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Abstract 

Reinforced concrete structural walls (RCSWs) are one of the most efficient lateral force-resisting systems used in build-
ings, providing sufficient strength, stiffness, and deformation capacities to withstand the forces generated during 
earthquake ground motions. Identifying the failure mode of the RCSWs is a critical task that can assist engineers and 
designers in choosing appropriate retrofitting solutions. This study evaluates the efficiency of three ensemble deep 
neural network models, including the model averaging ensemble, weighted average ensemble, and integrated stack-
ing ensemble for predicting the failure mode of the RCSWs. The ensemble deep neural network models are compared 
against previous studies that used traditional well-known ensemble models (AdaBoost, XGBoost, LightGBM, CatBoost) 
and traditional machine learning methods (Naïve Bayes, K-Nearest Neighbors, Decision Tree, and Random Forest). The 
weighted average ensemble model is proposed as the best-suited prediction model for identifying the failure mode 
since it has the highest accuracy, precision, and recall among the alternative models. In addition, since complex and 
advanced machine learning-based models are commonly referred to as black-box, the SHapley Additive exPlanation 
method is also used to interpret the model workflow and illustrate the importance and contribution of the compo-
nents that impact determining the failure mode of the RCSWs.
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1  Introduction
In building design, shear walls are commonly employed 
to protect the structure from lateral forces such as earth-
quake ground motions. Shear walls are a cost-effective 
way to reinforce a building’s structural system against lat-
eral loads. A reinforced concrete structural wall (RCSW) 
improves the building’s stiffness in the wall plane, lower-
ing the building’s lateral sway and boosting its stability in 
that plane. For this reason, this system is widely used in 
buildings. Existing RCSW buildings are assessed and ret-
rofitted following local jurisdictional regulations and it is 

critical to predict the severe damage and failure modes 
of RCSWs accurately. According to the aspect ratio (the 
ratio of height to the wall length), RCSWs are classified 
as slender or squat (Barkhordari et  al., 2021; Massone 
et  al., 2021). Slender walls (aspect ratio > 3) are more 
prone to ductile failure characterized by bar buckling and 
concrete crushing, bar fracture, or global or local lateral 
instabilities. Squat walls (aspect ratio < 1.5) are prone to 
have shear-controlled failure mechanisms, which can be 
characterized by diagonal tension, diagonal compression 
(web crushing), or shear sliding at the base. Walls with 
an aspect ratio of 1.5 to 3.0 (moderate-aspect-ratio walls) 
display behavior that is characterized by yielding in flex-
ure and failing in shear.

In recent years, researches on the application of 
machine learning models for damage estimation and 
monitoring in civil engineering have recently been 
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published. They can be categorized into two main types, 
including: (1) regression-based methods and (2) classifi-
cation-based methods. Some of the previous studies used 
various machine learning algorithms to estimate the per-
formance of shear walls. Moradi et. al. (2020) studied the 
application of the radial basis function network to assess 
the impacts of the rectangular opening on the behavior of 
the steel plate shear walls. They suggested the proposed 
network that can be used to design new walls or retro-
fit existing ones while consuming less time and requiring 
no specific software knowledge. Using the extreme gra-
dient boosting (XGBoost) technique, Feng et. al. (2021) 
developed a forecasting model for predicting the shear 
strength of reinforced concrete squat walls. According 
to studies, the XGBoost model provides a decent pre-
diction for shear strength, with an average computed-
to-measured ratio of 1.0. Chen et. al. (2018) and Nguyen 
et. al. (2021) utilized neural networks for shear strength 
prediction of reinforced concrete squat walls. Gondia 
et. al. (2020) used genetic programming, a kind of arti-
ficial intelligence, to develop an expression for the shear 
strength of reinforced concrete squat walls. Keshtegar 
et. al. (2021a, 2021b) used neural network merged with 
adaptive harmony search algorithm and support vector 
regression with response surface model to estimate the 
ultimate shear capacity of RCSWs. Pizarro et. al. (2021) 
and Pizarro and Massone (2021) developed a convolu-
tional network-based solution to produce the ultimate 
engineering floor plan of reinforced shear wall concrete 
buildings using a dataset of 165 Chilean residential lay-
outs. Barkhordari and Tehranizadeh (2021) developed 
a hybrid technique, the neural network with simulated 
annealing, for predicting the response of the RCSWs, 
such as forces and bending moment at the base of the 
wall, curvature of the wall, and normal strain in the ver-
tical/horizontal direction. Parsa and Naderpour (2021) 
used the support vector regression with meta-heuristic 
optimization algorithms for the estimation of the shear 
strength of the RCSWs. Mangalathu et. al. (2020) inves-
tigated the effectiveness of eight machine learning tech-
niques in detecting RCSW failure mechanisms. To sum 
up, only Mangalathu et. al. (2020) examined the efficiency 
of the ensemble learning algorithms, except ensemble 
deep neural network algorithms, in predicting the failure 
mode of the RCSWs.

