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Abstract 

This paper presents the influence of the graphene oxide (GO) sheet contents at conditions of 0, 0.01, 0.03, 0.05, and 
0.1 wt% on the mechanical and thermal properties of GO/CAST 11 LW mortar (GMT) composites for heat insulating 
brick. The GMT composites were prepared by a simple mixing method. The structure of GMT composites was investi-
gated by X-ray diffraction (XRD) and Raman spectroscopy (Raman) techniques. The small grain sizes of GMT compos-
ites were confirmed by transmission electron microscopy (TEM). The mechanical properties of GMT composites are 
increased with increasing GO contents. A lot of functional groups in GO such as carboxylic acid reacted with a calcium 
silicate hydrate,  CaH2O4Si (CSH), calcium hydroxide, Ca(OH)2 (CH) and Ettringite, and  Ca6[Al(OH)6]2(SO4)3·26H2O (CA) 
phases in the mortar, which can be considered good mechanical properties in the GMT composites. The heat insula-
tion values of GMT composites were improved by the interaction with the CSH, CH, and CA phases in the cement 
mortar on the surface of GO. The highest compressive and tensile strengths and low heat transfer rate of about 
0.465 W/min were observed at 0.05 of GO (GMT_0.05) composites in the curing age of 7 days. Thus, a new pathway of 
GMT composites can be prepared by a simple mixing method to significantly improve the mechanical and thermal 
properties of mortar GMT composites.
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1 Introduction
In recent years, the construction industry has tried to 
improve the properties of cement mortar using nano-
technology system composites (Naganathan et al., 2014; 
Raki et  al., 2010; Sanchez & Sobolev, 2010). Although a 
high performance was observed in cement composites, 
the crack in structure was observed in those materials. 
The disadvantages of cement-based materials should be 
improved, e.g., being prone to cracking, low toughness, 
low tensile strength, and poor insulator (Dissanayake 

et  al., 2017; Ferrándiz-Mas et  al., 2014). A method to 
improve cement-based materials is to use composites 
with fillers which have excellent properties. Generally, 
the properties of cement composites are dependent on 
the fillers. For example, the thermal insulator properties 
of cement were reduced when the polyacrylamide (PAM) 
and fly ash cenospheres (FAC) fillers increased due to the 
low resistance of fillers (Kaya & Kar, 2016). Moreover, 
the high tensile strength and good stress properties were 
also improved by cement composites nanomaterial fillers 
(Cao et al., 2013; Jiang et al., 2018; Wang et al., 2021).

