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Abstract 

There are two specific aims in this study; first is to develop and validate an automated crack detection technique 
for the fire damaged beam. Second is to investigate whether the detected crack information and thermal-structural 
behaviors can be numerically related. To fulfill the aims, fire tests and residual strength tests are conducted on RC 
beams having different fire exposure time periods and sustained load levels. To detect the automated cracks, surface 
images of the fire damaged beam surfaces are taken with digital cameras and an automatic crack detection method 
is developed using a convolutional neural network (CNN) which is a deep learning technique primarily used for 
analyzing intricate structures of high-dimensional data [such as high definition (HD) images and videos]. The quantity 
of cracks detected using the proposed CNN changes depending on the test variables, and the changing trends are 
similar to those of the crack lengths obtained from the optical observation. Additionally, it is found that the quantity 
of the automatically detected cracks is numerically related to the temperatures inside the beams as well as the stiff-
nesses obtained from the residual strength tests.
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1 Introduction
Although concrete is known as a thermal resistant mate-
rial, concrete structures are damaged when exposed to 
fire. To repair or reuse the structures after the fire, it is 
important to estimate and quantify damages accurately 
and promptly. One of the common investigation methods 
is optical observation of crack and deformation from the 
fire damaged structures. It would be cost effective if such 
optical observation is done quantitatively without requir-
ing expensive testing machines or man power. Moreover, 
it would be very powerful if the crack information can be 

used as a guide to evaluate the performance of fire dam-
aged concrete structures.

The visual assessment methods of fire damaged con-
crete have been focused on investigations of color 
change, deflection, and cracking/spalling of the surface. 
In the studies by Short et  al. (2001) and Guise (1997), 
color image analysis is used to investigate changes in 
color for concrete subjected to elevated temperatures. 
Hager (2014) also investigates color change of ordinary 
and high-performance concretes upon heating using an 
image analysis software package (Scion image v. 4.0.3). 
Toumi and Resheidat (2010) analyze quantification of 
surface cracking of concrete heated to different tem-
peratures ranging from 105 °C to 1250 °C using an image 
scanning technique. On the other hands, there is a study 
about concrete specimens with pre-made cracks to inves-
tigate the effect of cracks on temperature distributions 
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after earthquake fire (Wu et  al. 2014). Xu et  al. (2003) 
focus on the effect of binder (w/b) ratios and PFA dosages 
on cracking of concretes. Kim et  al. (2013) investigate 
evolution of temperature-induced discontinuities at the 
sub-millimeter level and the cause of physical changes 
in heated mortar specimens (such as pore structure and 
density prevail) using high-performance X-ray computed 
tomography (CT), X-ray diffraction (XRD), and scanning 
electron microscopy (SEM).

Regarding crack detection, various image process-
ing and analysis techniques have been applied to detect 
edge information in fire damaged concrete structures. Li 
et al. (2018b) develop an edge detection algorithm using 
a local binary pattern (LBP) algorithm. They then analyze 
including the lengths and widths of the cracks. Other 
edge detection algorithms based on generic program-
ming (Nishikawa et  al. 2012) and Gabor filters (Zalama 
et al. 2014) have been used for identifying major cracks 
in surface images of concretes. However, hand-crafted 
image features are limited in the evaluation of fire dam-
aged reinforced concrete (RC) beams as the structures 
have smoke particles on the surfaces and a large amount 
of noise similar to thin cracks. Furthermore, illumination 
differences in the acquisition significantly impacts reli-
able image feature extraction.

The convolutional neural network (CNN) is a deep 
learning technique that is primarily used for analyzing 
intricate structures of high-dimensional data such as high 
definition (HD) images and videos (LeCun et  al. 2015). 
CNNs have a common structure that consists of cascaded 
convolutional layers and pooling layers ending with fully 
connected layers. Operating units called neurons are 
arranged to have feature maps and are connected to local 
patches to convolve the neurons of the previous layers. 
The learned image features from CNNs are known to be 
more robust and reliable to noise than hand-crafted fea-
tures when a large database is available for training the 
models. Accordingly, advanced deep learning techniques 
are actively studied in damage assessments using image 
analysis of RC beams. Cha et al. (2017) use a CNN that 
can train image features to detect concrete cracks in an 
end-to-end manner. Lin et al. (2017) demonstrate signifi-
cantly improved accuracies for localizing damaged areas 
in a structure when using automatically extracted image 
features from the CNN model. However, researches on 
the detection and utilization of cracks for fire damaged 
structural members have not been comprehensively stud-
ied. One of the reasons may be because it takes too long 
time and manpower to measure cracks quantitatively, 
especially when there are too many cracks on the con-
crete surface due to fire.

