 3f

ft

0 ≤ s < 0.025d

0.025d ≤ s < 0.04d

0.04d ≤ s < 0.55d

s ≥ 0.55d

CAoB 2010 Four-linear-stages model
(Model 7)

SRRC-Net or data set from 
task A and B

τ =











(b1ft/a1d)s

(b2 − b1)ft/(a2 − a1)d(s− a1d)+ b1f

(b3 − b2)ft/(a3 − a2)d(s− a2d)+ b2f

b3ft

0 ≤ s < a1d

a1d ≤ s < a2d

a2d ≤ s < a3d

s ≥ a3d

Wu and Zhao ( 2013) Three-nonlinear-stages model
(Model 8)

Data from this reference
τ =

τmax

(

eBs − eDs
)

[

e−B ln(B/D) − e−D ln(B/D)
]

Kco =
c

d
, Kst =

Ast

nSstd
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(

d

25.4

)0.2−1.8
Hrib
Srib

or Ksi = d
−0.4

K = (Kco + 33Kst)Ksi

τmax√
fc

= 2.5

1+ 3.1e−0.47(Kco+33Kst )

B = 0.0254+ Kst

−0.0232− 8.34Kst

D = 3 ln

(

0.7315+ K

5.176+ 0.333K
− 0.13

)

− 3.375
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the number or difference of such samples increases, the 
MAML model using the Euclidean distance to meas-
ure error also has low accuracy or even fails because it 
does not fully learn the relationship between the sample 
dimensions (e.g., the task  AsquBplaCnwatDstiEnor has outli-
ers: #66, #75, and #78 in the training set). The explana-
tion for the low prediction accuracy of MAML compared 
to MMN can be further discussed as follows. On the one 
hand, the loss function of the MMN is the Mahalano-
bis distance modified by the single-layer perceptron 
replacing the Euclidean distance. Therefore, the MMN 
model further learns the distribution of the output data 
in two dimensions. On the other hand, as described in 
Sect. 3.3.2, the Hessian matrix correction term was used 

in the MMN model to help search the parameter space of 
the mapping mode, which will help the model jump out 
of the local minimum and approach as close to the global 
minimum as possible.

In summary, the MMN can be considered to have 
better applicability and accuracy for predicting the 
bond–slip performance. In the next section, the reason 
why the MMN model has advantages will be further 
verified.

4.3  Advantages of the MMN
4.3.1  Smaller Loss
The training loss of the five neural networks is shown 
in Fig. 12. The figure shows that the loss of the MMN 

Fig. 10 Results of MMN network. a Prediction results of training set in task A. b Prediction results of training set in task B. c Prediction results of 
training set in SRRC task. d Prediction results of test set in task A. e Prediction results of test set in task B. f Prediction results of test set in SRRC task.
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is smaller than those of the other models. The loss of 
the MMN converges at approximately 20 epochs and 
gradually tends to be flat after 40 epochs.

However, other networks still fluctuate obviously until 
the later stage. The fine-tune model even jumps out of the 
convergence range in the later stage of training, which is 
due to the sample shuffling during each iteration. For the 
fine-tune model, its anti-interference is not outstanding, 
and the distribution of data between each task is quite 
different, which causes the loss to be nonconvergent.

4.3.2  Better Initial Value
The meta-learning process of two randomly selected 
samples, Sample #185 (from task  AsquBplaCarepDnstiEcor) 

and Sample #297 (from task  AsquBplaCarepDnstiEnor), in the 
MMN is shown in Fig. 13. After 50 epochs, even though 
the training results of meta-learning are directly used for 
prediction, a certain accuracy can be achieved. It should 
be noted that the DNN prediction models train the data 
based on the errors between the points, which means 
that during the training process, there may be some 
points that do not satisfy the physical meanings (as the 
bond strength increases, slip decreases at a certain level). 
As more epochs were carried out, this phenomenon was 
gradually alleviated. However, some limitations based on 
the model itself will make the above phenomenon unable 
to completely disappear. As shown in Fig. 13, the results 
of Sample #185 show that the MMN model makes a good 