Even though the aspect ratio marks tendencies of gen-
eral behavior, several factors affect the failure mode of 
the RCSWs. In addition, appropriate methodologies 
for assessing their likely mechanism of failure during 
earthquake occurrences are required to acquire a better 
knowledge of the seismic behavior of existing structures 
and to create appropriate retrofit solutions. In addi-
tion, although there have been attempts to predict the 

failure mode with different machine learning approaches 
(Mangalathu et al., 2020), no previous research has used 
ensemble deep neural network models to predict the 
failure mechanism of the RCSWs. In this study, model 
averaging, weighted average, and integrated stacking are 
three ensemble learning approaches that are employed 
for failure mode detection of the RCSWs. Moreover, the 
relevance of input variables such as aspect ratio (or more 
general, moment-to-shear length ratio), steel ratio, con-
crete strength, axial load, among others, has not been 
studied. The aim here is to evaluate the efficiency of the 
ensemble deep neural network models for assessing the 
failure mechanism of the RCSWs and investigate the rel-
evance of the main variables and how they relate to fail-
ure modes.

2 � Method and Material
Here, Keras (Chollet 2015) is used to develop deep learn-
ing models, which is an open-source library for artificial 
neural networks that supports a Python interface. A brief 
description of the data used in this study, various parts 
of the base neural networks, and ensemble algorithms are 
provided below.

2.1 � Database
Test data generated by experimental studies on RCSWs, 
where specimens are tested using cyclic loading pro-
tocols, is used in this study, 393 experimental data of 
RCSWs tested that were collected from the literature by 
Mangalathu, Jang (Grammatikou et al., 2015; Mangalathu 
et al., 2020; Usta et al., 2017). It is worth noting that the 
RC walls in this repository are traditional RCSWs; they do 
not contain testing of repaired or precast RCSWs, nor do 
they include walls that have been subjected to dynamic 
loading. RCSWs have a distribution of 3 types of cross-
section configurations: 238 rectangular walls, 95 barbell 
walls, and 60 flanged walls  (Fig.  1). The distribution of 
the failure mode (output) of RCSWs is shown in Table 1. 
Design parameters are listed in Table 2. In Table 2, P is 
the axial load, Ag is the gross area of the section, fc is the 
compressive strength of concrete, Ab is the boundary ele-
ment area, ρi,x/y is the reinforcing ratio in the horizon-
tal/vertical direction, tw is the wall thickness, H is the 
height of the wall, lw is the length of the wall, and fy is the 
yield strength of the reinforcement. Due to insufficient 
research funds and scientific equipment capacities, many 
experimental investigations have been undertaken with 
small-scale specimens. The use of dimensionless values 
for the input variables is desirable to estimate the failure 
of the shear walls. Therefore, parameters are normal-
ized to use dimensionless variables. The input variables 
are M/Vlw , Ab/Ag , lw/tw , P/fcAg , ρvbfy,vb/fc , ρvwfy,vw/fc , 
ρhbfy,hb/fc , and ρhwfy,hw/fc. Table  3 shows the statistical 
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Fig. 1  Cross-sections of the reinforced concrete walls.

properties of the input variables, where Min., Max., and 
STD are the minimum, maximum, and standard devia-
tion of variables, respectively. All 393 datasets are split 

randomly into training and testing sets. 80% of the total 
of 393 datasets is utilized randomly for model develop-
ment and 20% of the datasets are chosen to determine 
the model accuracy. Input data are normalized so that all 
values are within the range of − 1 and 1. The limitation of 
the data is that the target class has an uneven distribution 
of observations. 

Fig.  2 provides a stacked bar for types of walls/sec-
tion vs. failure mode. In Fig. 2, F, FS, S, and SL stand for 
‘flexural failure’, ‘flexure–shear failure’, ‘shear failure’, and 
‘sliding shear failure’. Fig.  2a shows the distribution of 
types of walls vs. failure mode. It is clear that the number 
of failure modes is different for different types of walls. 
The graph shows that all slender walls have only flex-
ural failure. Furthermore, there is some variation in the 
graph. For instance, there is a large growth in the number 
of walls with shear failure when comparing  the moder-
ate sector with the squat sector. Fig. 2b shows the distri-
bution of section vs. failure mode. It is apparent from this 
graph that rectangular walls mostly have flexural failure. 
In addition, flanged walls mostly have shear failure. This 
is most likely because when walls have the boundary ele-
ment, their flexural strength increases. As a result, shear 
failure may occur before flexural failure under lateral 
loading if the lateral force relating to flexural strength 
is greater than the lateral force corresponding to shear 
strength.

2.2 � Basic Models
For almost all ensemble methods, a series of models must 
first be created as basic models (or sub-model) to form 
an ensemble model. This means that several models are 
taught using training data. The baseline models are con-
structed of five different deep neural networks. Models in 
Keras are defined as a sequence of layers. Each layer has 
some nodes (neurons). When generating deep neural net-
works, one of the most common questions is what should 
be the number of neurons per layer? Here, the learning 
rate, activation functions, optimizer, and the number of 
neurons per layer are determined using the Keras-Tuner 
library that helps to pick the optimal set of hyperparam-
eters for deep neural networks. Fig. 3 is a simplified form 
of the workflow. Here, six activation functions (Sigmoid, 
Relu, Softplus, Tanh, Selu, and Elu) are considered.

Table 1  Distribution of failure mode.