Therefore, this study proposes a machine learning tech-
nique to detect cracks from the fire damaged concrete. 

In addition, numerical correlations between the detected 
cracks and thermal-structural behaviors of the fire dam-
aged beams are presented. For the study, fire tests are 
performed on the RC beams having different fire expo-
sure time periods and sustained load levels. The auto-
matic crack detection method is developed and validated 
with the crack length obtained using optical observation. 
Residual strength tests are also conducted to measure 
maximum load bearing capacity and stiffness of the fire 
damaged beams.

2  Method
2.1  Details of Test Specimens
Five RC beams are fabricated with dimensions of 
250 × 400 × 5000  mm (width × depth × length) as listed 
in Table  1. Three steel bars (diameter = 19  mm) are 
located in the bottom of the beams and stirrups with 
150  mm spacing are used to prevent shear failure as 
shown in Fig. 1. Variables of this study are fire exposure 
time and sustained load level. During the fire tests, speci-
mens are subjected to sustained loads of 4.82 tonf, 7.23 
tonf, or 9.65 tonf, which correspond to 40, 60, or 80% of 
the nominal moment of the specimen, respectively. All 
the specimens are cured for 4 months at room tempera-
ture and then preheated at 200–300 °C for 2 h to prevent 
moisture effects during the fire test. After the fire test, 
the fire damaged beams are subjected to residual strength 
tests to measure maximum load bearing capacities and 
stiffnesses. 

Table  2 shows the mixing proportion of concrete and 
the mechanical properties of the concrete and steel bars 
used in the RC beams are obtained from material tests; 
the compressive strength of concrete is found to be 
25  MPa and the tensile strength is measured as 3  MPa 
after 28 days of curing at room temperature (see Table 3). 
The strength and elastic modulus of the reinforcing bar 
are 448 MPa and 205 GPa, respectively. 

2.2  Test Setup and Data Measurements
During fire tests, beams are loaded with a four-point 
loading system. Effective span is 4700 mm and distance 

Table 1 List of specimens.

Name Size (mm) Fire exposure 
time (min)

Sustained 
load (tonf)

P1-60 250 × 400 × 5000
(width × depth × length)

60 4.82

P1-120 120 4.82

P2-60 60 7.23

P2-120 120 7.23

P3-60 60 9.56
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between the two loading points is 1200  mm. After the 
certain level of load is applied, the beams are heated on 
three surfaces of the specimens (one bottom and two 
side surfaces) according to the time–temperature heating 
curve developed by the International Standard Organiza-
tion (ISO), as illustrated in Fig.  2. Temperatures inside 
the beam are obtained from thermocouples located at a 
bottom corner of a cross section (which is 40 mm away 
from the both bottom and side heated surfaces). In order 
to see if the temperature varies along the beam length, 
two thermocouples are located at mid span and 1/4 span 
(as shown in Fig. 3). After the fire tests, maximum load 
bearing capacities as well as stiffnesses of the fire dam-
aged beams are obtained from the residual strength tests. 

Loading points and support conditions for the residual 
strength test are the same as those used in the fire tests. 
Detailed locations of loading, strain and deflection meas-
urements for residual strength tests are shown in Fig. 3.

a 

b 
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Fig. 1 Details of specimens (unit: mm) (a) Cross sectional view, (b) Front view.

Table 2 Mixture proportion for concrete.

W/C (%) s/a (%) Weight per unit volume (kg/m3)

W C S G FA

53.4 49.8 83 155 913 914 1.86

Table 3 Material properties of concrete and steel.