Fig. 10 continued
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contribution to solving this problem, and those of Sam-
ple #297 show that the MMN model helps alleviate this 
phenomenon. The explanation for the result of Sample 
#297 can be explained as follows. It should be noted that 
Fig.  13 was used to present the training process in the 
meta-leaning period, which is not the final result. In this 
process, the task with sample #297 has not been trained 
using Fine-tune, which means the data distribution of 
the samples in this task has not been trained specifically. 

That will not effectively play the role of the modified 
Mahalanobis distance in the MMN model.

The prediction results of the MMN, MAML, fine-tun-
ing and DNN (all datasets) algorithms after the initial 
parameter optimization process are compared, as shown 
in Fig. 14. The training results of the MMN before fine-
tuning are even better than those of the DNN that has 
completed the training in the overall trend.

Fig. 11 Learning accuracy of eight algorithms on three tasks. a Comparison of training set. b Comparison of test set.
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4.3.3  Easier Gradient Descent
The relationship between the parameters (randomly 
selected two-dimensional) of the five models and the 
global loss is shown in Fig.  15, and the gradient search 
direction is marked in the figure. The surface of the 
MMN method is relatively smooth because the distribu-
tion of the sample itself was learned when considering 
the loss function. Moreover, the MMN takes the Hes-
sian matrix into consideration so that with the curvature 
variation characteristics of the loss function, the search 
direction of the optimal path is clearer. The global loss of 
other models has many local minimum points or saddle 

points that are difficult to jump out. Even if the model 
introduces noise, in most cases, it may jump out of the 
original extreme point and may even fall into a worse 
extreme point. Therefore, the MMN can be considered 
easier for gradient descent.

4.4  Parameter Analysis About Section Size of Rebar
In this section, based on the database and model estab-
lished in this paper, the change in the ultimate bond 
strength of SRRC and C30 ordinary reinforced concrete 
with the rebar section size (under the same other design 

Fig. 11 continued
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conditions: concrete cover thickness c = 5 d, anchorage 
length L = 5 d) is analyzed, as shown in Fig. 16a. In addi-
tion, the variation in the relative slip “Su” corresponding 
to the ultimate bond strength with the section size of 
the rebar is also analyzed in Fig. 16b. The ultimate bond 
strength of SRRC and C30 ordinary reinforced concrete 
with rebar section size changes according to the same 
general rule, which has peak values of d = 12–14  mm. 
Compared with C30 ordinary reinforced concrete, the 
ultimate bond strength of SRRC decreased on average by 
approximately 33.59% (coefficient of variation is about 
0.28, standard deviation is 9.45%). For  Su, the slip of C30 

ordinary reinforced concrete is far less than that of SRRC, 
and the average decrease is about 74.63% (coefficient of 
variation is about 0.15, standard deviation is 11.35%).

5  Conclusion
Based on more than 2000 tests performed by 36 refer-
ences, a large database BondSlipNet containing 558 
samples was built, and 16 groups of bond–slip tests 
on SRRC reinforced concrete were performed, based 
on which the SRRC-Net database was established. 
These two databases can be directly used for researcher 
to study the data-driven method for the bond–slip 

Table 5 Details of the results of each model.

The failed models are those where the R2 values are approximately equal to 0.