Over the last several years, the conventional nanoma-
terials including carbon-based nanomaterials such as 
carbon nanotubes (CNTs) (Li & Leung, 1992; Sagar et al., 
2012), carbon black (Goracci & Dolado, 2020), carbon 
nanofibers (CNFs) (Popov, 2004; Roychand et al., 2016), 
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MECNT (Lojka et al., 2021), Graphene Oxide (GO) (De 
Jong & Geus, 2000; De Volder et al., 2013; Llobet, 2013), 
and, reduced graphene oxide (rGO) (Geim & Novoselov, 
2007; Wang et  al., 2021; Zhou et  al., 2016) have widely 
been used as fillers to improve the cement-based prop-
erties, including cracking, toughness, tensile strength, 
and thermal insulator. Less than 0.50 wt.% of the carbon 
nanomaterials were added to the cement-based materi-
als to produce sustainable composites and to improve 
the mechanical properties and durability (Marcano et al., 
2010; Zhu et al., 2010). GO is one of the good candidates 
because of its outstanding tensile strength, large sur-
face area properties, and better dispersibility in aqueous 
media such as water (Compton & Nguyen, 2010; Gholam-
pour et al., 2017). According to Wang et al. (2021) study, 
the effect of GO on the mechanical properties of cement 
composites is compared to rGOs. The tensile strength 
in GO–cement composites is higher than rGO–cement 
composites due to higher interactions of GO and CSH. 
Cao et al. (2013) reported that the increase in the tensile 
strength and compressive strength in 3 days to about 78.6 
and 38.9% of cement–GO (0.03%) nanosheet composites 
was observed due to the formation of flower-like crystals. 
Namsone et al. (2017) reported that the specific mixtures 
of the GO solution and ordinary Portland cement with 
a curing age of 28  days showed maximum compressive 
strength at a GO content of 0.05 wt% and maximum ten-
sile strength at a GO content of 0.03 wt%. The influence 
of GO composites on cement mortar composites was 
reported by Wang et al. (2017). The compressive strength 
was increased to 63% in 1% of nano GO–cement mortar 
composites in 28  days. Moreover, the compressive and 
tensile strengths of cement mortars GO composites at 
0.03% of GO were observed at about 21.37 and 53.77%, 
respectively (Kang et  al., 2017). According to Phrompet 
et al. (2019), the mechanical properties of cement-based 
composites were improved by the composites between 
rGO and man-sized C3AH6 cement. Although mechani-
cal properties of cement composites are important in the 
infrastructure of buildings, the thermal insulation prop-
erty is helpful in reducing the energy for cooling and 
heating in buildings (Du et al., 2020). Therefore, the GO 
has a good candidate material due to low thermal con-
ductivity properties (Xu & Gao, 2011). Moreover, the 
improvement of the thermal insulation properties of 
cement-based composites by adding low GO concentra-
tions has been rarely studied. The cements used in the 
study to fabricate cement composites were the cement 
CAST 11 LW mortar as insulating castable ASTM C 401 
class 0. The chemical composition of cement was CaO 
(29.0%),  Al2O3 (14.5%),  SiO2 (54.5%),  Fe2O3 (0.5%) and 
 SO3 (0.5%). Therefore, in this work, the influence of the 
content of GO sheets on cement CAST 11 LW mortar 

composites in terms of compressive, tensile strengths 
and thermal properties was investigated for heat insulat-
ing castable brick at high temperature. The synthesized 
GO/CAST 11 LW mortar (GMT) composites with dif-
ferent contents of GO using the conditions of 0, 0.01, 
0.03, 0.05, and 0.1 wt% were prepared and abbreviated 
as the GMT_0, GMT_0.01, GMT_0.03, GMT_0.05, and 
GMT_0.1 composites, respectively. The investigation of 
morphology and structure of (GMT) composites were 
observed by TEM, SEM, XRD, and Raman spectroscopy, 
respectively.

2  Experiments
2.1  Preparation of an Aqueous GO Suspension
GO suspension with a concentration of 2  mg/ml was 
prepared by a modified Hummers method, as previ-
ously reported in Phrompet et  al. (2019) study. In brief, 
2  g of graphite powder was mixed in a beaker with 6  g 
of  KMnO4 and poured into a 500-mL round-bottom flask 
at low temperature. Then, 46 mL of  H2SO4 was gradually 
being added under stirring and cooling with maintained 
temperature below 15  °C for 15  min; and the tempera-
ture was increased to 40 °C for 30 min. After that, 90 mL 
of the distilled water was slowly added and heated up to 
95 °C under stirring for 60 min. Consequently, the reac-
tion of mixture was stopped by adding 10  mL of  H2O2 
solution and 250 mL of distilled water. Next, the obtained 
mixture was separated by the centrifugation and the sul-
phate was reduced by the wash with a 5% HCl solution. 
The mixture was washed and filtered several times using 
distilled water until the pH of filtered solution was about 
7. Finally, supernatant of an aqueous GO suspension was 
obtained by ultrasonication of graphite oxide dispersed 
in deionized water (DI) and followed by centrifugation.