Concrete 28-day compressive 
strength

28-day tensile strength

25 MPa 3 MPa

Steel Elastic modulus Tensile strength

205 GPa 448 MPa
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Fig. 2 ISO 834 time–temperature heating curve.
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2.3  The Crack Detection Method
2.3.1  Image Data Acquisition and Pre‑processing
Immediately after the fire test, surface images of the fire 
damaged beams are taken by digital camera. First, the 
side surfaces of fire damaged beams are divided into 10 
zones along the length. Then, the camera takes pictures 
of each zone while moving in a sideways direction on a 
tripod which is kept at a distance of 2 m from the beam 
surface. Because the CNNs process the concrete images 
patch by patch, each zone is divided into a number of 
image patches (as shown in Fig. 4). The resolution of the 
image patch is set to 540 × 540 pixels and corresponds to 
an area of 50 × 50  mm2 on the concrete beam. In other 
words, a size of one pixel becomes 0.09 × 0.09  mm2. It 
is noted that the crack detection algorithm can ana-
lyze an image patch at high resolution of about 0.6 mm 
pixel size and the presented algorithm uses higher pre-
cision in the edge analysis. Some outliers are removed 
if the image patch contained undesired artifacts such as 
paint. To confirm that the proposed CNNs detect cracks 
properly, surface cracks are also drawn manually from 
the imported surface images through CAD and the total 
lengths of the surface cracks are obtained.

2.3.2  Proposed CNN Method
A two-streamed CNN architecture is introduced in the 
authors’ previous work (Kim et al. 2018) and developed 
to detect the edges with high-fidelity in the fire damaged 
RC beams considering threshold values. Since the pixels 
of the image have wide range of intensity values from 0 
to 255, threshold is used to set criteria of pixel inten-
sity to be recognized as cracks. After the input concrete 
image passes through the CNN model, the output image, 
called the fire-damage-prediction-image (FDPI), is gener-
ated at the end of the network. The FDPI is supposed to 
include important cracks used for safety evaluation. The 
proposed CNN uses Convolution-Deconvolution archi-
tecture as shown in Fig. 5. Specifically, the series of con-
volution layers colored blue in Fig. 5 are used to extract 
the trained image features reflecting the length, thick-
ness, or overall shapes used for distinguishing real cracks 
from noise. The convolution layers find whether the 
primitive image features that actively respond to cracks 
reside in the concrete image. The pooling layers colored 
with light blue perform down-sampling of the input fea-
ture maps so that the same filter kernel can see larger 
scopes and reduce the complexity. The convolution and 
the pooling layers provide output latent vectors. Mean-
while, the deconvolution layers (colored orange) recon-
struct the region-of-interest from the feature maps and 

Fig. 3 Set-up and detail of thermocouple and LVDT.

Fig. 4 Image data acquisitions and pre-processing.
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the latent vectors. Un-pooling layers increase the size of 
the feature maps to that of the original image (as opposed 
to the pooling layers).

The model presented here differs from previous CNN-
based edge detection algorithms (Cha et  al. 2017; Xie 
and Tu 2017) in that the proposed network uses two-
streamed CNNs consisting of so-called a weighting 
feature network and a low-level feature network. The 
motivation for these architectural changes is to provide 
both abstract and primitive information in crack detec-
tion. In CNNs, the convolution layers train hierarchical 
features with respect to the different levels. The layers 
closer to the input layer provide more primitive image 
representations such as lines and blobs. In contrast, the 
layers closer to the output layer provide more abstract 
representations. The low-level features can be efficiently 
used for edge detection algorithms (Cha et al. 2017; Xie 
and Tu 2017) because the cracks are formed with com-
posites of lines and other low-level features. However, 
the features can be too sensitive to noise or some color 
changes (especially when the RC beams suffer from fire-
damage). To alleviate these problems, our model incor-
porates a weighting feature network to find a wider range 
of cracks using the convolution-deconvolution struc-
ture. The weighting feature network produces high pixel 
intensities in an image to indicate an important region 
of cracks. At the end of the network, element-wise mul-
tiplication is used to combine the two feature maps from 
both the weighting feature network and the low-level fea-
ture network. This is so that the FDPI can capture only 
the critical cracks that can play a key role in the safety 
evaluation. It is also shown in Fig.  5 that the low-level 

feature network uses a skipping path with elementwise 
addition to deliver the low-level features to the decon-
volution layers so that the information is not lost in the 
end of the network. The method is motivated by previous 
studies to achieve precise localization with CNNs (Ron-
neberger et al. 2015).