The number of specimens

Flexure failure modes (i.e., bar buckling 
and concrete crushing, bar fracture, or 
global or local lateral instability)

Shear failure modes [i.e., diagonal tension, 
diagonal compression (web crushing)]

Flexure–shear failure (i.e., yielding in 
flexure and failing in shear)

Sliding-shear failure

152 122 96 23
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The optimizer is a relevant component of the train-
ing phase. The optimizer function assists the network in 
determining how to update the weights to minimize the 
loss. Eight optimization algorithms are utilized namely 
adaptive gradient (Adagrad) (Duchi et  al., 2011), Adap-
tive delta (Adadelta) (Zeiler & Adadelta, 2012), Sto-
chastic Gradient Descent (SGD) (Krogh & Hertz, 1992), 
Root Mean Square Prop (RMSProp) (Zeiler & Adadelta, 
2012), Adaptive Moment Estimation (Adam) (Kingma 
& Ba, 2014), Adamax (a variant of Adam based on infin-
ity norm) (Kingma & Ba, 2014), Nadam (Adam with 
Nesterov momentum) (Dozat, 2016), and Follow-the-
regularized-leader (Ftrl) (McMahan et  al., 2013). In this 
study, the basic input parameters contain M/Vlw , Ab/Ag , 
lw/tw,ρvbFy,vb/fc , ρhbFy,hb/fc , P/fcAg , ρhwFy,hw/fc , and 
ρvwFy,vw/fc. The output of the model is predicted failure 
mode class, including ‘flexural failure’, ‘flexure–shear fail-
ure’, ‘shear failure’, and ‘sliding shear failure’.

Among all, five basic models are selected in this study 
based on their performance on test data. Table  4 sum-
marizes the information of the final basic models (sub-
model) that had the highest accuracy. Overfitting occurs 
when a model learns the knowledge and noise in the 
training set to the degree where it degrades the model’s 
performance on hold-out data. Sometimes in ensemble 
techniques, the sub-models may have overfitting prob-
lems. In this study, the learning curve of all models was 
monitored to ensure that overfitting did not occur. In this 
study, the learning curve (e.g., Fig. 4) of all sub-models is 
monitored to ensure that overfitting did not occur.

2.3 � Model Averaging Ensemble (MAE)
MAE is an ensemble method that involves training 
many models on the same data set (Brownlee, 2018). 
The outputs from each of the trained models are then 
added together, and the average is used as the final 
predicted value. The number of models needed for the 
ensemble can vary depending on the solution space 
complexity. One technique is to construct new models 
on a constant schedule (increasing the number of lay-
ers), add them to the group, and then assess their con-
tribution to performance by predicting on a test set. 
Fig.  5 shows how the MAE method works using sub-
models (Table 4).

2.4 � Weighted Average Ensemble (WAE)
The averaging performed in the MAE method means 
that the output values of the sub-models have an equal 
effect on the predicted final value (Brownlee, 2018). 
The WAE approach makes it possible for superior mod-
els to have a larger share of the predicted final value, 
while less talented models have a smaller share. In this 
method, a weight is assigned to the output of each sub-
set model. The value of these weights is usually deter-
mined by an optimization algorithm.

Metaheuristic search algorithms are divided into 
three categories (Ahmadianfar et  al., 2021), named by 
swarm-based algorithms, evolutionary-based algo-
rithms, and trajectory-based algorithms. Evolutionary 
algorithms are developed mostly from Darwin’s theory 
of urgency and natural selection. Differential evolution 

Table 2  Statistical features of database.

*B. E. = boundary element.

Aspect ratio ( M/Vlw) 0.25–4.1 Axial load ratio ( P/fcAg) 0.0–0.5

Boundary element area to area of cross-section ratio ( Ab/Ag) 0.0–0.44 Gross cross-sectional area ( Ag—mm2) 7800–825,400

The ratio of length to thickness of the wall ( lw/tw) 4.35–57 Compressive strength of concrete ( fc—MPa) 13.7–130.8

Web reinforcing ratio in horizontal direction ( ρhw) 0.0–0.037 Web reinforcing ratio in vertical direction ( ρvw) 0.0–0.037

B. E.* reinforcing ratio in horizontal direction ( ρhb) 0.0–0.13 B. E. reinforcing ratio in vertical direction ( ρvb) 0.0–0.1

Yield strength of horizontal reinforcement (MPa) Web ( fy,hw) 0.0–1262

B. E. ( fy,hb) 0.0–1253

Yield strength of vertical reinforcement (MPa) Web ( fy,vw) 0.0–1001

B. E. ( fy,vb) 0.0–776

Table 3  Statistical characteristics of the input variables.

M/Vlw lw/tw ρvwfy,vw/fc ρhwfy,hw/fc ρvbfy,vb/fc ρhbfy,hb/fc P/fcAg Ab/Ag

Mean 1.39 14.7 0.0829 0.0796 0.384 0.128 0.067 0.098

STD 0.71 8.7 0.0731 0.0600 0.374 0.210 0.105 0.127

Min 0.25 4.3 0 0 0 0 0 0

Max 4.1 37 0.488 0.327 2.65 1.26 0.50 0.443
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(DE) is a kind of evolutionary algorithm (Bennis & 
Bhattacharjya, 2020) that initializes the members of the 
algorithm with several potential solutions at the start. 
The differential evolution iterative technique is then 
continued by applying the difference vector based on 
the DE operators, including mutation, crossover, and 
the selection mechanism. Following that, each solution 
is evaluated using a specified objective function in an 
iterative optimization process. The mutation process 
aims to vary the population member vector for the next 
iteration based on any available information from the 
previous step in the search (Eq. 1):

where �yi is the mutant vector (MV) of the ith member, 
x1,j , x2,j , and x3,j are chosen at random from the popula-
tion, and mr is the scaling factor that fine-tunes the size 