2.2  Preparation of Cement Composites
Firstly, an aqueous GO suspension was dispersed in the 
mixing DI water through ultrasonication process (at 250 
Watt and frequency of 20 kHz) for 20 min using the mix 
composition, as listed in Table 1. The most widely applied 
method of improving the strength of cement is to uni-
formly disperse GO, which is soluble in water, and mix 
it with cement. Subsequently, a mortar (CAST 11 LW) 
cement was added into the GO water solution which was 
prepared at the ratio of 0.5 wt% using mixer at the speed 
of 218 rpm for 10 min. Then, the GMT composites were 
placed inside the mold and compacted for about 20 s to 
form specimens of the size of a cube of 50× 50 × 50 mm 
in dimensions for compressive strength and direct ten-
sile using a Briquette mold. Then, all samples were kept 
in their molds at 100% relative humidity for 24 h. Before 
characterization, the GMT_0, GMT_0.01, GMT_0.03, 
GMT_0.05, and GMT_0.1 composites were cured under 
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tap water for 3, 7, 21, 28 and 77 days at room tempera-
ture, as shown in Fig. 1a.

The crystal structure and characteristics of GMT com-
posites were investigated by XRD (SHIMADZU/Japan, 
XRD-6100) and Raman spectroscopy (Thermo Fisher 
Scientific, DXR SmartRaman). The surface morpholo-
gies of GMT were observed by using TEM and SEM. 
The thermal analyzer of GMT composites was character-
ized by thermogravimetric analyzer (TGA, Perkin Elmer, 
Pyris 1). The thermal property was measured by using an 
Applied precision, ISOMET 2114. The thermal conduc-
tivity (κ) value was calculated via κ = aDCv, where a is the 
thermal diffusivity; D is the density of the sample; and Cv 
is the volumetric specific heat of the sample. The com-
pressive strength of GMT composites was performed 
after 3, 7, 21, 28 and 77 days. The direct tensile strength 
of GMT composites was analyzed after 3, 7, 21, 28 and 
77 days. Three specimens at each age were tested and the 
average compressive strength and tensile strength were 
calculated. The heat insulators of GMT composites were 
evaluated by using the multimeter (KEYSIGHT Tech-
nologies, U1241 C/U1242C 4-Digital Handheld). The 
infrared thermal imaging camera (Keysight Technologies 
U5856A, Range: − 20 to 650 °C) was used to observe the 
surface temperature distribution. The surface tempera-
ture was measured by using the multimeter with the type 
k probe measuring high and low temperatures, as shown 
in Fig. 1b. The temperature data were recorded by Key-
sight Handheld Meter Logger Software program for 7 h. 
Fig. 1c shows the samples of GMT composites.

3  Results and Discussion
The morphology and structure of GO sheets, GMT_0 
and GMT_0.05 composite, were analyzed by TEM 
images as shown in Fig. 2a–c. Fig. 2a reveals the close-fit-
ting presence of a large thin plate-like shape of GO sheets 
with translucent and crease surface as seen in the inset 
of Fig. 2a-1. Moreover, the SAED pattern in the inset of 
Fig.  2a-2 indicates the halo diffraction rings, signifying 

the amorphous layer with random orientations of a poly-
crystalline structure (Compton & Nguyen, 2010). Fur-
thermore, the TEM images of GMT_0 and GMT_0.05 
composites, as shown in Fig. 2b–c, respectively, discloses 
the fractions of particles with tiny particles of irregular 
shapes and micrometers in sizes of CSH phase in the 
cement mortar. The small incomplete grain growth of CH 
phase and the CA tube was found on CSH surface. The 
CA tube appeared as rod-like crystals in the early stages 
of reaction as massive growths filling pores or cracks in 
mature concrete or mortar. It can be seen in the high-
magnification image of Fig. 2c-1 that the surface of CSH 
phases is seized by GO sheets which increases the tight-
ness of both the hardened cement paste and mortar. The 
SAED pattern in the inset of Fig. 2b-2 displays the diffrac-
tion spots of GMT_0 sample, while GMT_0.05 composite 
reveals the concentric diffraction rings of spots as shown 
in inset of Fig.  2c-2, indicating a polycrystalline nature 
(Liu et al., 2014). This result confirms the existence of GO 
sheets embedded in the GMT_0.05 composite. Fig. 2c-3 
indicates the EDS spectra of GMT_0.05 composite which 
has the C, Al, Ca, Si, and O elements (Liu et al., 2014).