2.3.3  Training and Testing
The proposed network model is implemented using Caffe 
software framework based on C++ (Jia et al. 2014). Train-
ing and testing are performed with a NVIDIA Geforce GTX 
1080 graphic processing unit (GPU), Intel@3.5GHzX8 
CPU, and 32  GB memory. Data sets of ~ 88,000 natural 
images and ~ 20,000 RC beam images are used for training 
the parameters (Li et al. 2014; Yan et al. 2013). Our model 
is first initialized using pre-trained parameters from Ima-
genet datasets (Russakovsky et al. 2015) and further trained 
with other natural images such as VOC (Everingham et al. 
2015) and BSDS (Martin et  al. 2001) datasets, which are 
widely used for edge detection and saliency detection. 
Afterwards, the CNN model is fine-tuned using crack 
images. Especially, the images of RC beams are prepared 
by dividing surface images of various fire damaged beams 
into small patches with size of 50 × 50mm2. However, the 
annotation per-pixel of all the training images requires a lot 
of human labors and costs. Therefore, this study uses semi-
supervised learning with pseudo-labels that have been 
effectively used in a saliency detection problem (Li et  al. 
2018a). The training procedure is shown in detail; in the 
first round, input of the training samples are fed into the 
saliency detection network and some of the output samples 
are chosen if they display results close to the actual cracks. 

Fig. 5 Crack detection algorithm based on two-streamed convolutional neural networks using weighting feature network and low-level feature 
network. (color figure online).
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It is noted that the intermediate outputs sometimes have 
pore structures or noises since the network is not origi-
nally developed for the crack detection. Thus, in the second 
round, the undesired structures are removed in manual so 
that only the cracks remain in the samples. The steps are 
iteratively done, and ~ 2000 pseudo training samples are 
obtained. Moreover, we also create ~ 300 ground-truth 
training samples by manually tracing cracks to conduct fur-
ther fine-tuning and ~ 200 ground-truth testing samples. 
The training and testing images are not overlapped. The 
parameters are trained with the standard back-propagation 
algorithm (LeCun et al. 2015).

For training, a cost function J is defined as the mean 
squared error function between the predicted edge image 
and the original edge (ground truth) as follows:

(1)J =
1

2
||O −Hw(I)||

2
2

where O is the ground truth of FDPI, Hw is the network 
function, w is the network parameter set, and I is the 
input concrete RC image. The loptimal network parame-
ter set w∗ are trained to minimize the cost function, given 
as:

The optimization in (2) can be accomplished using 
the back-propagation algorithm. The network param-
eters are updated with the mini-batch stochastic gradi-
ent descent algorithm, as in the study (Lee et al. 2017):

where ξ is the learning rate. The learning rate is set to 
 10−2, which is kept constant during the training. The 
training is stopped after 10K iterations. In the fine-
tuning, the learning rate is the same, but the training is 
stopped after 5K iterations.

(2)w∗ = arg min J (w)

(3)wn = wn−1 + ξ
∂

∂w
J (w)

Fig. 6 Examples of input crack images in the first column and the output images from weighting feature network, low-level feature network, and 
the final output in the second, third, and fourth column, respectively (Kim et al. 2018).

Fig. 7 Result of the proposed CNN method for specimen P1-60.
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2.4  Crack Detection
Figure  6 reveals the representative results from the 
weighting feature network and the low-level feature net-
work when the two different types of input images are 
given. The first column represents the original crack 
images. The second, third, and fourth columns repre-
sent the corresponding outputs of the weighting feature 
network, the low-level feature network, and the final 
combined network, respectively. The weighting feature 
network captures the region where the important cracks 
exist, which can be seen in the second column. As com-

pared to the first row, the second row rejects most of the 
regions whose pixel intensities in the weighting feature 
network are nearly zero. This observation confirms that 

there are no distinct cracks in the second row. For the 
outputs shown in the third column, the low-level feature 
network detects the fine edge information that has been 
not captured in the weighting feature network. Combin-
ing both images in the last column, the FDPI shows the 
important crack information in final output. Figure 7 is a 
black-white inverted image of P1-60 specimen obtained 
from the proposed CNN model, showing detected cracks 
and edges of pore in black lines.

In order to validate the crack detection method, sur-
face cracks on RC beams are drawn using AutoCAD 

(Autodesk Inc, San Rafael, CA) from optical observa-
tion as illustrated in Fig.  8a–e. The surface cracks are 
dispersed over the heated surfaces and observed more 

Fig. 8 Surface cracks of specimens from optical observation (a) P1-60, (b) P1-120, (c) P2-60, (d) P2-120, (e) P3-60.

Table 4 The number of  pixels recognized as  cracks from  the  proposed CNN model and  the  total crack length obtained 
from optical observation.