Tasks No. Label Prediction accuracy ranking (maximum representative optimal)

Asqu Bpla Cnor Dnsti Ecoa #43 Train Successful models: MAML(MSE = 0.49, R2 = 0.93) > Fine-tune (MSE = 0.61, R2 = 0.92) > MMN (MSE = 0.71, 
R2 = 0.91) > Four-stage model (MSE = 0.76, R2 = 0.90) > DNN (all data set (MSE = 2.21, R2 = 0.71)) > DNN 
(target data set (MSE = 3.31, R2 = 0.56))
Failed models:none

#65 Train Successful models: four-stage model (MSE = 0.40, R2 = 0.97) > MMN (MSE = 1.19, R2 = 0.90) > MAML 
(MSE = 2.48, R2 = 0.79) > DNN(target data set (MSE = 10.391,R2 = 0.10))
Failed models: DNN (all data set (MSE = 32.73, R2 = 0)), Fine-tune(MSE = 59.82, R2 = 0)

#63 Test Successful models: MMN(MSE = 0.10,R2 = 0.99) > Four-stage model(MSE = 1.28,R2 = 0.85) > MAML(
MSE = 2.87,R2 = 0.66) > DNN(target data set (MSE = 3.79, R2 = 0.56)) > DNN (all data set(MSE = 3.82, 
R2 = 0.55)) > Fine-tune (MSE = 3.87, R2 = 0.55) > 
Failed models: none

#320 Test Successful models: MMN (MSE = 0.02, R2 = 0.59) > MAML (MSE = 0.33, R2 = 0.10)
Failed models: four-stage model(MSE = 15.94,R2 = 0),DNN (target data set (MSE = 37.84,R2 = 0)), DNN (all 
data set (MSE = 62.56,R2 = 0)), Fine-tune (MSE = 94.18,R2 = 0)

Asqu Bpla Cnwat Dsti Enor #77 Train Successful models: MMN(MSE = 0.40, R2 = 0.97) > MAML (MSE = 1.49,R2 = 0.88) > Four-stage model 
(MSE = 1.66, R2 = 0.87) > DNN (all data set (MSE = 51.75, R2 = 0))
Failed models: DNN (target data set(MSE = 81.85, R2 = 0)), Fine-tune (MSE = 91.44, R2 = 0)

#78 Train Successful models: MMN(MSE = 0.19, R2 = 0.98) > Four-stage model (MSE = 0.76, R2 = 0.94) > MAML(MSE 
= 4.42,R2 = 0.62)
Failed models:DNN (all data set (MSE = 28.17, R2 = 0)), DNN (target data set (MSE = 51.84, R2 = 0)), Fine-
tune (MSE = 67.40, R2 = 0)

#73 Test Successful models:MMN (MSE = 0.29,R2 = 0.98) > Four-stage mode l(MSE = 1.27, R2 = 0.93)
Failed models: DNN (target data set (MSE = 161.68, R2 = 0)), Fine-tune (MSE = 223.61, R2 = 0), MAML 
(MSE = 234.6, R2 = 0), DNN (all data set (MSE = 252.98,R2 = 0))

#76 Test Successful models:MMN (MSE = 0.47, R2 = 0.97) > Four-stage model (MSE = 1.22, R2 = 0.93)
Failed models: DNN (target data set (MSE = 160.70, R2 = 0)), Fine-tune (MSE = 222.5, R2 = 0), MAML 
(MSE = 233.4, R2 = 0), DNN (all data set (MSE = 251.73, R2 = 0))

SRRC task SRRC#11 Train Successful models: MMN (MSE = 0.14, R2 = 0.98) > DNN (all data set (MSE = 0.80, R2 = 0.88)) > Fine-tune 
(MSE = 1.94, R2 = 0.72)
Failed models: four-stage model (MSE = 10.29, R2 = 0), DNN (target data set (MSE = 10.77, R2 = 0)), MAML 
(MSE = 43.45, R2 = 0)

SRRC#13 Train Successful models:MMN(MSE = 0.44, R2 = 0.89) > Four-stage model (MSE = 0.60, R2 = 0.86)
Failed models: MAML (MSE = 5.05, R2 = 0), DNN (target data set (MSE = 14.36, R2 = 0)), DNN (all data set 
(MSE = 41.61, R2 = 0)), Fine-tune (MSE = 98.12, R2 = 0)