Fig.  3a shows XRD pattern of GO sheets, GMT_0, 
GMT_0.01, GMT_0.03, GMT_0.05, and GMT_0.1 com-
posites, respectively. The XRD pattern of GO sheets 
displays a broad diffraction peak appeared at 2° of 
11.16° which corresponded to the crystalline planes 
of (002) with a determined d-spacing of 0.810  nm 
(Phrompet et  al., 2019). Next, XRD pattern of GMT_0, 
GMT_0.01, GMT_0.03, GMT_0.05, and GMT_0.1 
composites can detect the phases of the usual cement 
hydrates as calcium silicate hydrate  (CaH2O4Si; CSH), 
calcium hydroxide (Ca(OH)2; CH) and Ettringite 
 (Ca6[Al(OH)6]2(SO4)3·26H2O; CA) and silicon dioxide 
 (SiO2; Si) (Wang et al., 2017). The XRD results can con-
firm the pure phase of cement mortar.

The Raman spectra of GO sheets, GMT_0, 
GMT_0.01, GMT_0.03, GMT_0.05, and GMT_0.1 
composites are shown in Fig.  3b. Generally, the 

Table 1 The mix design of the GMT composites, density of oven dry and saturated water, and % porosity.

Name Mix proportion Oven dry 
density (kg/
m3)

Saturated water 
density (kg/m3)

Porosity (%)

Cement (g) Water (ml) Aqueous GO suspension at 
concentrations (2 mg/ml)

W/C ratio

GMT_0 1100 550 0 0.5 0.944 ± 0.008 1.252 ± 0.044 32.63

GMT_0.01 1099.945 522.5 0.055 g (27.5 ml) 0.5 1.012 ± 0.020 1.336 ± 0.056 32.02

GMT_0.03 1099.835 467.5 0.165 g (82.5 ml) 0.5 1.040 ± 0.032 1.336 ± 0.104 28.46

GMT_0.05 1099.725 412.5 0.275 g (137.5 ml) 0.5 1.056 ± 0.024 1.340 ± 0.076 26.89

GMT_0.1 1099.450 275 0.550 g (275 ml) 0.5 1.060 ± 0.036 1.280 ± 0.040 20.75
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Fig. 1 a The preparation of the cubes of GMT composites, b the experimental prosecution for the measurement of the temperature difference 
between the hot and cold at surfaces of GMT composites, and c the photographs of GMT composite samples.
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Raman spectra of GO sheets displays two main peaks 
at ~ 1338  cm−1 and ~ 1586  cm−1, known to be the D and 
G-bands in the structure of carbon atom, respectively 
(Phrompet et  al., 2019; Suk et  al., 2010). In principle, 
the D-band defects and disorders the first hexagonal 
graphitic layers. In addition, the G-band is related to 
the  sp2-bonded carbon atom vibration in 2D hexagonal 
lattice (Phrompet et  al., 2019; Suk et  al., 2010). Next, 
Raman spectra of GMT_0, GMT_0.01, GMT_0.03, 
GMT_0.05, and GMT_0.1 composites are observed as 
well as pure mortar (Carrasco et  al., 2017). The band 
at ~ 714   cm−1 is determined by asymmetric stretching 
of Si–O–Al and the band at 1088   cm−1 may be attrib-
uted to lattice mode. Next, the bands at ~ 953  cm−1 are 
assigned to υ1(SiO4) symmetric stretching vibration of 
C–H–S phase, which is the main phase formed dur-
ing cement hydration (Carrasco et al., 2017). The band 
at ~ 670   cm−1 is determined by asymmetric stretching 
of Si–O–Si bending modes involving tetrahedra. The 
bands at ~ 483   cm−1 are symmetric bending υ2(Si–O) 
and small band at ~ 365   cm−1 is ascribed to residual 
Ca(OH)2 (Carrasco et  al., 2017; Suk et  al., 2010). The 
band at ~ 299  cm−1 is assigned to the deformation of the 

silicate network along with Ca–O stretching (Phrompet 
et  al., 2019; Suk et  al., 2010). These results indicated 
that all samples are at the pure phase of cement mortar. 
At high composite concentrations (> GMT_0.03), the 
two peaks were obviously observed indicating the influ-
ence of GO composites which increases the tightness of 
both the hardened cement paste and mortar.