Specimens (a) The number of pixels obtained 
from the proposed CNN model

(b) Total crack length obtained from the optical 
observation (mm)

Ratio (a/b)

P1-60 33,987,368 76,316 4.45 × 102

P1-120 39,942,906 83,866 4.76 × 102

P2-60 35,924,210 75,827 4.73 × 102

P2-120 40,607,469 86,856 4.67 × 102

P3-60 37,277,057 78,000 4.77 × 102
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in the lower part than in the upper part. Compared to 
Fig.  8a, crack lines detected from Fig.  7 are similar to 
those obtained from optical observation. For the more 

quantitative comparison, total lengths of the cracks 
obtained from the optical observations are calculated 
using AutoCAD as listed in Table  4. As shown in the 
table, the number of pixels of the crack parts obtained 
from the proposed CNN model is compared with the 
total crack lengths obtained from optical observation. 
Since the CNN method gives output in a form of number 
of pixels, direct comparison between the results from the 
CNN model and the optical observation is not possible. 
One may insist that the area of cracked part can be calcu-
lated by multiplying the number of pixels with the area of 
one pixel. Then the crack length obtained from the opti-
cal observation also need to be transferred into the area 
of cracked part by multiplying with the crack width. From 
an image patch of 50 × 50  mm2 of the fire damaged beam 
surface (Fig. 9), it is found that the widths of the cracks 
are widely varied from 0.1 to 0.9  mm. Due to its wide 
variation and large number of cracks, it would be time 
consuming to measure width of each crack manually and 
is difficult to average them properly. Instead, this study 
investigates the ratio of the number of pixels obtained 
from the CNN model to the crack length obtained from 
the optical observation, in order to see if consistency of 
the ratios can be found. It is interesting to note that the 
ratios in Table 4 are almost same among the specimens 
having different variables. This tells that the proposed 
CNN method recognizes cracks of the fire damaged con-
crete beams from the surface images and follows similar 
changing tendencies of total crack lengths obtained from 
the optical observations.

Considering that the number of pixels for the cracked 
part corresponds to approximately 15–17% of the heated 
surfaces, the proposed CNN method likely recognizes 
the more area as cracked than the actual cracks. This is 
because the proposed CNN still detects pore edges and 
recognizes as cracks regardless of using weighting net-
work, when the pores are relatively large and clear as 
shown in Fig.  10a, b. Since threshold is often used to 
remove such noises, Table  5 includes test results of the 
CNN model with various threshold values of 0, 100, 

Fig. 9 Surface cracks of specimens from optical observation.

Fig. 10 Examples of original and detected images of pores from 
unheated beam surface (a) Original image of unheated beam surface, 
(b) Edge detection from the proposed CNN model.

Table 5 CNN results depending on various threshold values.

Specimens The number of pixels from the proposed CNN model with using threshold

Threshold = none Threshold = 100 Threshold = 180 Threshold = 200

Result Order Result Order Result Order Result Order

P1-60 33,987,368 5 4,318,206 4 2,016,520 4 1,532,640 4

P1-120 39,942,906 2 6,102,724 2 2,875,649 3 2,183,620 3

P2-60 35,924,210 4 3,844,416 5 1,952,067 5 1,525,105 5

P2-120 40,607,469 1 5,652,050 3 2,986,106 2 2,372,325 2

P3-60 37,277,057 3 8,239,397 1 4,814,109 1 3,952,994 1
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180, and 200 in order to see if the threshold is capable 
of excluding detection of pore edges. Implementation 
of threshold drastically reduces the number of pixels 
as shown in Table  5. Specifically, the number of pixels 
decreases by almost 60% as the threshold value increases 
from 100 to 200, which shows that the implementation 
of threshold is an effective method to reduce the number 
of pixels by excluding detection of pore edges. However, 
Table  5 also shows that orders of specimens based on 
the number of pixels change, when the threshold is used. 
This is because the implementation of threshold excludes 
detection of some micro cracks dispersed on the dam-
aged beam surfaces as well as detection of pore edges. 
Implementation of threshold can rather be suggested 
when the concrete surface has relatively large major 
cracks with minor number of noises. Instead, this study 
finds number of pixels for pore edges by using the pro-
posed CNN model from the images of unheated concrete 
surfaces. Then, number of pixels for pore edges is sub-
tracted from the number of pixels recognized as cracks 
from the proposed CNN model. This method allows 
excluding detection of initial defects such as noises and 
pores without using thresholds improves accuracy of 
the crack detection results of the proposed CNN model. 
Table  6 lists numbers of pixels excluding pore edges, 
which show similar trends as the total crack lengths 
obtained from the optical observations. Moreover, the 
area of detected cracks from the proposed CNN model 
reduces as 4.7–7.4% of the heated surfaces.