(1)�yi(t + 1) = mr ·
(

x2,j(t)− x3,j(t)
)

+ x1,j(t),

of perturbation in the process. The crossover operator 
is utilized to broaden the population genetic variation 
among the MVs. As a result, the MV replaces its ele-
ments with those of the current population. The selection 
mechanism is used to determine which of the offspring 
individuals (and their parent) will survive in the next 
cycles, as well as to keep the pre-determined population 
size constant. The population is built using the individu-
als, which are selected between the trial and their prede-
cessor vectors, which have better performance in terms 
of the objective function. Here, differential evolution is 
used to calculate the weight of each sub-model because 
of its advantages, such as discovering the global mini-
mum of a search space independent of the initial values, 
fast convergence, and the usage of a few control factors 
(Karaboga & Cetinkaya, 2004). Fig.  6 shows the flow-
chart of the WAE method with the differential evolution 
algorithm.

2.5 � Integrated Stacking Ensemble (ISE)
Although the average of the model can be improved by 
weighting the influences of each sub-model, it may be 
further improved by teaching a completely new model (a 
neural network) to discover how to better combine each 
of the sub-models, using the so-called Integrated Stack-
ing Model (ISE) (Brownlee, 2018; Naimi & Balzer, 2018). 
The new model is usually called meta-learner, where 
the sub-models are integrated with a neural network. In 
other words, the ISE can be interpreted as a single huge 
model which then learns how to merge the results from 
every single sub-model in the most efficient way possi-
ble. Here, the architecture of the meta-learner consists 
of only one hidden layer with 5 neurons. The process of 
determining the hidden layer’s neurons is just a case of 
trial and error (after examining the range of 2 to 20 neu-
rons, the best performance of the ISE model with at least 
5 neurons is obtained). Fig.  7 represents a diagram to 
understand the ISE model process.

3 � Results and Discussion
For the MAE method, the number of members can 
change the result. Therefore, the influence of the num-
ber of sub-models on the model’s accuracy is explored, 
and the best model with the minimum members is cho-
sen. Fig.  8 shows the effect of the number of members 
versus the accuracy. Increasing the size of the ensemble 
model (adding sub-model) has been done by first creat-
ing a new model with the first two sub-models, that is, 
sub-model 1 and sub-model 2 from Table 4, and for each 
subsequent ensemble model another sub-model is added 
to the previous group, examining the accuracy of the 
ensemble model on the test set. It can be seen that from 

Fig. 2  Distribution of section/types of walls vs. failure mode. a 
Distribution of types of walls vs. failure mode. b Distribution of 
section vs. failure mode.
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1 to 2 sub-models, there is a marked rise in the ensem-
ble model’s accuracy. From 2 to 3 sub-models, there is a 
modest rise in the ensemble model’s accuracy. This is fol-
lowed by a constant accuracy for models with more than 
three members. As a result, a model with three members 
(sub-models 1–3) is selected for this method.

As mentioned, the WAE model permits higher-per-
forming models to have a bigger proportion, while 

lower-performing models have a lesser share by assigning 
a weight to the sub-models’ output. Table 5 shows opti-
mized weights, which are determined using the differen-
tial evolution algorithm. The WAE models’ accuracy with 
the optimized weights is 0.987.

The last ensemble model is the ISE model. The accuracy 
of the ISE model also is 0.962. Considering the stochastic 
nature of neural networks’ learning algorithm, it’s possible 
that each time a neural network model is trained, it will 
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Fig. 3  Model workflow.

Table 4  Characteristics of the basic models.

Sub-model 1 2 3 4 5

Number of neurons

 Layer 1 40 25 40 25 20

 Drop rate 0.02 0.01 0.01 – –

 Layer 2 80 80 60 20 50

 Drop rate – – 0.01 – –

 Layer 3 – 20 60 80 30

 Layer 4 – – 15 80 60

 Layer 5 – – – 40 80

 Layer 6 – – – – 25

Activation Tanh Tanh Tanh Tanh Tanh

Optimizer Adam Adam Adam Adam Adam

Learning rate 0.01 0.01 0.01 0.01 0.01

R2 score (test set) 0.83 0.81 0.82 0.84 0.81

Fig. 4  Learning curve of sub-model 1.
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discover a mild/significantly various version of the map-
ping function between inputs and outputs, that is, neural 
networks have a high variance, resulting in differences in 
performance on the training and test sets. WAE models 
work virtually well in most situations because different 
neural networks do not always produce the same errors 
on the test set (Goodfellow et al., 2017). In addition, sub-
models have different numbers of layers and neurons in 
each layer. Change in the number of layers helps to con-
sider the various levels of nonlinearity. The number of 
neurons in the layer is also important since they consider 
the interaction between the parameters. This means that 
by increasing the number of neurons and creating more 
relationships, if these relationships are not appropriate, it 
may reduce the efficiency of the neural network and the 
accuracy of network prediction and vice versa.

ISE model performs worse than WAE. This could be 
due to the local minima. The feed-forward neural net-
work, which is trained using backpropagation has a 
variety of drawbacks, such as falling into local minima 
and learning at a slow rate (Lee et al., 1991).