TGA data are demonstrated in Fig. 3c. The weight loss 
and DTG peaks of GMT composites gradually decreased 
with increasing temperature. This result indicated a spe-
cific phase of compounds decomposition. The three steps 
of decomposition in all samples were observed. At a low 
temperature ~ 30–100  °C, the decreasing weight loss of 
about 4% should be related to the decomposition of the 
absorbed water molecules (Singh et al., 2015). At temper-
ature ~ 100–500 °C, the decreasing weight loss should be 
the decomposition of CSH, mono-carbonate. Moreover, 
at the high temperature range of 600–750 °C, the major 
weight loss was observed because of the decomposition 
of the calcined as  CO2 (Singh et al., 2015). Interestingly, 
the DTG peak of GMT composites gradually increased 
when the concentrations of GO increased. This result 
indicated that the concentrations of GO can improve the 

Fig. 2 TEM image, the high-magnification image and SAED patterns of a GO sheets, b GMT_0 and c GMT_0.05 composite which has the energy 
dispersive X-ray (EDX) spectra of GMT_0.05 composite.
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thermal stability in mortar composites as shown in the 
inset of Fig. 3d.

The relationship between mechanical properties and 
the microstructure of the composites was character-
ized by SEM images. However, the GO sheets are not 
detected due to small sheets. The surface of the mortar 
particle should be deposited by the GO sheet. According 
to Fig. 4a–d, the SEM images of the GMT_0, GMT_0.03, 
GMT_0.05 and GMT_0.1 composites reveal random 
sizes and the content of CH, CA, and CSH as ordi-
nary cement mortar. Obviously, the influence of GO on 
cement mortar size can improve the micro-compactness, 
micro-cracks and low percentage porosity (Lv et  al., 
2013), as shown in Table 1. Therefore, adding GO to low 
contents of GMT composites can increase the mechani-
cal properties because the GO sheet plays the role of a 
bridge through covalent bonding with CSH (Kang et al., 
2017).

Fig. 5a shows the comparison of compressive strengths 
at the curing age of 3, 7, 21, 28 and 77 days for GMT_0, 

GMT_0.01, GMT_0.03, GMT_0.05, and GMT_0.1 com-
posites, respectively. The compressive strengths of the 
GMT_0.01, GMT_0.03, GMT_0.05, and GMT_0.1 com-
posites were greater than GMT_0 (without GO load-
ing) sample for all the curing ages at 3, 7, 21, 28 and 
77  days, respectively, as summarized in Table  2. The 
excellent mechanical properties of GMT composites 
compared with GMT_0 explained by a lot of functional 
groups in GO, such as carboxylic acid that reacted with 
CSH, CH and CA in the mortar, should be forming a 
strong covalent bond (Qureshi & Panesar, 2019). A cur-
ing age at 7  days had the highest percentage compres-
sive strength value of 11.084 ± 0.620 MPa when the GO 
content was 0.05 wt% (GMT_0.05) which is higher than 
the percentage value of GMT_0 approximately 36.71%, 
as shown in Fig. 5b. Namsone et al. (2017) reported that 
the 28-day compressive strengths were observed about 
6.68–12.49  MPa for a foamed matrix using expanded 
glass aggregates in cement mortar. Moreover, Rafiee 
et  al. (2013) reported that the compressive strength of 