The proposed CNN model needs about 6.3  min of 
computational loads to detect cracks and store the results 
as shown in Fig.  7, while it takes days for one person 
to manually draw crack lines of the fire damaged beam 
surface (i.e. Fig. 8a) from optical observation. Even con-
sidering time to take photos of the fire damaged beam 
surfaces for image processing, the proposed CNN model 
is able to save time significantly to detect cracks of the 
fire damaged concrete beams. Other advantages of using 
the proposed CNN model are; the model gives objective 
results, and does not require expensive inspection tools 
or man power but commonly used digital camera and a 
computer.

3  Discussion
This section discusses the numerical correlation between 
the cracks and thermal-structural behaviors of the fire 
damaged beams in order to see if the detected crack 
information can be used as one of the fire damage eval-
uation indices. The hypothesis of choosing crack as fire 
damage evaluation index is that even if both loading and 
fire cause cracks in the beam, cracks occurred by loading 
accelerate heat propagation through the cracks and the 
accelerated heat propagation eventually causes increase 
of temperature as well as thermally induced cracks. First, 
the relationship between the crack lengths of localized 
areas and the concrete temperature of the correspond-
ing locations is illustrated in Fig. 11. As shown, the crack 
length and the concrete temperature at localized area are 
not directly matched because the cracks in the localized 
area cannot represent overall behaviors of fire damaged 
beams, whereas the overall behaviors are highly influ-
enced by temperature exposure. Instead, Fig.  12 shows 
that total crack lengths of fire damaged beams have 
much better correlation as  R2 = 0.96 with the concrete 
temperatures measured at mid span. Therefore, it can 
be concluded that total crack lengths of the beam sur-
faces are highly influenced by the concrete temperatures. 
Likely, the number of pixels detected using the proposed 

Table 6 CNN results excluding edges of pores.

Specimens The number of pixels excluding pore edges 
from the proposed CNN model

Ratio to total crack length obtained 
from the optical observation

Ratio 
to heated 
surfaces (%)

P1-60 11,683,021 1.53 × 102 4.73

P1-120 17,638,559 2.10 × 102 7.14

P2-60 13,619,863 1.79 × 102 5.52

P2-120 18,303,122 2.11 × 102 7.41

P3-60 14,972,710 1.92 × 102 6.06

Fig. 11 Correlation between temperatures and crack lengths 
obtained from the optical observation at different locations.
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CNN has a strong correlation to the concrete tempera-
ture as  R2 = 0.91, as shown in Fig. 13. It is found that  R2 
value for temperature-total crack length curve (Fig.  12) 
is slightly higher than  R2 value for temperature-the num-
ber of pixels curve (Fig. 13). The difference of  R2 values 
may be because  of the proposed CNN model tends to 
recognize all edges of micro cracks dispersed on concrete 

surfaces as fire induced cracks, while only major cracks 
are counted from the optical observation. Nonetheless, 
it can be said that the numbers of pixels obtained from 
the proposed CNN model are correlated with tempera-
tures as good as obtained from the optical observation, 
because both  R2 values are higher than 0.9.  

From the residual strength tests, maximum load bear-
ing capacities and initial stiffness values (Sullivan et  al. 
2004; Ryu et al. 2018) of the fire damaged RC beams are 
also obtained and compared with the number of pixels 
as listed in Table 7. It is interesting to note that the dif-
ferences in maximum loads between the fire damaged 
specimens are small. For example, specimen P1-120 
shows the lowest maximum load among the specimens 
but the maximum difference is only about 5% compared 
to the P2-60 specimen. This is because the maximum 
load bearing capacities of the beams are highly governed 
by the reinforcing steel bars and the strength of the steel 
bars does not show significant decrease at the tempera-
tures under 500 °C. Rather than the maximum loads, the 
differences of the initial stiffness of the fire damaged RC 
beams having different fire exposure time and sustained 
load level are relatively large due to damages of the con-
crete. Therefore, this study investigates the relationship 
between the number of pixels and stiffness of fire dam-
aged beams from Fig. 14. The figure shows that there is 
an obvious decrease of stiffness with increase of number 
of pixels with high correlation as  R2 = 0.91, and the num-
ber of pixels can also be related to structural behaviors of 
fire damaged beams.