Fig.  9 shows the confusion matrix of various models. 
In Fig. 9, F, FS, S, and SL stand for ‘flexural failure’, ‘flex-
ure–shear failure’, ‘shear failure’, and ‘sliding shear failure’. 
The failure modes successfully identified by the classifi-
cation algorithm are represented by the diagonal cells in 

the confusion matrix, whereas the failure modes incor-
rectly predicted are represented by the off-diagonal cells. 
The lowest cell on the right of the figure shows the overall 
accuracy (Eq. 2). The column on the far right of the con-
fusion matrix indicates the precision metric (Eq. 3). The 
row at the bottom of the confusion matrix indicates the 
recall metric (Eq. 4):

where TN indicates that the model predicted ‘False’ 
and the real outcome was ‘False’, FP denotes that the 
model predicted ‘True’ but the real outcome was ‘False’, 
FN means that the real outcome was ‘False’, and the 
model predicted ‘True’, and TP denotes that the model 
predicted ‘True’ and the real outcome was ‘True’. 
Among the ensemble algorithms, the WAE model fares 
much better. The WAE model has the highest accuracy 

(2)Accuracy =
TP+ TN

TP+ FP+ FN+ TN
,

(3)Precision =
TP

TP+ FP
,

(4)Recall =
TP

TP+ FN
,

Fig. 5  Model averaging ensemble framework.
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with 0.987 for the test set, whereas the MAE and ISE 
models have the same accuracy (0.962). It appears that 
recognizing the FS failure mode is often challenging, 
and the MAE model, WAE model, and ISE model all 
have 0.88, 0.94, and 0.84 precision in identifying the FS 
failure mode in the test set, respectively.

3.1 � Comparisons with Previous Studies
Mangalathua et. al. (2020) used eight machine learning 
models to establish a model to distinguish the failure 

mode of the RCSWs. The following is a list of machine 
learning models that Mangalathu et. al. (2020) utilized to 
determine the failure modes of concrete shear walls.

1.	 Naive Bayes classifier (Domingos & Pazzani, 1997; 
Osisanwo et  al., 2017): A probabilistic machine learn-
ing technique called a Naive Bayes classifier is utilized 
to perform classification tasks. The Bayes theorem lies 
at the core of the classifier. It is one of the most basic 
Bayesian network models, but when combined with 
kernel density estimation, it can reach higher precision.

Fig. 6  Flowchart of the WAE method with differential evolution algorithm.



Page 9 of 18Barkhordari and Massone ﻿Int J Concr Struct Mater           (2022) 16:33 	

2.	 k-Nearest Neighbors regression (Altman, 1992): The 
k-Nearest Neighbors regression is the most basic 
nonparametric regression method. The method tries 
to find the closest one of the k groups that contain 

given input x and return the mean of the data values 
in that group. In other words, the KNN algorithm 
believes that similar objects are close together. To put 
it another way, related items are close together.

3.	 Decision tree (Jaworski et  al., 2017; Quinlan, 1983): 
A decision tree is generated by repeatedly dividing 
the dataset into a sequence of subsets. The training 
set is made up of pairs (x, y), where y is the label that 
corresponds to the pair (x, y). The learning approach 
divides the training data set into classes based on x, 
seeking to make each group’s assignments as simi-
lar as possible. The teaching process must choose a 
characteristic and a corresponding threshold for that 
characteristic, using which the data will be divided.

4.	 Random Forests (Breiman, 2001): Using ensemble 
learning, it is feasible to merge a group of decision 
trees into a bigger composite tree that outperforms 
its individual elements. The composite tree helps to 
reduce decision trees’ main flaw: large variance. Ran-
dom forest classifiers aid by averaging out the estima-

Fig. 7  Flowchart of the ISE method.

Fig. 8  Effect of the number of ensemble members.
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tions of numerous basic trees to reduce variation by 
training the integrated trees using random subsets of 
the training dataset.

5.	 Ensembles are groups of models that work together 
to achieve a classifier (Friedman et al., 2001). Bagging 
and boosting are the two main methods for creating 
ensembles. Individual high-variance classifiers ben-
efit from bagging since the majority of the classifiers 
try to smooth out the individual classifiers, result-
ing in a more reliable joint solution. Mangalathua et. 
al. (2020) used CatBoost, XGBoost, AdaBoost, and 
LightGBM which are boosting methods. Boosting, 
on the other hand, is especially useful for high-bias 

Table 5  Optimized weights.

Sub-model 1 2 3 4 5

Weight 0.0089 0.2868 0.1712 0.2930 0.2398

Fig. 9  Confusion matrix of various models. a ISE model. b MAE model. c WAE model.
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classifiers that take a long time to adjust to new con-
tent.

Tables  6, 7 and 8 show the three performance meas-
ures of the models used by Mangalathu et. al. (2020) and 
the ensemble models examined in this study. It should 
be noted that the Mangalathu et. al. (2020) database was 
used in this study. Weighted-average precision or recall 
means that precision or recall are calculated for each 
class and weight by the number of instances of each 
class. Overall, we see the WAE model outperforms the 
other approaches. The best model of Mangalathu et. al. 
(2020) has an accuracy of 0.86 while the WAE model has 
an accuracy of 0.99. In terms of other performance meas-
ures, the WAE model also fares well.

Because various splits of the data can generate signifi-
cantly diverse results, repeated tenfold cross-validation 
is performed to measure the best deep neural network’s 
performance. This indicates that the data is apportioned 
into training and test sets with a 90–10 split every time. 