Fig. 3 a XRD patterns, b Raman spectra, c TGA curves, and d DTG curves of GO sheets, GMT_0, GMT_0.01, GMT_0.03, GMT_0.05, and GMT_0.1 
composites, respectively.
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the mixture increased by approximately 15% in com-
parison to ordinary mortar when the GO concentration 
was 1.0 wt% as GO reinforces the crevices in cement. 
However, at the high GO concentrations > 0.05 wt%, the 
compressive strengths gradually decreased because of 
the self-accumulation of GO sheets. Furthermore, when 
the curing age under tap water is higher than 7 days, the 
percentage compressive strength showed a low value 
by approximately 26.83, 17.00, 32.71 and 34.70% for the 
curing age at 3, 21, 28 and 77  days, respectively, meas-
ured by a GMT_0.05 sample. Fig. 5c shows a comparison 
between the tensile strengths of GMT_0, GMT_0.01, 
GMT_0.03, GMT_0.05, and GMT_0.1 composites, 
respectively, at the curing age of 3, 7, 21, 28 and 77 days 
to analyze the effect of GO on tensile strength. The ten-
sile strength of GMT_0.05 sample was demonstrated to 
be the highest by up to 61.45% at 7 days of a curing age 
as shown in Fig. 5d. As Qian et al. (2015) reported that 
the compressive strength of cement composite speci-
mens with low GO concentrations of 0.05 wt% increased 
by up to and 18.7% and 13.7% at a curing age of 7 and 
28  days, respectively. The tensile strength values of all 
sample are summarized in Table 2. The strengths of the 
GMT composites increased in the compressive and ten-
sile strength tests because of the addition of GO which 
promotes hydration, decreases pore volume, accelerates 

crystallite formation, and causes the crystallites to align. 
This increases the tightness of both the hardened cement 
paste and mortar (Liu et  al., 2012). Also, the mechani-
cal property of cement mortar was improved by the GO 
composites. 

Fig.  6a–b demonstrates the volumetric heat capacity 
(Cv), the thermal conductivity (κ), and thermal diffusiv-
ity (a) of GMT_0, GMT_0.01, GMT_0.03, GMT_0.05, 
and GMT_0.1 composites, respectively at the curing age 
of 7 days. In Fig. 6a, the volumetric heat capacity values 
were 1.489 ×  106, 1.471 ×  106, 1.449 ×  106, 1.515 ×  106 and 
1.408 ×  106  J/m3 K for GMT_0, GMT_0.01, GMT_0.03, 
GMT_0.05, and GMT_0.1 composites, respectively.The 
results showed that the GMT_0.05 had the lowest Cv 
value compared to other samples. Furthermore, the ther-
mal conductivity and the thermal diffusivity are shown 
in Fig.  6b. The thermal conductivity was found to be 
0.578 ± 0.008, 0.568 ± 0.023, 0.549 ± 0.025, 0.513 ± 0.028 
and 0.490 ± 0.026  W/m K for GMT_0, GMT_0.01, 
GMT_0.03, GMT_0.05, and GMT_0.1 composites, 
respectively, whereas the values of thermal diffusivity 
were found to be at the range of 0.38 ×  10–6 to 0.33 ×  10–6 
 m2/s. The thermal conductivity value of mortar about 
0.264  W/m K is similar to what was observed in Jiang 
et al. (2018) study. The thermal conductivity is decreased 
with increasing GO contents due to the low thermal 

Fig. 4 SEM images of GMT_0, GMT_0.03, GMT_0.05 and GMT_0.1 composites, respectively.
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Fig. 5 The comparative graphs of a compressive strengths and b % compressive strengths, c tensile strength and % tensile strength at the curing 
age of 3, 7, 21, 28 and 77 days of GMT_0, GMT_0.01, GMT_0.03, GMT_0.05, and GMT_0.1 composites, respectively.

Table 2 Compressive strengths and tensile strength of GMT_0, GMT_0.01, GMT_0.03, GMT_0.05, and GMT_0.1 composites at the 
curing age of 3, 7, 21, 28 and 77 days, respectively.