SRRC#2 Test Successful models:MMN (MSE = 0.49, R2 = 0.92) > Four-stage model (MSE = 0.50, R2 = 0.91) > MAML 
(MSE = 1.87, R2 = 0.68)
Failed models: DNN (target data set (MSE = 21.94, R2 = 0)), Fine-tune (MSE = 34.67, R2 = 0), DNN (all data 
set (MSE = 35.37, R2 = 0))

SRRC#4 Test Successful models: MMN (MSE = 0.07, R2 = 0.99) > Four-stage model (MSE = 0.62, R2 = 0.92) > Fine-tune 
(MSE = 1.84, R2 = 0.76) > DNN (all data set (MSE = 3.94, R2 = 0.48)) > MAML (MSE = 5.87, R2 = 0.22)
Failed models:, DNN (target data set (MSE = 15.59, R2 = 0))
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problem. Then, a neural network MMN algorithm was 
proposed, which is suitable for the prediction task with 
a small sample size and implicit relationship between 
bond–slip characteristics and curves. This algorithm 
had sufficient accuracy for the SRRC task and the other 
two randomly selected tasks and was compared with 
the existing seven algorithms to verify its accuracy, 
convergence ability and generalization level. The well-
trained MMN neural network can be used directly in 
real engineering for each task involved in BondSlip-
Net database. The applicable design parameter range 
in the MMN model is outlined as shown in the second 
column of Table 2, which covers most of the common 
parameter conditions of reinforced concrete bond–slip 
behavior. Furthermore, if the prediction tasks are out of 
the scope of the BondSlipNet database (the parameter Fig. 12 Training loss versus epoch curve.

Fig. 13 Output curve during meta-learning.

Fig. 14 Comparison of initialization parameter optimization ability of different algorithms.
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Fig. 15 Gradient descent of different algorithms. a) Loss function of the MMN algorithm. b Loss function of the MAML algorithm. c Loss function of 
the Fine-tune algorithm. d Loss function of the DNN (all data set) algorithm. e Loss function of the DNN (target data set) algorithm.
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range exceeds the values listed in the second column of 
Table  2), the MMN algorithm and the built databases 
can also be used to transfer the prior knowledge for the 
new tasks. The following conclusions and prospects can 
be drawn:

(1) The concrete proportion and section shape of the 
rebar in SRRC reinforced concrete are significantly dif-
ferent from those of modern reinforced concrete, leading 
to different bond–slip performances. Overall, the bond 
strength between SRRC rebar and concrete is relatively 

low (compared with C30 ordinary reinforced concrete, 
the average strength decline is approximately 33.59% 
with a coefficient of variation of approximately 0.28 and 
a standard deviation of 9.45%), and it is difficult to explic-
itly develop a unified bond–slip model.

(2) The existing prediction models for bond–slip often 
only aim at a specific prediction task, which are difficult 
to apply directly when transferring to new tasks. The tra-
ditional DNN model is not sensitive to new tasks because 
of overfitting the characteristics of the sample. The 

Fig. 15 continued
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four-linear-stage model and three-nonlinear-stage model 
require many tests on new tasks to re-regress the param-
eters and even need to reselect the fitting function, which 
greatly increases the test cost and research effort.

(3) The MMN algorithm proposed in this paper pos-
sesses the characteristics of MAML algorithm learning 
based on tasks and uses the learned single-layer percep-
tron-modified Mahalanobis distance loss to replace the 
MSE loss. At the same time, the network is rewritten as 
a multitask learning framework, and the role of the Hes-
sian matrix is considered. The calculation results and 
mathematical analysis show that these improvements 
contribute to the prediction of the bond–slip model.

The accuracy of the MMN exceeds that of some exist-
ing algorithms, but it also falls into a certain bottleneck. 
For some specific samples, there will be some outlier 
points in the descent stage. In addition, although the 
overall trend of the model is close to that of the test, the 
distance between the predicted points and label points 
can be improved. This can be achieved by further 
improving the labels, expanding the database capacity 
and adjusting the local network algorithm.
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