Fig.  10 shows this by presenting model performance 
using tenfold cross-validation for 10 repetitions. The 
green triangle reflects the arithmetic mean, whereas the 
orange line denotes the distribution’s median. The aver-
age appears to be around 0.85, 0.84, and 0.8 for the Ran-
dom Forest (Fig. 10b), CatBoost (Fig. 10c), and Decision 
Tree (Fig.  10d), respectively. For the WAE model, the 
accuracy score fluctuates slightly around 0.98. As a result, 
these scores can be considered the most reliable estimate 
of models’ performance. Also, the analysis of the test 
accuracy of the Random Forest, CatBoost, and Decision 
Tree clearly demonstrates a variance in the performance 
of the models trained on the dataset using tenfold cross-
validation. It is now understood that although common 
machine learning techniques provide more flexibility and 
can scale in response to the amount of accessible train-
ing data, they learn using a stochastic learning algorithm 
(Brownlee, 2018; Maclin & Opitz, 2011), which means 
they are susceptible to the specifics of the training data 
and may discover a various set of hyperparameters each 
time they are trained, which in turn considers different 
levels of nonlinearity and level of interaction between 
parameters, resulting in different predictions (Brownlee, 
2018; Maclin & Opitz, 2011). These algorithms include 
a lot of instability, which can be problematic when try-
ing to come up with a final model to utilize for generat-
ing predictions (Brownlee, 2018; Maclin & Opitz, 2011). 
Training deep neural networks instead of a single model 
and combining the results from these models is a pow-
erful way to lower the variation. This is also known as 
ensemble deep neural network models, which is used in 
this study, because it can not only minimize prediction 
variance, but also produce results that are better than any 
single model.

Table 6  Accuracy of various methods.

Model Accuracy

Naïve Bayes (Mangalathu et al., 2020) 0.76

K-Nearest Neighbors (Mangalathu et al., 2020) 0.85

Decision Tree (Mangalathu et al., 2020) 0.8

MAE model 0.96

Random Forest (Mangalathu et al., 2020) 0.86

AdaBoost (Mangalathu et al., 2020) 0.67

XGBoost (Mangalathu et al., 2020) 0.83

MWAE model 0.84

LightGBM (Mangalathu et al., 2020) 0.8

CatBoost (Mangalathu et al., 2020) 0.84

WAE model 0.98

ISE model 0.96

Table 7  Weighted-average precision of various methods.

Models Precision

Naïve Bayes (Mangalathu et al., 2020) 0.76

K-Nearest Neighbors (Mangalathu et al., 2020) 0.85

Decision Tree (Mangalathu et al., 2020) 0.80

MAE model 0.96

Random Forest (Mangalathu, 2020) 0.87

AdaBoost (Mangalathu et al., 2020) 0.68

XGBoost (Mangalathu et al., 2020) 0.83

MWAE model 0.83

LightGBM (Mangalathu et al., 2020) 0.80

CatBoost (Mangalathu et al., 2020) 0.84

WAE model 0.99

ISE model 0.97

Table 8  Weighted-average recall of various methods.

Techniques Recall

Naïve Bayes (Mangalathu et al., 2020) 0.76

K-Nearest Neighbors (Mangalathu et al., 2020) 0.85

Decision Tree (Mangalathu et al., 2020) 0.79

MAE model 0.96

Random Forest (Mangalathu et al., 2020) 0.86

AdaBoost (Mangalathu et al., 2020) 0.67

XGBoost (Mangalathu et al., 2020) 0.83

MWAE model 0.84

LightGBM (Mangalathu et al., 2020) 0.80

CatBoost (Mangalathu et al., 2020) 0.84

WAE model 0.99

ISE model 0.96
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3.2 � Model Features Analysis
In this work, SHAP (Lundberg & Lee, 2017) is utilized to 
analyze the WAE model’s predictions. SHAP is a game 
theory-based technique that can be used to indicate how 
the parameters affect the response. The output model 
in SHAP is created by adding input variables in a linear 
form (Eq. 5):

In Eq.  5, f (x) is the original model, x is the original 
input, k is the explanation model for f (x) . A connection 
is made between x and x′ employing a function called 
hx(x

′) . The decision score for each class is averaged across 
the samples in the training set to approximate ϕ0 , which 
is stored as the expected value attribute of the explainer. 
The unknowns of Eq. 5 are calculated using Eq. 6:

(5)f (x) = k(x′) = ϕ0 +
∑

ϕix
′
i, x = h

(

x′
)

.

(6)

ϕi(f , x) =
∑

z′⊆x′

∣

∣z′
∣

∣!(M −
∣

∣z′ − 1
∣

∣)!

M!

[

fx(z
′)− fx(z

′\i)
]

, z′ ⊆ x′

fx(z
′) = f (hx(z

′)) = E[f (z)|zs ], z
′ ⊆ x′.

In Eq.  6, M is the number of simplified input, 
∣

∣z′
∣

∣ the 
count of entries that are non-zero in z′ , S is the set of 
non-zero indices in z′ , (z′\i) denote setting z0i = 0 , and 
E[f (z)|zs ] is SHAP explanation.