The curing age Samples

GMT_0 GMT_0.01 GMT_0.03 GMT_0.05 GMT_0.1

Compressive strengths (MPa)

 3 days 6.954 ± 0.212 7.882 ± 0.127 8.635 ± 0.122 8.819 ± 0.225 8.344 ± 0.292

 7 days 8.107 ± 0.097 9.126 ± 0.496 10.037 ± 0.044 11.084 ± 0.620 10.467 ± 0.780

 21 days 9.631 ± 0.099 10.524 ± 0.070 10.871 ± 0.178 11.641 ± 0.157 10.389 ± 0.311

 28 days 8.864 ± 0.191 9.533 ± 0.618 10.676 ± 0.721 11.763 ± 0.352 11.004 ± 0.802

 77 days 9.936 ± 0.756 9.631 ± 1.776 13.262 ± 0.299 13.282 ± 0.132 13.268 ± 0.235

Tensile strength (MPa)

 3 days 1.067 ± 0.033 1.169 ± 0.075 1.171 ± 0.045 1.073 ± 0.056 1.098 ± 0.103

 7 days 0.844 ± 0.107 0.916 ± 0.107 1.108 ± 0.081 1.363 ± 0.046 1.068 ± 0.046

 21 days 1.349 ± 0.103 1.555 ± 0.192 1.571 ± 0.157 1.442 ± 0.047 1.359 ± 0.040

 28 days 1.215 ± 0.141 1.351 ± 0.166 1.456 ± 0.152 1.445 ± 0.142 1.318 ± 0.043

 77 days 1.267 ± 0.244 1.091 ± 0.055 1.166 ± 0.168 0.149 ± 0.051 1.312 ± 0.015
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conductivity or the exellent insulator of GO sheets and 
good interactions between CSH, CH and CCA phases 
in the cement mortar and GO sheets. The low thermal 
conductivity was observed at 0.05 wt% (GMT_0.05) and 
0.1 wt% (GMT_0.1) of GO content similar to what was 
observed in the low thermal insulation property of GMT 
composites. Generally, the material with thermal con-
ductivity values lower than 0.250 W/m K is known as a 
heat insulator material (Zhou et al., 2010). Therefore, the 
heat insulator of cement mortar was enhanced by the GO 
composites.

The heat insulator behavior of GMT_0, GMT_0.01, 
GMT_0.03, GMT_0.05, and GMT_0.1 composites at 
the curing age of 7  days was investigated. The tem-
perature distribution on the surface of GMT compos-
ites was observed at the experimantal time for 0, 10, 20 
and 30  min by using the infrared thermal imaging as 
shown in Fig. 7. The temperature of the hot surface was 
350  °C. According to Fig.  7, both sides of temperatures 
on high temperature and low temperature for all GMT 

composites are increased with increasing time until the 
temperature becomes constant. The results showed 
that all GMT composites displayed temperature stabil-
ity on the hot plate at the same time about 30 min. The 
heat insulator behavior of mortar is similar to what was 
reported in another study conducted by Yousefi et  al. 
(2020). In all GMT composites, the increase of low tem-
perature was observed as well as pure mortar (GMT_0). 
The temperature differences (ΔT) of each surface side 
are particularly important because the materials, which 
can block the heat transfer, should be applied to insulat-
ing material between the hot and cold surface of ther-
moelectric devices. The insulating materials can increase 
the output efficiency in energy conversion devices such 
as thermoelectric devices. For example, Lv et  al. (2020) 
reported that the output efficiency of thermoelectric 
device increased with the decrease of the thermal prop-
erties of fillers in space between legs. Moreover, the out-
put efficiency of thermoelectric properties decreased 
about ~ 1% because the thermal insulation materials are 
not added in the space between legs according to Li et al. 
(2018). Therefore, the heat insulation materials should 
be a factor causing the increase in the output efficiency 
of thermoelectric properties because of the reduction or 
elimination of the heat transfer (Li et al., 2018; Lv et al., 
2020). The ΔT values of GMT composites are summa-
rized in Table  3 and found to be at the range of 276–
279  °C and 269–271  °C for 20 and 30 min, respectively. 
Interestingly, for GMT_0.05 and 0.1 composites, the 
temperature difference values increased due to the low 
thermal conductivity of GO sheets compared with the 
rGO or Graphene (Mahanta & Abramson, 2012). Moreo-
ver, the reaction with CSH and CH phases in the cement 
mortar on the surface of GO should reduce the thermal 
insulation property of GMT composites.