The detailed results depending on the test variables 
can be found from Table 7. Specifically, the number of 
crack pixels of fire damaged beams tends to increase 
with the fire exposure time. The number of crack pixels 
is 11,683,021 for the P1 specimen heated for 1 h, while 
the number of crack pixels is 17,638,559 for P1 speci-
men heated for 2  h. In the case of specimens loaded 
with 60% of their nominal moments, the numbers of 
crack pixels are 13,619,863 and 18,303,122 for P2-60 
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Fig. 12 Correlation between temperatures and total crack lengths 
obtained from the optical observation.
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Fig. 13 Correlation between temperatures and the number of pixels 
from the proposed CNN model.

Table 7 Fire test and  residual strength test results (Ryu et  al. 2018) compared with  number of  pixels obtained 
from the proposed CNN model.

Specimens Fire test results Residual strength test results The number of pixels excluding pore 
edges from the proposed CNN model

Ratio of pixel 
numbers 
to P1-60Temperature 

at mid span (c)
Ratio 
of temp 
to P1-60

Maximum 
load (kN)

Stiffness 
(kN/mm)

Ratio 
of stiffness 
to P1-60

P1-60 184.7 1.00 174.6 4.05 1.00 11,683,021 1.00

P1-120 528.9 2.86 169.9 3.28 0.81 17,638,559 1.51

P2-60 160.8 0.87 178.8 3.69 0.91 13,619,863 1.17

P2-120 568.8 3.08 174 2.91 0.72 18,303,122 1.57

P3-60 312.1 1.69 172.6 3.36 0.83 14,972,710 1.28
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and P2-120 specimens, respectively. P1 and P2 series 
show that the numbers of crack pixels of the beams 
heated for 2 h are about 34% and 51% larger than those 
of the beams heated for 1 h, respectively. The number of 
crack pixels is also affected by the sustained load levels, 
because the beam loaded with the higher ratio of the 
nominal moment causes more cracks and the concrete 
temperature also increases. However, the differences of 
numbers of crack pixels due to different sustained load 
levels are relatively small. For example, a change in the 
numbers of crack pixels between the specimens P1-60 
to P2-60 is about 17% and the change between P2-60 
to P3-60 is about 10%. Therefore, it can be said that the 
temperature and the number of crack pixels show simi-
lar increasing tendency when the sustained load level 
increases, but the differences are small.

Detailed information in Table  7 also shows that the 
number of pixels increases and stiffness decreases with 
increase of fire exposure time and sustained load level. 
When comparing P1-60 specimen and P1-120 speci-
men, the reduction rate of stiffness is about 19% and 
the numbers of crack pixels increase about 51% with 
increase of fire exposure time from 60 to 120  min. 
When comparing P1-60 specimen to P2-60 specimen, 
stiffness reduces about 9% and the number of crack 
pixels increases about 17% due to increase of sustained 
load level from 40 to 60%.

4  Conclusions
This study proposes a CNN based method to detect 
cracks in fire damaged beams automatically and investi-
gates whether there are numerical correlations between 
the detected crack information and thermal-structural 
behaviors of the fire damaged concrete beams. The fol-
lowing conclusions are drawn:

1. The crack information of the fire damaged concrete 
beams obtained from the proposed CNN model 
agrees well with the crack information obtained from 
the optical observation.

2. The temperatures obtained from the thermocouples 
inside the beams are significantly related to total 
crack lengths of fire damaged beams rather than 
crack lengths at each zone. Also, there are strong 
relationships between the temperature and the 
number of pixels obtained from the proposed CNN 
model.

3. No significant differences in the maximum load 
bearing capacities of the fire damaged RC beams are 
found because undamaged reinforcing steel bars play 
a major role under bending. However, initial stiff-
ness of the fire damaged RC beam differs depending 
on the test variables considerably due to damages of 
the concrete. When compared with number of pixels 
obtained from the proposed CNN model, changing 
trend of stiffness among the tested specimens is simi-
lar to that of number of pixels obtained from the pro-
posed CNN model in general.

4. The limitation of this study is that the proposed CNN 
model is not able to capture crack depth and width. 
Nonetheless the number of pixels is related to ther-
mal-structural behaviors to some degree.
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