The SHAP summary chart, shown in Fig.  11, ranks 
features according to their importance in identifying 
failure modes. As we can see, the model’s most critical 
component is the aspect ratio ( M/Vlw ). This is most 
likely due to the relative involvement of shear and flex-
ural deformations. Flexural deformations cause the 
majority of lateral deformations in slender walls. The 
contribution of shear deformations is notably higher 
for moderate-aspect-ratio walls and especially short 
walls due to the presence of load transmission systems 
(e.g., strut action). The effect of each feature on each 
output (type of failure mode) is also shown in differ-
ent colors. As an example, the ratio of length to thick-
ness of the wall ( lw/tw ) has a greater effect on the wall 
with flexural-shear failure mode. In other words, for 
the ratio of length to thickness of the wall, the mean 
(|SHAP|) value is about (0.16–0.09) = 0.07 in shear fail-
ure mode class, and (0.28–0.17) = 0.11 in flexural-shear 

Fig. 10  Box and Whisker plots of accuracy. a WAE model. b Random Forest (Mangalathua’s model). c CatBoost (Mangalathua’s model). d Decision 
Tree (Mangalathua’s model).
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failure mode class, which means that the feature lw/tw 
can influence predicting the flexural-shear failure mode 
more than the shear failure mode. The other features 
that mostly affect the detection of different types of 
failure modes are the boundary element area to area of 
cross-section ratio ( Ab/Ag ), and the vertical and hori-
zontal boundary element reinforcing contribution ( ρvb
fy,vb/fc ; ρhb fy,hb/fc).

To visualize the impact of the characteristics on the 
decision scores associated with each class, a different 
type of summary plot is employed (Fig.  12). In Fig.  12, 
the attributes that have the greatest impact on the deci-
sion score for each class are located at the top and blue-
colored or red-colored points represent low values or 
high values of the parameter, respectively. Except for the 
flexure–shear failure mode and shear failure mode class 
(Fig. 12b, c), the aspect ratio has the most impact on the 
model output. As the value of the aspect ratio increases, 
their impact also increases and the model is more likely 
to predict flexure failure class (Fig.  12a) which corre-
sponds to a larger probability of walls yielding in flexure 
before reaching the nominal shear strength of the wall; 
consequently, flexural behavior dominates the inelastic 
response.

On the other hand, the boundary element area to area 
of cross-section ratio is the next most important feature 
(Fig.  12a), and lower values of this feature correspond 
to a higher chance to predict flexure failure class. This 
observation is likely related to the wall flexural strength 
increasing when the boundary element area is aug-
mented. As a result, if the lateral force related to flexural 

capacity is greater than the lateral force corresponding 
to shear capacity, shear failure may happen before flex-
ural failure under lateral loading. In the case of the shear 
failure class (Fig. 12c), the boundary element area to area 
of cross-section ratio has the most impact on the model 
output. The impact of the aspect ratio is almost inverse 
to its effect in the flexure failure class (Fig.  12a). Low 
values of the feature increase the likelihood of shear fail-
ure. In the case of the flexure–shear failure mode class 
(Fig.  12b), although mostly influenced by the ratio of 
length to thickness of the wall, there is no clear correla-
tion probably associated with the difficulty of assigning 
and identifying such failure mode. In the case of shear 
sliding failure mode, the aspect ratio feature also has the 
most impact. The model is more likely to anticipate shear 
sliding failure mode as the aspect ratio lowers (Fig. 12d) 
because the shear sliding strength tends to remain con-
stant with wall height, but lateral load might increase 
with height reduction by preventing flexural failure. 
Regarding the least important factors, the SHAP values 
of axial load ratio and web reinforcing ratio in vertical/
horizontal direction are almost close to zero for all failure 
types signifying that the axial load ratio and the web rein-
forcing ratio are the least important factors compared to 
other parameters. The effect of these factors on the fail-
ure mode identification cannot be interpreted in Fig. 12 
since the dots are mixed and do not show the change in 
the SHAP value with the variation of the input features 
appropriately. In addition, the maximum SHAP value of 
the aspect ratio for flexural failure cases is higher than 

Fig. 11  Failure mode—SHAP summary plot.
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the other cases, which means that a small increase in the 
aspect ratio value increases the probability of flexural 
mode more than in other cases. For flexure–shear failure 
mode (Fig. 12b), the cross-sectional aspect ratio, defined 
as the ratio of length to thickness of the wall, is the most 
dominant parameter. A similar trend was reported by 
Lowes et. al. (ACI Committee, 2019) for the cross-sec-
tional aspect ratio, where their study showed that walls 
with moderate to high shear stress demand and higher 
cross-sectional aspect ratio are susceptible to flexure–
shear failures.

Fig.  13a shows the value of the aspect ratio on the 
x-axis and the SHAP value of it with respect to flexural 
failure mode on the y-axis by changing the reinforcing 
ratio in the vertical direction ( ρvbfy,vb/fc ). The blue points 
represent lower values of ρvbfy,vb/fc . Blue dots are almost 
on the right-hand side of Fig. 13a, where values of aspect 
ratio are high. Hence, increasing the aspect ratio while 
the boundary element reinforcing ratio in the vertical 
direction is low is resulting in a higher chance of flexural 
failure mode. For Fig. 13b, despite some noise, SHAP val-
ues (with respect to shear failure) for low aspect ratio are 
above zero, which suggests that increasing the bound-
ary element reinforcing ratio in the vertical direction 
( ρvbfy,vb/fc ), while the wall aspect ratio is low, increases 
the probability of shear failure mode which can be caused 

by the reinforcement. The use of boundary element rein-
forcement can help to increase the wall flexural strength, 
delay the beginning of bar buckling and enhance the 
inner concrete’s normal strain capacity.