Furthermore, the thermal resistance (R), which is the 
resistance to heat flow as heat insular of the material of 
GMT composites, was defined by R = t/κ, where t is the 
insulation thickness and κ is the thermal conductivity of 
sample (Mahanta & Abramson, 2012). The thermal resist-
ance values of GMT composites in the area of 5 × 5  cm2 
and thickness of 5  cm are summarized in Table  3. 
The thermal resistance value was 0.087, 0.115, 0.091, 
0.098 and 0.102  m2  K/W for samples of the GMT_0, 
GMT_0.01, GMT_0.03, GMT_0.05, and GMT_0.1 com-
posites, respectively. The sample of GMT_0.05 and 
GMT_0.1 composites displayed the high thermal resist-
ance value. This result indicated that those samples pro-
vided the high thermal resistance values.

The investigation of the surface by overall heat trans-
fer coefficient (U) as inversion of thermal resistance value 
was done through U = 1/R (Mahanta & Abramson, 2012; 
Zhou et  al., 2010). The overall heat transfer coefficient 
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Fig. 6 a The volumetric heat capacity (Cv) and b the thermal 
conductivity (κ) and thermal diffusivity a of GMT_0, GMT_0.01, 
GMT_0.03, GMT_0.05, and GMT_0.1 composites, respectively, at the 
curing age of 7 days.
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Fig. 7 a The experimantal setup of infrared thermography of the samples. b Infrared thermography images of GMT_0, GMT_0.01, GMT_0.03, 
GMT_0.05, and GMT_0.1 composites, respectively, at the curing age of 7 days for 0, 10, 20 and 30 min.
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value was 11.556, 11.369, 10.972, 10.252 and 9.792  W/
m2 K for samples of the GMT_0, GMT_0.01, GMT_0.03, 
GMT_0.05, and GMT_0.1 composites, respectively.

Regarding the heat transfer rate (Q), it was calculated 
by Q = κA(ΔT/t), where κ is the thermal conductivity 
of samples; t is the insulation thickness; ΔT is the tem-
perature differences; and, A is the arear of sample. The 
Q of GMT composites remained at the cold side for 
20 and 30  min. The results demonstrated a decrease in 
heat transfer rate with increasing GO contents, as dis-
played in Table  3. These results indicated the effect of 
GO nanosheet connected with the CSH, CH and CCA 
phases in the cement mortar on the thermal insulation 
property of GMT composites (Zhou et al., 2010). The low 
heat transfer rate of GMT_0.05 and GMT_0.1 compos-
ites for 30 min was 0.465 and 0.443 W/min, respectively, 
indicating lower rate than the samples without GMT_0 
composite. Therefore, the GMT composites can be a new 
pathway to significantly improve the heat insulation of 
mortar composites.

4  Conclusion
The influence of GO sheets loading contents on the 
mechanical and thermal properties of the mortar com-
posites was investigated. Three crystalline phases of 
 CaH2O4Si, Ca(OH)2,  Ca6[Al(OH)6]2(SO4)3·26H2O and 
 SiO2 were observed in all conditions, indicating the 
mortar material. The size of cement mortar deposited 
on the surface of GO is slightly decreased with increas-
ing the GO contents. The small particle sizes of mortar, 
which created the CSH, CH, and CA phases on the sur-
face of GO in the cement mortar, should be explained by 
increasing the compressive and tensile strength values. 
Interestingly, the thermal conductivity is decreased with 
increasing GO contents. The thermal conductivity values 
of 0.513 ± 0.028 and 0.490 ± 0.026 W/m K for GMT_0.05 
and GTO_0.1 composites, respectively, indicate a heat 
insulator material. Moreover, the low heat transfer rate 
of GMT_0.05 composite for 30  min was 0.465  W/min, 

demonstrating a new pathway to significantly improve 
the heat insulation of mortar composites. The interac-
tions between CSH, CH and CA phases in the cement 
mortar and GO sheets can affect the heat insulation of 
GMT composites. Therefore, the mechanical and ther-
mal properties of mortar nanocomposite materials were 
improved by GO nanosheets.
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