3.3 � Comparisons with Design Code
Three types of failure for structural walls, namely flex-
ural, shear and shear sliding failures can be categorized 
using ACI 318–19 design code (ACI Committee, 2019) 
and the concept of strength calculation. It is evident that 
if the shear strength of the RCSWs (Eq. 7) is lower than 
the shear force associated with flexural capacity, the fail-
ure occurs in shear mode. The ACI suggested a shear 
friction limit (Eq. 8), which is commonly used for shear 
sliding in walls. This equation is used as a guideline for 
when sliding shear takes over. In this paper, ACI 318–19 
is utilized for calculating the shear and flexural capacity 
of RCSWs. The ACI suggested that a shear stress limit of 
0.66

√

f ′c  MPa be used as a guideline to prevent diagonal 
compression failure:

(7)
Vn = Acv(αc

√

f ′c + ρt fy)

if wall aspect ratio ≤ 1.5 → αc = 0.25

if wall aspect ratio ≥ 2.0 → αc = 0.17,

Fig. 12  Summary plot for each class. a Flexural failure mode. b Flexure–shear failure mode. c Shear failure mode. d Sliding-shear failure mode.
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Fig. 13  SHAP dependency analysis. a Dependence plot for flexural failure class. b Dependence plot for shear failure class.
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where Vn is nominal shear strength, Acv is the gross 
area of the section, f ′c  is concrete strength, ρt is the 
transverse reinforcement ratio, fy is the yield strength 
of the transverse reinforcement, µ is coefficient of fric-
tion, and Avf  is the area of reinforcement crossing the 
assumed shear plane to resist shear, Ac is the area of 
concrete section resisting shear transfer. Fig. 14 shows 
the confusion matrix based on the code concept for 
the test set. It can be seen that by using ACI 318–19 
the accuracy in failure mode prediction is almost 
53.2% which is much lower than the WAE model’s 
accuracy (with 98.7%). In addition, code concepts can-
not be used to identify flexure–shear failure mode. 
For this reason, walls with flexure–shear failure mode 
are either in the flexural failure mode group or in the 
shear sliding failure mode group.

4 � Conclusion
Reinforced concrete structural walls (RCSWs) are often 
utilized as the major lateral force-resisting mechanism 
for residential and commercial low-to-high rise build-
ings in locations prone to severe magnitude earth-
quakes. Many analytical models and experimental 
studies have been carried out to investigate the non-
linear behavior of reinforced concrete structural walls, 
identifying failure modes of the RCSWs. In addition, 
there have been several studies that have investigated 
the failure mode of the RCSWs using machine learning 

(8)
Vn = µAvftfy < Vn

max,µ = 1.4

Vn
max = min(0.2f ′cAc, (3.3+ 0.08f ′c )Ac, 11Ac),

methods. This study aimed to examine and determine 
the efficiency of the ensemble neural networks to pre-
dict the failure mechanism of the RCSWs. The strong-
est model for predicting the failure mode of the RCSWs 
is determined by evaluating ensemble deep neural 
network models: model averaging, weighted average, 
and integrated stacking. Ensemble models are based 
on 5 neural network sub-models, whose performance 
in terms of accuracy (R2 score) ranges between 0.81 
and 0.84. The following is a summary of the primary 
conclusions:

•	 The weighted average ensemble model outperforms 
the other ensemble neural network models, yield-
ing an accuracy of 0.987, since it is capable of car-
rying forward the better sub-models with higher 
weights.

•	 The performance of the weighted average ensemble 
model of this study is compared with well-known 
ensemble models (AdaBoost, XGBoost, LightGBM, 
and CatBoost) and traditional machine learning 
methods (Naïve Bayes, K-Nearest Neighbors, Deci-
sion Tree, and Random Forest). The weighted aver-
age ensemble model outperforms traditional well-
known ensemble models in detecting the failure 
mode since it has the highest accuracy, precision, 
and recall among the other models.

•	 Merging the estimations from multiple deep neural 
networks counters the variance of a single trained 
model. The outcomes are predictions that are less 
susceptible to the specific details of the train-
ing data, and selection of the  training scheme and 
the  process of finding the right combination of 
hyperparameter values.

•	 A game theory-based technique is employed to 
explain the weighted average ensemble model’s pre-
dictions. The results of this technique showed that 
the effective parameters in shear wall failure depend 
on the failure mechanism. But in all four types of fail-
ure modes, the aspect ratio of the wall was ranked 
either first or second.

•	 Other features that mostly affect the detection of dif-
ferent types of failure modes are the boundary ele-
ment area to area of cross-section ratio, the ratio of 
length to thickness of the wall, and the vertical and 
horizontal boundary element reinforcing contribu-
tion.

•	 Comparison between the results of the weighted 
average ensemble model against internationally rec-
ognized building standard code (ACI 318–19 design 
code and the concept of strength calculation) shows 
that the machine learning model is more accurate in 
identifying the failure mechanism of the RCSWs. In 

Fig. 14  Confusion matrix based on code concept.
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addition, code concepts cannot be used to identify 
flexure–shear failure mode.

The results evidence the capability of ensemble models 
to improve the predictability capacity of failure modes in 
shear walls based on neural networks sub-models, also 
explaining consistently the impact of feature values in the 
failure mode occurrence.
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